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Abstract

Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and
used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use
of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are
deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed,
little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties
for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability
in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of
evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be
among the top performing when compared with alternative subsampling protocols. Relatively common approaches such
as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse
than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving
at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in
usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene
properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while
controlling for known sources of bias.
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Introduction
During the last decades, molecular data sets composed of
thousands of genes have become common. Although a few
phylogenetic questions have remained uncertain even in the
face of such large data sets (King and Rokas 2017; Smith et al.
2020), phylogenomics has greatly improved our understand-
ing of the structure of the tree of life (Dunn et al. 2008; Spang
et al. 2015; Burki et al. 2020), the timing of origin of major
clades (dos Reis et al. 2012), and the changes in genomic
architecture associated with key evolutionary transitions
(Paps and Holland 2018; Fern�andez and Gabald�on 2020).
At the same time, the analysis of phylogenomic data sets
has posed numerous novel challenges. These range from a
high prevalence of genes whose evolutionary histories deviate
from that of the group of species under study (such as results
from events of paralogy, incomplete lineage sorting, and hy-
bridization, among others), to an accumulation of nonphylo-
genetic signals as a product of heterogeneities in evolutionary
processes. Although many of these issues can be alleviated by
implementing more complex models of molecular evolution,
computational limitations often preclude their use with en-
tire phylogenomic data sets (Simion et al. 2020).

Phylogenomic subsampling is a common procedure to
alleviate these issues (Meyer et al. 2011; Chen et al. 2015;
Edwards 2016; Simmons et al. 2016; Molloy and Warnow

2018; Mongiardino Koch 2019). By focusing on a small frac-
tion of genes that are considered more reliable, contentious,
or unstable nodes can be tested, and the effects of potentially
confounding factors such as missing data and saturation can
be disentangled (Fern�andez et al. 2014; Sharma et al. 2014;
Borowiec et al. 2015; Kocot et al. 2017; Mongiardino Koch et
al. 2018; Stiller et al. 2020). Smaller data sets are also amenable
to analysis using more complex and computationally de-
manding approaches, including inference under site heterog-
enous and multispecies coalescent models (Whelan et al.
2015; Thawornwattana et al. 2018; Ballesteros et al. 2019;
Marl�etaz et al. 2019). Phylogenomic subsampling can there-
fore reduce heterogeneities in the data set and improve
model fit, producing results that are often preferred. The
same logic applies to divergence-time estimation, where sub-
sampling can be used to both alleviate computational burden
and produce more accurate results (Dornburg et al. 2014;
Smith et al. 2018; Carruthers et al. 2020; Mongiardino Koch
and Thompson 2021).

Given these benefits, multiple subsampling protocols have
been proposed. Although sharing a common goal of retriev-
ing phylogenetically reliable loci (throughout, used inter-
changeably with genes), they have often employed—and
sought to optimize—entirely different criteria. These can ei-
ther be a measure of information quantity, such as the length
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of the alignment or its proportion of missing data/occupancy
(e.g., Hosner et al. 2016; Foley et al. 2019), or a variable reflect-
ing information quality. Among the latter, common
approaches include the selection of loci with high levels of
phylogenetic signal (e.g., Salichos and Rokas 2013) and the
removal of those potentially affected by systematic biases
(e.g., Nesnidal et al. 2010). However, multiple sources of bias
are known (KapLi et al. 2021) and different proxies for signal
have been employed (Salichos and Rokas 2013; Salichos et al.
2014; Arcila et al. 2017; Philippe et al. 2019; Vankan et al.
2020), and the downstream consequences of choosing
among these are largely unknown. This is further complicated
by the fact that sources of bias and proxies for signal can be
strongly correlated (Mongiardino Koch and Thompson
2021), such that the optimization of either dimension indi-
vidually modifies the other in potentially unintended ways. As
a consequence, it remains unclear if these alternatives (retain-
ing “good” genes vs. discarding “bad” ones) converge on a
similar pool of reliable loci, and if not, whether one system-
atically outperforms the other. It is also uncertain whether
subsampling approaches favored when dealing with notori-
ously complicated phylogenetic questions are useful for data
sets that lack any obvious sign of issues.

Ultimately, levels of both signal and noise are manifesta-
tions of underlying differences in rates of evolution. Rate-
based subsampling is therefore also common, but there
seems to be little consensus on how it should be imple-
mented: studies have variously supported the use of molec-
ular data that evolve at fast, intermediate, or slow rates, as
well as the generation of partitions with homogenous rates
(e.g., Cummins and McInerney 2011; Rota-Stabelli et al.
2011; Fern�andez et al. 2014; Sharma et al. 2014, 2015;
Telford et al. 2014; Streicher et al. 2018; Rangel and
Fournier 2019; Evangelista et al. 2021; Li et al. 2021). These
studies have also relied on different types of rate estimates—
including tree- and alignment-based metrics of substitution
rates, measures of character similarity and compatibility, and
proportions of variable/informative sites—as well as differ-
ent units of measurement (sites or loci). Furthermore, the
discovery of appropriate rates of evolution can be compli-
cated by heterogeneities among sites and lineages that are
often not accounted for (Dornburg et al. 2019). An alterna-
tive method involves using some notion of the relationships
among the taxa under study (including topology and branch
lengths in units of time) to predict the likely behavior of data
evolving under differing rates (Townsend 2007; Townsend et
al. 2012; Su and Townsend 2015). This approach, termed
phylogenetic informativeness (PI), can be used to quantify
the expected probabilities of sites contributing toward cor-
rectly or incorrectly resolving a given quartet, guiding the
discovery of particularly useful genes (e.g., Alda et al. 2019;
Bellot et al. 2020).

Although many studies have optimized just one of these
properties, others have devised complicated subsampling
schemes intended to find loci that satisfy a number of requi-
sites. In the majority of cases, this is performed by iteratively
removing data based on a number of rules (e.g., Fern�andez et
al. 2014; Sharma et al. 2015; Whelan et al. 2015). To some

extent, this approach can be used to test the effect of indi-
vidual gene properties on phylogenetic reconstruction, as well
as progressively narrow in on a small set of loci that satisfy
multiple criteria. However, the final results depend on the
order in which properties are evaluated and the thresholds
enforced, decisions that are difficult to justify (if not entirely
arbitrary). A handful of studies (Borowiec et al. 2015; Kocot et
al. 2017; Mongiardino Koch and Thompson 2021) have there-
fore selected loci that simultaneously satisfy a number of
conditions. In the case of Mongiardino Koch and
Thompson (2021), subsampling was not performed directly
on the variables measured but on principal component (PC)
axes derived from these. This approach produced axes cap-
turing differences in rate of evolution and overall phyloge-
netic usefulness along which loci could be sorted. Whether
major axes of variation in other phylogenomic data sets can
be interpreted in similar ways remains unknown.

Several recent studies have explored a number of these
gene properties in an attempt to discover reliable predictors
of the phylogenetic performance of loci (Aguileta et al. 2008;
Doyle et al. 2015; Shen et al. 2016; Brown and Thomson 2017;
Kuang et al. 2018; Burbrink et al. 2020; Vankan et al. 2020;
Evangelista et al. 2021). Their recommendations have often
differed, raising the possibility that a universal predictor might
not exist. They have also invariably focused on correlating
alternative properties with measures of topological distance
or clade support, without actually evaluating the perfor-
mance of subsampled data sets composed of multiple loci
(i.e., the trees they support). In this study, I calculate numer-
ous gene properties across 18 phylogenomic data sets, repre-
senting diverse clades whose evolutionary histories began
anytime between the Middle Cambrian and the Late
Cretaceous (table 1). With these data, I explore the existence
of universal patterns of covariance between gene properties
and test whether such patterns capture useful information
regarding the evolutionary history of loci. I then analyze the
success of alternative subsampling strategies in finding phy-
logenetically reliable data sets of small sizes.

Results
Data set sampling purposefully avoided notoriously difficult
phylogenetic questions, focusing instead on more typical data
sets. These do not suffer from any evident source of bias, and
thus there is no clearly preferable approach to subsample
them, or any expectation that a single method would work
well for all of them. All matrices were coded as amino acids
and were modified only by removing loci with less than 50%
occupancy (further details can be found in Materials and
Methods). Time-calibrated species trees were also obtained
from the corresponding studies. Gene trees were inferred
using ParGenes v. 1.0.1 (Morel et al. 2019) under optimal
models, and 100 replicates of nonparametric bootstrap (BS)
were used to calculate node support. Site-wise rates of evo-
lution were estimated using the empirical Bayes method
implemented in Rate4Site (Mayrose et al. 2004). All other
analyses were performed in the R statistical environment (R
Core Team 2019) using custom scripts. This included the
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estimation of 15 gene properties: 1) alignment length; 2) pro-
portion of missing data; 3) level of occupancy; 4) proportion
of variable sites; 5) total tree length (i.e., sum of all branches);
6) level of treeness (i.e., the fraction of tree length on internal
branches; Lanyon 1988); 7) average pair-wise patristic distance
between terminals, a proxy for sensitivity to long-branch at-
traction (Struck 2014); 8) clock-likeness, calculated using the
variance of root-to-tip distances; 9) level of saturation, esti-
mated as one minus the regression slope of patristic distances
on p-distances (Nosenko et al. 2013); 10) compositional het-
erogeneity, measured by the relative composition frequency
variability (RCFV; Phillips and Penny 2003; Zhong et al. 2011);
11) average BS support; 12) Robinson–Foulds (RF) similarity
to the species tree supported by each study (Robinson and
Foulds 1981); two estimates of evolutionary rates, including
13) the total tree length divided by the number of terminals
(Telford et al. 2014) and 14) the harmonic mean of site rates;
and 15) the area under the penalized PI profile (iPIpen). For
this last one, site rates were used to calculate a PI profile (an
estimate of the utility of a locus for inferring relationships at
different timescales) for the entire time spanned between
root and tips using PhyInformR (Dornburg et al. 2016). To
account for the accumulation of phylogenetic noise (i.e., ho-
moplastic site patterns arising in fast-evolving sites), which is
not directly accounted for by the method, informativeness
values for times older than that of the peak were penalized
following the method described in Bellot et al. (2020). This
was done by multiplying their values by the ratio between
their current height and that of the PI peak. The area under
this curve is a proxy for the signal in the data to resolve nodes
spanning the entire depth of the tree and was estimated using
spline interpolation with the package MESS (Ekstrom 2020).
All properties were measured at the level of genes. Metrics
were defined such that positive attributes (such as RF

similarity) should be maximized, whereas negative attributes
(such as level of saturation) should be minimized. More in-
formation on these metrics can be found in supplementary
table S1, Supplementary Material online.

Across all data sets, proxies for phylogenetic signal (average
BS, RF similarity, and iPIpen) correlate most strongly with the
length, rate of evolution (estimated as the harmonic mean of
site rates), and proportion of variable sites of loci, increasing
with all three (supplementary fig. S1, Supplementary Material
online). Other properties previously suggested as strong pre-
dictors of signal, such as clock-likeness and compositional
heterogeneity (Doyle et al. 2015; Shen et al. 2016; Kuang et
al. 2018; Vankan et al. 2020; Evangelista et al. 2021), show less
predictable relationships that can range from strongly posi-
tive to strongly negative (supplementary fig. S1,
Supplementary Material online). Some variables (e.g., satura-
tion, treeness) have stronger effects on some proxies than
others, which further complicates extracting meaningful pat-
terns. More importantly perhaps, 97.1% of all pair-wise cor-
relations among the 15 properties are significant across more
than half of the data sets (including those between signal
proxies and all predictors; supplementary fig. S2,
Supplementary Material online). There is also no evidence
that any of these gene properties significantly depends on
the absolute age of clades (all P values > 0.2).

In order to explore whether gene properties share com-
mon patterns of covariance across data sets, I followed the
approach of Mongiardino Koch and Thompson (2021), fo-
cusing on a subset of seven variables: two proxies for signal
(average BS and RF similarity), four sources of bias (average
pair-wise patristic distance, level of saturation, compositional
heterogeneity and root-to-tip variance, the latter representing
deviations from clock-likeness), and the proportion of vari-
able sites. A principal component analysis (PCA) of these data

Table 1. Phylogenomic Data Sets Employed.

Data Set Age (Ma) Number of Taxa Number of Loci Occupancy (%) Mean Locus Length

Actinopterygii (Hughes et al. 2018) 376.3 302 1,035 81.2 167.1
Araneae (Fern�andez et al. 2018) 366.1 160 1,114 64.2 218.8
Aspergillacea (Steenwyk et al. 2019) 117.4 81 1,660 97.5 633.8
Blattodea (Evangelista et al. 2019) 206.7 45 2,556 82.1 374.4
Echinoidea (Mongiardino Koch and

Thompson 2021)
265.0 34 2,356 71.6 257.1

Gnathostomata (Irisarri et al. 2017) 457.6 100 4,543 81.6 430.4
Heliozelidae (Milla et al. 2020) 84.0 38 1,040 92.2 271.4
Hemipteroids (Johnson et al. 2018) 420.3 171 2,225 90.6 771.0
Hexapoda (Misof et al. 2014) 479.1 134 1,467 94.7 869.5
Hymenoptera (Peters et al. 2017) 281.0 169 2,665 84.8 647.6
Lepidoptera (Kawahara et al. 2019) 299.5 186 2,021 88.8 359.4
Monilophytes (Shen, Jin, et al. 2018) 321.1 69 2,357 89.5 284.3
Myriapoda (Fern�andez et al. 2016) 504.4 40 1,942 82.2 297.1
Opiliones (Fern�andez et al. 2017b) 414.2 54 1,288 63.2 265.7
Phasmatodea (Simon et al. 2019) 121.8 38 1,022 88.6 772.3
Pseudoscorpiones (Benavides et al. 2019) 337.5 41 2,110 63.2 376.1
Saccharomycotina

(Shen, Opulente, et al. 2018)
404.0 332 2,348 88.1 464.6

Scorpiones (Sharma et al. 2018) 381.3 30 1,462 86.6 226.3

NOTE.—Age constitutes the inferred date of the last common ancestor of the ingroup (in million years, My) as estimated by the same study. Number of taxa corresponds only to
ingroup taxa, number of loci to those for which all properties could be estimated (see Materials and Methods); these and other numbers can differ from those reported in
the original studies.
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sets resulted in two major axes explaining an average of 51.7%
and 24.5% of total variance. Hierarchical and k-means clus-
tering of the loadings of these first two PCs support the hy-
pothesis that these axes are capturing similar aspects of
molecular evolution across data sets (fig. 1 and supplemen-
tary fig. S3, Supplementary Material online). Both techniques
resulted in a split of PCs into two main groups: one that
includes PCs along which all properties increase/decrease (a
pattern generally captured by PC 1), and another group of
PCs along which sources of bias change in the opposite di-
rection than proxies for signal (a pattern generally retrieved as
PC 2). Two data sets (Hexapoda and Phasmatodea) have PCs
whose groupings are reversed relative to others.

To understand what underlying factors could be generat-
ing these patterns, the scores of loci along both PCs were
correlated with estimates of evolutionary rates (using the log-
transformed harmonic mean of site rates). This analysis con-
firmed that the variability generally captured along PC 1
reflects differences in rates of evolution (fig. 2). On the other
hand, PC 2 constitutes a dimension that is largely uncorre-
lated with evolutionary rates, but that often shows a more or
less conspicuous peak at intermediate rates. Once again, the
hexapod and phasmatodean data sets deviate from these
patterns by exhibiting the lowest levels of correlation between
rates and PC 1, as well as the highest level of correlation
between rates and PC 2 (in absolute terms). These results
are insensitive to the choice of an alternative, tree-based
method to estimate evolutionary rates (i.e., the total tree
length divided by the number of terminals, see supplemen-
tary fig. S4, Supplementary Material online).

The phylogenetic behavior of loci selected by both PC axes
was then compared against other common subsampling
strategies. For this, phylogenomic data sets were sorted

according to a number of criteria and reduced to sizes of
both 50 and 250 loci, selecting those that scored the highest
or the lowest, depending on the strategy. A total of 23 sub-
sampled matrices of both sizes were built from each data set.
These included matrices that maximized gene length, occu-
pancy, proportion of variable sites, average BS, RF similarity,
iPIpen, and treeness, as well as matrices that minimized sat-
uration, compositional heterogeneity, and root-to-tip vari-
ance. Data sets were also built from the fastest and slowest
evolving loci, those showing intermediate rates (i.e., those
whose rates were closest to the median rate of the entire
data set), as well as those that scored highest and lowest
along PC axes 1 and 2. Sorting was also done with
SortaDate (Smith et al. 2018), a common pipeline for phylo-
genomic subsampling based on three gene properties.
However, this method ordered loci in ways that were nearly
identical to those achieved by using just one variable, which-
ever was selected as the first sorting step (see supplementary
fig. S5, Supplementary Material online). Since all three varia-
bles were already being assessed, this method was not
employed. Finally, five data sets were generated by sampling
genes at random.

Phylogenetic inference using subsampled data sets was
performed using IQ-TREE 1.6.3 (Nguyen et al. 2015) under
the LGþFþG model, and node support was estimated using
1,000 replicates of ultrafast bootstrap (UFBoot; Hoang et al.
2018). Characterizing the performance of these data sets is
complicated by the fact that the underlying phylogenies are
unknown (in fact some of the trees used here have already
been challenged to some degree; see Meusemann et al. 2020;
Szucsich et al. 2020; Tihelka et al. 2020). Although large phy-
logenomic data sets generally produce fully resolved and
supported topologies, model violations can favor incorrect
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FIG. 1. Gene properties covary in predictable ways, revealing underlying patterns of evolution that are shared by all phylogenomic data sets. The
dendrogram shows that the eigenvectors of PC axes can be clustered into two major groups, labeled as patterns A and B. While pattern A is
generally captured by PC 1 (green icons) and pattern B by PC 2 (orange icons), the hexapod and phasmatodean data sets are inverted. The
histograms on the bottom she the distribution of loadings across variables. Results using k-means clustering are shown in supplementary figure S3,
Supplementary Material online.
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trees (Delsuc et al. 2005; KapLi et al. 2021). Although this
necessarily means that topologies supported by full phyloge-
nomic data sets are only imperfect proxies with which to
evaluate phylogenetic accuracy, it is also true that the pro-
portion of nodes sensitive to model choice in any given anal-
ysis is small. Optimal subsampled data sets should be able to
recapitulate this general tree structure, although not neces-
sarily every detail; in other words, high topological similarity
should still be favored, although the highest value does not
guarantee the best results. At the same time, genes differ in
their levels of phylogenetic signal, and an adequate subsam-
pling scheme should be able to recover genes with above-
average performance. Considering this, subsampling schemes
were ranked in descending order of RF similarity to the tree
found by the original studies, breaking ties using the average
UFBoot values. The values for the five replicates of random
subsampling were averaged to obtain a single estimate of
their performance. Subsampling strategies ranking systemat-
ically better than randomly chosen loci were considered valid.
Given difficulties establishing the identity of PC axes for
Hexapoda and Phasmatodea, the results of these data sets
were not included with the rest and are shown separately in
supplementary figure S6, Supplementary Material online.

When subsampling to 250 loci, only five methods outper-
formed randomly chosen loci across more than half of the
data sets (fig. 3A). These include matrices designed to max-
imize RF similarity, average BS, occupancy, and length, as well
as those with loci that rank highest along PC 2. Two addi-
tional approaches—iPIpen and intermediate rates—have me-
dian ranks above that of randomly chosen loci, although
ranking below more often than not. Of these, RF similarity

and PC 2 (high) are the most consistent (i.e., have the lowest
variance); other approaches behave well on average, but can
occasionally perform poorly. As expected, differences in per-
formance between strategies are even larger when subsam-
pling to 50 loci (supplementary fig. S7, Supplementary
Material online); however, the same set of methods is favored,
with the further addition of loci with the highest proportions
of variable sites. Very common approaches, including rate-
based subsampling (saving the marginally good behavior
shown by loci with intermediate rates) and the direct mini-
mization of systematic biases (including saturation and
among-lineage compositional and rate heterogeneities), per-
form systematically worse than randomly chosen loci at both
subsampling levels (fig. 3A and supplementary fig. S6,
Supplementary Material online).

To further explore these patterns, I calculated the fraction
of shared loci between matrices built using different subsam-
pling strategies. This value was turned into a pair-wise dis-
tance metric and averaged across data sets, producing an
estimate of the expected frequency with which strategies se-
lect the same genes. Nonmetric multidimensional scaling
(NMDS) was used to project these distances into a 2D space
on which the average topological similarity was overlain (fig.
3B). In line with previous results (figs. 1 and 2), this confirms
that: 1) PCs built from the gene property data sets represent
axes of evolutionary rate and phylogenetic usefulness; 2) rate
and usefulness are perpendicular axes, such that rate-based
subsampling does not optimize usefulness; and 3) directly
minimizing sources of bias performs poorly because it has
the unintended consequence of targeting slow-evolving loci
that are largely uninformative.

FIG. 2. Rate of evolution is the primary factor driving differences in gene properties. Scores of loci along PCs 1 (A) and 2 (B) were correlated against
the log-transformed harmonic means of site rates. Blue lines correspond to LOESS regressions, and Spearman’s rank correlation coefficients (q) are
shown in each plot. Clade icons are as in figure 1; the deviating hexapod and phasmatodean data sets are highlighted in red. Results using a tree-
based estimate of evolutionary rates are shown in supplementary figure S4, Supplementary Material online.
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Discussion
Quantifying and predicting which loci contribute toward
recovering correct topologies has become central to phy-
logenomic inference (Meyer et al. 2011; Salichos and Rokas
2013; Doyle et al. 2015; Edwards 2016; Shen et al. 2016,
2017; Arcila et al. 2017; Brown and Thomson 2017; Molloy
and Warnow 2018; Smith et al. 2018; Dornburg et al. 2019).
This step can be used to explore phylogenetic conflicts,
test specific hypotheses of relationships, measure the im-
pact of different sources of bias, and allow for a better
modeling of evolutionary processes. For the many phylo-
genetic questions that still remain unanswered, the pre-
ferred topology can entirely depend on assessments of the
phylogenetic information contained within different loci
(e.g., Simon et al. 2018; Lozano-Fernandez et al. 2019;
Marl�etaz et al. 2019; Smith et al. 2020). This has led to a
plethora of recommendations on what constitutes a reli-
able gene and which proxies can be used to enrich data
sets in them. Many of these were supported by searching
for strong predictors of the topological distance to a pre-
ferred topology (Doyle et al. 2015; Burbrink et al. 2020;
Vankan et al. 2020). However, extracting the individual
effects of potential predictors is complicated by the per-
vasive levels of correlation that these exhibit (Shen et al.
2016; Kocot et al. 2017; Mongiardino Koch and Thompson
2021). Subsampling based on any individual property in
the presence of such strong correlations can also have
unintended effects: for example, increasing occupancy
can reduce overall levels of phylogenetic signal, and

targeting longer genes can increase compositional hetero-
geneity (supplementary figs. S1 and S2, Supplementary
Material online).

Instead of focusing on correlating pairs of variables, I
propose that a better understanding of the information
content of loci can be gained by searching for regularities
in the patterns of covariance between multiple properties
and exploring the underlying factors that might produce
them. Across a sample of 18 diverse phylogenomic data
sets, I find that most of the variability captured across
multiple gene properties happens along two major axes.
These axes show remarkably similar patterns of covariance
that can be readily interpreted as representing differences
in evolutionary rate and phylogenetic usefulness (figs. 1
and 2 and supplementary figs. S4 and S6, Supplementary
Material online). In the case of the latter, highly useful loci
exhibit a consistent set of properties that include not only
high values of node support and topological similarity but
also low levels of saturation and reduced compositional
and rate heterogeneities (i.e., simultaneously high signal
and low biases). They also seem not to be among the
fastest or slowest evolving genes, implying the existence
of an optimal rate as predicted by theory (Yang 1998;
Townsend 2007; Susko and Roger 2012; Klopfstein et al.
2017; Dornburg et al. 2019). Data sets with high levels of
rate variation have reduced variation in phylogenetic use-
fulness and vice versa (supplementary fig. S8,
Supplementary Material online), which is also expected
if usefulness peaks at a particular (optimal) rate.
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Many common subsampling strategies are justified in ei-
ther phylogenetic theory or in the aforementioned correla-
tion with measures of topological distance at the gene level.
However, the behavior of multilocus subsampled data sets
obtained by filtering genes based on such correlates has been
seldom explored. Phylogenetically useful loci should also pos-
sess other properties besides low topological distances to a
target tree, such as displaying a minimum of nonphylogenetic
signals that can provide hidden support for incorrect topol-
ogies (Gatesy and Springer 2014), a problem that can become
exacerbated in smaller data sets (Tilic et al. 2020). When the
performance of subsampling strategies is evaluated, it
becomes clear that many common approaches do not per-
form well on average. Such is the case of rate-based subsam-
pling: matrices composed of the slowest or fastest evolving
loci are among the worst that can be generated from phylo-
genomic data sets (fig. 3 and supplementary fig. S6,
Supplementary Material online). Even targeting loci with in-
termediate rates, or those whose sites evolve at a pace that
maximizes PI, does not drastically improve results relative to
selecting loci at random (although iPIpen does succeed when
subsampling to very small sizes, and also seems to select many
genes in common with better-performing strategies; fig. 3 and
supplementary fig. S7, Supplementary Material online).
Different lines of evidence show that this inefficacy is a con-
sequence of evolutionary rate being a dimension that is per-
pendicular to phylogenetic usefulness (figs. 1 and 3B). At first
glance, this might seem to conflict with the existence of op-
timal rates for inference, but peaks in usefulness are evident in
figure 2 and supplementary figure S4, Supplementary Material
online. Another explanation could be that a direct link be-
tween rates and usefulness only exists at the level of sites
(Dornburg et al. 2019), as different distributions of site rates
can potentially average to identical gene rates. This not only
implies that gene rates should be avoided for subsampling,
but they might even constitute abstractions with weak ties to
evolutionary processes. The results presented here confirm
that gene rates are not a useful subsampling approach, but
they also show that they do capture relevant differences in
evolutionary history. Multiple proxies for gene rates con-
verge on similar values, and genes with comparable rates
share many common features, defining the major axis of
variance in gene properties across most data sets. The
problem does not seem to lie in gene rates being inappro-
priate, but rather that they constitute just one of several
criteria that a phylogenetically useful locus should possess.
Loci evolving at optimal gene rates exhibit large variabil-
ities in usefulness (supplementary fig. S9, Supplementary
Material online), which makes rate-based subsampling in-
efficient even when optimal gene rates can be discovered.
Although this might be caused by differences in the un-
derlying distributions of site rates, it likely also reflects
compositional and rate heterogeneities that are not ac-
commodated by approaches based on rates or informa-
tiveness (Dornburg et al. 2019).

Another common method to reduce the size of phyloge-
nomic data sets is to discard loci that seem most affected by
potential sources of bias (Nesnidal et al. 2010; Borowiec et al.

2015; Whelan et al. 2015; Kocot et al. 2017; Mongiardino Koch
et al. 2018; Marl�etaz et al. 2019), including high levels of sat-
uration and heterogeneities in both composition and evolu-
tionary rates. However, selecting the loci least affected by
these issues does not result in phylogenetically accurate
data sets (fig. 3A). These results are in strong conflict with
many previous analyses that supported the use of clock-like,
unsaturated, and compositionally homogenous genes (Doyle
et al. 2015; Kuang et al. 2018; Lozano-Fernandez et al. 2019;
Vankan et al. 2020; Evangelista et al. 2021). Although all three
of these properties clearly represent severe issues for phylo-
genetic inference (Delsuc et al. 2005; KapLi et al. 2021), directly
minimizing them enriches the data set in conserved and slow-
evolving loci that do not contain enough phylogenetic infor-
mation (fig. 3B). This unintended consequence highlights the
fact that selecting genes based on any individual attribute can
produce strong and undesired shifts in the distributions of
other variables. This does not mean that these confounding
factors should not be targeted, only that it should be done in
a manner that ensures appropriate levels of information con-
tent or phylogenetic usefulness are retained. Clock-like genes
are also routinely favored for estimating divergence times
(Smith et al. 2018; Carruthers et al. 2020); it is therefore im-
portant to note that sampling the most clock-like genes can
deplete phylogenetic signal and bias rate estimates.

Only five approaches are found to systematically outper-
form random loci selection at both levels of subsampling (fig.
3 and supplementary fig. S6, Supplementary Material online).
These include two proxies for phylogenetic signal (RF similar-
ity and average BS), two measures of amount of information
(alignment length and occupancy), and the phylogenetic use-
fulness axis obtained using PCA. The finding that maximizing
RF similarity is consistently recovered as the best approach
was expected, as the ranking of strategies is to a large degree
also determined by this metric. This circularity complicates an
objective evaluation of this approach, which would require
simulations under a known topology (to some degree, this is
true for other conclusions drawn here). However, maximizing
average BS support, a different proxy for signal that does not
suffer from this problem, results in the sampling of a very
similar set of loci (fig. 3B), providing indirect evidence of the
suitability of subsampling based on topological similarity. At
the same time, given that sampling of genes selected for their
RF similarity recovers the topologies most similar to those of
targeted trees, this strategy provides an effective way of rep-
licating results with smaller data sets, but should not be
interpreted as a test of phylogenetic results. Although longer
genes were previously found to recover better topologies
(Aguileta et al. 2008; Betancur-R et al. 2014; Shen et al.
2016; Brown and Thomson 2017), occupancy had been con-
sidered less of a concern for data sets composed of hundreds
of loci (Philippe et al. 2004; Roure et al. 2013; Streicher et al.
2016; Molloy and Warnow 2018). Results shown here suggest
that maximizing both of these are among the best-
performing subsampling strategies on average, but also ex-
hibit a relatively inconsistent behavior, occasionally ranking
among the worst. Their use should be accompanied by some
assessment of how they are impacting overall levels of signal.
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Finally, maximizing phylogenetic usefulness through the
use of PCA provides a direct way to optimize levels of phy-
logenetic signal while also controlling for sources of bias. This
is done simultaneously and without the need to arbitrarily
order variables or establish thresholds. By drawing informa-
tion from multiple properties, the approach is able to discover
patterns that are unique to each data set, weighting factors in
proportion to their relative contributions. This also provides a
useful avenue for filtering outlier genes, as shown in the
Materials and Methods and figure 4. The method, named
genesortR, is implemented as an R script available at
https://github.com/mongiardino/genesortR. For all but two
of the data sets analyzed, the interpretation of the second
PC dimension as a usefulness axis was straightforward; for the
remaining ones (Phasmatodea and Hexapoda), a more careful
study revealed usefulness was captured along PC 1 (supple-
mentary fig. S6, Supplementary Material online). In the spe-
cific case of the hexapod data set, both PC axes seemed to
correlate relatively strongly with rate estimates (fig. 2), which
is consistent with the idea that resolving the phylogeny of
ancient clades requires highly conserved, slow-evolving genes.
Taken to an extreme, this could potentially induce the col-
lapse of rate and usefulness into a single dimension, at which
point the method here described would become impractical,
as it would converge on sampling slow-evolving loci.
Therefore, this approach may not be universally applicable,
and might not help resolve phylogenies outside the range of
conditions explored, including clades that are older, evolve
faster, or contain recalcitrant nodes characterized by extreme
levels of phylogenetic conflict. Under such conditions, it is
possible that better estimates of phylogeny will be returned
using methods that are here found to be inappropriate for
average phylogenetic questions, such as minimizing evolu-
tionary rates or sources of systematic bias. Even so, it is likely

that progress in our understanding of contentious relation-
ships that have defied resolution will happen as we improve
our ability to decode the evolutionary processes ingrained
along the different axes that describe the information content
of loci.

Materials and Methods
Data sets chosen for this study had to fulfill a number of
criteria. First, I only used data sets built from full genomes
and/or transcriptomes, as these are likely to exhibit a wider
range of values across different properties—such as rates—
than data sets built using methods of targeted enrichment
(e.g., ultraconserved elements, anchored hybrid enrichment).
For standardization, all data sets were coded as amino acids,
although the methods employed are applicable to other data
types. Studies also had to infer a time-calibrated topology,
establishing a timescale of diversification that could be used
to estimate rates of evolution in number of substitutions per
unit of time. These topologies were inferred and calibrated
using entirely different methodologies, but represent in every
case the best estimate of relationships as supported by the
authors. Taxon sampling within the ingroup had to be rea-
sonably thorough to allow for accurate estimates of site and
gene properties, such as evolutionary rates (Hugall and Lee
2007). Finally, data sets with notoriously contentious relation-
ships, such as lophotrochozoans (Kocot et al. 2017), chelicer-
ates (Sharma et al. 2014), and metazoans (King and Rokas
2017), were avoided. Instead, an effort was made to focus on
data sets showing more typical levels of phylogenetic signal
and noise. The 18 data sets sampled (table 1) were only mod-
ified by filtering loci with values of occupancy below 50%.

Gene trees were inferred using ParGenes v. 1.0.1 (Morel et
al. 2019) that automated model selection with ModelTest-
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NG (Darriba et al. 2020) and phylogenetic inference with
RAxML-NG (Kozlov et al. 2019) for each multiple sequence
alignment. The optimal model was considered to be the one
minimizing the Bayesian Information Criterion; support val-
ues were estimated with 100 replicates of nonparametric BS.
Rates of evolution for all sites in each data sets were estimated
using the empirical Bayes method implemented in Rate4Site
(Mayrose et al. 2004) using the time-calibrated tree pruned to
include only terminals present in each locus. Given that out-
groups often represent poorly sampled clades that can be
distantly related to the ingroup (e.g., in the case of
Echinoidea extending the age of the tree root by 200 My;
Mongiardino Koch and Thompson 2021), and thus have a
strong effect on estimated rates, they were removed from
both trees and alignments. Branch length optimization was
disabled and all other options were left as default. For some
loci, the inference of gene trees or the estimation of site rates
failed; these loci were dropped from further analyses, resulting
in the final numbers shown in table 1.

A group of 15 properties was calculated for each locus in R
using custom scripts (see Results). Scripts relied on functions
from packages adephylo (Jombart et al. 2010), ape (Paradis
and Schliep 2019), MESS (Ekstrom 2020), phangorn (Schliep
2011), PhyInformR (Dornburg et al. 2016), phytools (Revell
2012), and the tidyverse (Wickham 2017). As with site rates,
outgroups were removed before estimating these.
Correlations among all gene properties, and between these
and the absolute age of clades, were visualized using package
corrplot (Wei and Simko 2017) and P values were corrected
using Benjamini and Hochberg (1995) correction for multiple
comparisons. Following Mongiardino Koch and Thompson
(2021), a subset of seven gene properties was subject to PCA.
Among these are two widely employed proxies for phyloge-
netic signal: the RF similarity to the species tree (i.e., the
complement of the RF distance; Robinson and Foulds
1981), generally taken to be an estimate of topological accu-
racy, and the average BS support (Salichos and Rokas 2013;
Doyle et al. 2015; Shen et al. 2016; Vankan et al. 2020). Four
other variables are known to induce systematic errors in tree
reconstruction (Delsuc et al. 2005; Nesnidal et al. 2010;
Nosenko et al. 2013; Struck 2014; Kocot et al. 2017; KapLi et
al. 2021): the variance of root-to-tip distances (i.e., the degree
of deviation from a strict clock-like behavior), the average
pair-wise patristic distance between terminals (indicative of
susceptibility to long-branch attraction), the level of satura-
tion (estimated as one minus the regression slope of patristic
distances on p-distances), and the compositional heteroge-
neity (measured by the RCFV scores). The last variable in-
cluded was the proportion of variable sites, a metric generally
interpreted to represent information content (Aguileta et al.
2008; Mclean et al. 2019), and that is strongly correlated with
estimates of rates and tree length in the data sets employed
(supplementary fig. S2, Supplementary Material online). All of
these properties have been used individually for phyloge-
nomic subsampling (see supplementary table S1,
Supplementary Material online). This approach suffers from
some degree of circularity given the use of topological simi-
larity in the selection of genes, but this should bias results

minimally as this is just one of the several attributes
employed. In case the species tree for the lineages sampled
is highly uncertain, an option is available to run the analysis
without using RF similarities as input for the PCA.
Alternatively, uncertain nodes can be collapsed in the tree
used to measure topological distances; taken further this
would converge on the approach used by Philippe et al.
(2019) to focus only on the recovery of a handful of uncon-
troversial monophyletic groups. A few different sets of varia-
bles were explored, as well as alternative metrics for some of
them (such as different tree distances); these changes did not
improve the proportion of variance captured by the first two
PCs and were not further explored. It should be noted, how-
ever, that a thorough optimization of the variables included
was not performed, and this is likely to have some effect on
results.

PCA is susceptible to outlier data points (i.e., observations
that strongly deviate from the general structure of correlation
between variables), as these contribute a large fraction of total
variance and can attract the first components. Although this
can be seen as a limitation of the method, it also provides an
opportunity to detect and filter out outlier genes. These can
arise from both analytical and biological processes (e.g., errors
in orthology inference or alignment, strong selective pres-
sures, etc.), and have a strong impact on tree reconstruction
(Brown and Thomson 2017; Shen et al. 2017; Walker et al.
2018). To remove outlier genes, I measured the Mahalanobis
distance of all observations to the origin of the PC space
(employing all seven dimensions) and removed the top 1%
with the greatest distances (fig. 4). These
represent alignments with highly unlikely combinations of
gene properties given the structure of correlation of the entire
data set. PCA was then repeated on the remaining observa-
tions. Compared with other methods devised to remove out-
lier data from phylogenomic data sets (e.g., de Vienne et al.
2012; Mai and Mirarab 2018), this approach benefits from not
only considering tree topology, but doing so alongside other
gene properties. The removal of outlier genes not only helps
correctly identify the major axes of variance among “regular”
observations (i.e., ensures that PCs capture true differences in
rate and usefulness) but also provides an extra step of sani-
tation, likely to be especially important before data sets are
reduced in size. Future work would likely benefit from a more
sophisticated approach to outlier detection, such as is offered
by robust PCA methods (Todorov and Filzmoser 2009).

Both hierarchical and k-means clustering were used to
discover groupings of similar PC axes that could potentially
represent similar underlying factors. Given that PC orienta-
tion is arbitrary, clustering was done using eigenvectors as
well as their opposites (fig. 1 has the mirrored half of the
dendrogram removed). Hierarchical clustering was performed
using Euclidean distances and complete linkage (fig. 1); k-
means clustering used 10,000 random starting configurations
(supplementary fig. S3, Supplementary Material online). The
identity of these axes was first established by correlating the
scores of the first two PCs against different estimates of gene-
wise evolutionary rates: the total tree length divided by the
number of terminals (Telford et al. 2014; Howard et al. 2020),
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and the harmonic mean of site rates. For all data sets except
Hexapoda and Phasmatodea, the Spearman rank correlation
coefficients (q) between both estimates of rate and PC 1 were
larger than 0.7 and more than twice the values of q between
rate estimates and PC 2 (fig. 2 and supplementary fig. S4,
Supplementary Material online). This was taken to represent
strong evidence that PC 1 was (in general) capturing rate
variation. Correlations between PC 1 and tree-based rates
were much higher (average q¼ 0.94) than between PC 1
and sequence-based rates (average q ¼ 0.86). This seems
to confirm that averaged site rates are an inaccurate proxy for
gene-wise evolutionary rates (Dornburg et al. 2019). The re-
lationship between gene rates and phylogenetic usefulness
(supplementary fig. S9, Supplementary Material online) was
also studied by binning loci into 25 categories based on their
rates and calculating the mean and variance of usefulness (i.e.,
PC 2 scores) within each. A linear regression between these
two metrics was assessed after excluding outliers, identified as
those whose residuals were significantly larger than expected
using a chi-square test in package outliers (Komsta 2011).

Phylogenomic data sets were sorted based on 13 different
properties (gene length, occupancy, proportion of variable
sites, average BS, RF similarity, iPIpen, treeness, saturation,
RCFV, root-to-tip variance [clock-likeness], sequence-based
evolutionary rate, and PCs 1 and 2) and subsampled to sizes
of 50 and 250. These numbers were chosen because they
represent common data sizes used for computationally in-
tensive methods such as total-evidence dating (Lee 2016;
Brennan et al. 2021; Mongiardino Koch and Thompson
2021) and inference under complex site heterogenous models
(Ballesteros et al. 2019; Marl�etaz et al. 2019), respectively.
Subsampled data sets were composed of either the highest
or lowest scoring loci, depending on the variable used for
sorting. In the case of rates and PC axes, both the highest
and lowest scoring loci were used. An extra subsampling
strategy targeting intermediate rates (defined as those loci
with sequence-based rates closest to the median value for
the entire data set) was also used. Five extra matrices were
built by selecting loci at random, for a total of 23 matrices per
phylogenomic data set and subsampling size. It should be
noted that some low occupancy taxa had no data in the
subsampled matrices and had to be removed. In conditions
of extremely uneven occupancy, these protocols should be
paired with additional steps to ensure key taxa are repre-
sented in the final data sets. Tree inference was performed
in IQ-TREE 1.6.3 (Nguyen et al. 2015) under the LGþ FþG
model, and 1,000 replicates of ultrafast bootstrap (UFBoot;
Hoang et al. 2018) were used to estimate node support values.

The performance of subsampling strategies was evaluated
using two metrics: the RF similarity to the tree supported by
the original studies (i.e., the same used to estimate topological
similarity for individual loci), and the average UFBoot support.
The values obtained for the five replicates of randomly sam-
pled loci were averaged. Subsampling strategies were then
ranked based on RF similarity scores with ties broken using
average support values, such that strategies that result in
more accurate and well-supported trees receive lower ranks.

Two criteria were used to establish which subsampling
approaches are useful: 1) strategies that attain a median
rank that is lower than that of randomly sampled data across
data sets; and more strictly, 2) strategies that attain a lower
rank than randomly sampled data for more than half of data
sets (fig. 3 and supplementary fig. S7, Supplementary Material
online). Given the nonstandard behavior of the hexapod and
phasmatodean data sets, results from these were not com-
bined with those of other data sets, and are reported sepa-
rately in supplementary figure S6, Supplementary Material
online. It should be noted that subsampling was always per-
formed by selecting entire genes and that results for some
strategies might differ from those obtained by selecting sites
(e.g., when using rates). Retaining the gene structure of the
data sets is not only necessary for some types of phylogenetic
inference such as summary coalescent methods but also pro-
vides access to a much larger pool of properties, including all
of those estimated on gene trees. A focus on loci can also help
discover outlier data (fig. 4) and reveal important evolution-
ary processes, such as compositional and rate heterogeneities
(or at least aid in their discovery). The relative performance of
strategies was also evaluated at the level of the entire tree
topology, and some of the methods used (e.g., iPIpen) might
be more suitable for finding optimal loci to resolve specific
nodes or time intervals.

Finally, the dissimilarities between pairs of 250-loci matri-
ces obtained through different subsampling strategies (i.e., the
proportion of loci not shared) were calculated and averaged
across data sets. The resulting distance matrix was decom-
posed into a 2D space using NMDS. This relied on package
vegan (Oksanen et al. 2020) and employed 10,000 iterations
from random starts. Stress was evaluated using a Shepard
diagram (i.e., a plot of observed distances vs. ordination dis-
tances), and a nonmetric estimate of goodness-of-fit returned
an R-squared value of 0.99. The averaged RF similarity across
data sets was overlain onto this plot as a smooth surface,
which was fitted using penalized regression splines.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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