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A network-based pathway-
extending approach using DNA 
methylation and gene expression 
data to identify altered pathways
Jie Li1, Qiaosheng Zhang1,2, Zhuo Chen1, Dechen Xu1 & Yadong Wang1

Pathway analysis allows us to gain insights into a comprehensive understanding of the molecular 
mechanisms underlying cancers. Currently, high-throughput multi-omics data and various types of 
large-scale biological networks enable us to identify cancer-related pathways by comprehensively 
analyzing these data. Combining information from multidimensional data, pathway databases and 
interaction networks is a promising strategy to identify cancer-related pathways. Here we present a 
novel network-based approach for integrative analysis of DNA methylation and gene expression data 
to extend original pathways. The results show that the extension of original pathways can provide a 
basis for discovering new components of the original pathway and understanding the crosstalk between 
pathways in a large-scale biological network. By inputting the gene lists of the extended pathways into 
the classical gene set analysis (ORA and FCS), we effectively identified the altered pathways which are 
correlated well with the corresponding cancer. The method is evaluated on three datasets retrieved 
from TCGA (BRCA, LUAD and COAD). The results show that the integration of DNA methylation and 
gene expression data through a network of known gene interactions is effective in identifying altered 
pathways.

Cancer etiology and progression is currently understood to be driven primarily by molecular and genetic mech-
anisms1,2. Cancer is caused by the interactions of multiple genes and pathways. Pathway analysis may help to 
understand the status of cancer and suggest customized anticancer therapies. Wang et al.3 classify pathway anal-
ysis methods into four main categories: overrepresentation analysis (ORA), functional class scoring (FCS), path-
way topology (PT) - Based and network topology (NT) - Based.

ORA4 approaches assess whether the number of genes beyond an arbitrary threshold is significantly 
over- or under-represented in a pathway just by chance. Unlike ORA, FCS5 methods take into consideration 
all available molecular measurements for pathway analysis, such as GSEA(Gene Set Enrichment Analysis)6, 
ANCOVA(Analysis of Covariance)7, etc. PT-Based8 methods employ pathway topology between genes in signal-
ing pathways to find which pathway is most impacted by a given phenotype. Moreover, the interaction databases, 
such as HPRD9, FunCoup10, STRING11, are also available. So, NT-Based3 methods extract interactions between 
genes from interaction databases or literature to compute pathway-level statistics.

Recent functional genomic experiments have found a large number of interactions between intra- and 
inter-pathways, suggesting more complex relationships between biological pathways than in their traditional 
representations. Therefore, it is necessary to embed original pathways into many large-scale networks to analyze 
pathways. Lu et al.12 embed original pathways within large-scale networks and demonstrate the crosstalk between 
them. Original pathways are extended by mapping genes of original pathways onto the network of biomolecules. 
The first neighbors of these genes are considered as new components of the original pathways. Glaab et al.13 
present a methodology for extending original pathways by mapping them onto a protein-protein interaction net-
work, and extending them to include densely interconnected interaction partners. However, these methods only 
consider network topologies and ignore edge weights of large-scale networks when extending pathways. Zhang 
et al.14 calculated the weights of a gene network through integrating DNA methylation and gene expression data 
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to identify disease-associated gene modules. However, the biological roles of the gene modules discovered using 
the method are not clear. Paradigm15,16 integrates diverse high-throughput genomics information with a pathway 
structure to identify significant pathways. It has a limitation to extract different types of biological entities in 
the context of biological knowledge. And, this method only employs the pathway topology itself. Hence, how to 
combine information from multidimensional data, pathway databases and interaction networks is a promising 
strategy to identify altered pathways which have significant changes in different tissues, such as tumor and normal 
tissues.

DNA methylation is known to be associated with gene transcription by interfering with DNA-binding pro-
teins17. Hence we present a novel network-based approach for integrative analysis of DNA methylation and 
gene expression data to calculate edge weights of the large-scale network for each phenotype. Then, each path-
way is extended by adding important neighboring genes based on the limited kWalks algorithm18 in weighted 
phenotype-specific networks. The pathway extended under different phenotypes is united as a final pathway 
gene list. Finally, by inputting the gene lists of extended pathways into the classical gene set analysis (ORA and 
FCS), we identify altered pathways which are correlated well with the corresponding cancer. The overview of our 
method is shown in Fig. 1.

Materials and Methods
Data.  The PPI(Protein-Protein Interaction) network (version 2.9) was downloaded from the Interologous 
Interaction Database (I2D) website (http://ophid.utoronto.ca/ophidv2.204/downloads.jsp). Gene expression 
and DNA methylation data are obtained from TCGA (The Cancer Genome Atlas, https://portal.gdc.cancer.gov/
projects). In this study, we have only chose samples that contain both gene expression and methylation data. 
According to data providers, all methylation data are from Illumina Human Methylation 450k Chip, whereas all 
gene expression data are downloaded from Agilent G4502A or Illumina HiSeq platform. BRCA (Breast Invasive 
Carcinoma) includes 33 cancer samples with DNA methylation and gene expression data, and 37 normal tissue 
samples. LUAD (Lung Adenocarcinoma) dataset consists of 69 samples (20 normal tissue samples and 49 cancer 
samples with DNA methylation and gene expression data). COAD (Colon Adenocarcinoma) data have 26 cancer 
samples with DNA methylation and gene expression data and 16 normal tissue samples). Gene expression data 
of the LUAD and COAD produced by Illumina HiSeq are added a value of 1 (to avoid zeros) and then log2-trans-
formed. Gene sets of biological pathways are from the ConsensusPathDB website. A total of 281 KEGG pathways 
are obtained and further analyzed in the subsequent experiment.

Construct the weighted gene-gene interaction network.  In this paper, PPI network is chose as a 
priori network. The edge weight between a pair of genes is calculated according to the PCA(Principal Component 
Analysis) and SCCA(sparse canonical correlation analysis) through integrating DNA methylation and gene 
expression data. At first, we do not set the cut-off of the gene expression and DNA methylation and treat each 
gene equally when building the weighted gene-gene interaction network. When calculating the weight of a gene 
pair in the network, if one of the two genes does not have the corresponding expression and methylation values, 
the edge is deleted, otherwise retained. Each gene contains multiple methylated CpG loci, and there is a general 
correlation between these neighboring CpG loci. In this study, PCA is used for dimensionality reduction of CpG 
loci for each gene firstly. Then, the selected principal components of CpG loci and gene expression are merged as 
the matrix of a gene. Finally, SCCA is used to calculate the edge weights of gene pairs in the network based on the 
principal components of CpG loci and gene expression values (see Fig. 2).
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Expression Data

Gene Statistic

Gene Set Statistic

Identify cancer-related pathways 

Extended  pathway database

Integration of DNA 
methylation and 

gene expression data

Figure 1.  Overview of the method.
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where ||·||1 and ||·||2 are L1 norm and L2 norm, respectively. c1 and c2 are parameters to regulate the amount of 
shrinkage and restricted to ranges < <c0 11  and c0 12< < , p s 1= + , q t 1= + . WXY is calculated using 
PMA which is available as a Bioconductor package19.

Extend pathway based on the weighted network.  We construct the weighted gene-gene interaction 
networks for different phenotype (such as, normal tissue network and cancer tissue network), as shown in Fig. 3. 
We not only consider the relations of genes inside a pathway, but also the relation between genes inside and 
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Figure 2.  Calculation of gene pair weights in the network.
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outside of a pathway. Therefore we extend each pathway based on the limited kWalks algorithm18 in gene-gene 
interaction network and the importance neighboring genes are added in the pathway. In the limited kWalks algo-
rithm, the relevance of an edge and a node in relation to the pathway-sets is evaluated by the expected times ran-
dom walk passes starting from one gene to any of the others. In the interpretation of a graph as a Markov chain, 
each gene represents a state, and the probability of transition from state i to j is given by

P
W

W (3)
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ij

j ij
=

∑

where Wij is edge weight of gene i - gene j. More details of the mathematics are available in ref.20. Finally, we extract 
two extended pathways genes from two weighted phenotype-specific networks, respectively. Two extended path-
ways genes under different phenotypes are united as an extended pathway gene list.

Identify cancer-related pathways.  To illustrate the benefits of our extended pathways, we use ORA and 
GSEA to analyse gene sets included in the extended pathways and identify the altered pathways which are cor-
related well with the corresponding cancer. In this paper, for convenience they will be referred to as EP-ORA 
(Extended Pathway ORA) and EP-GSEA (Extended Pathway GSEA).

Briefly, ORA methods compare sets of genes annotated to pathways and to a list of those genes that are sig-
nificantly deferentially expressed (DE) between two phenotypes. Then a confidence value is calculated using 
statistical methods. Here, we calculate a P-value using the hypergeometric distribution.
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Where N is the total number of genes in the background distribution, M is the number of all DE genes, n is 
the size of the list of genes of the pathway and k is the number of DE genes within the pathway. Finally, BH 
(Benjamini-Hochberg) correction for multiple testing is performed21.

Another approach, GSEA6 is an FCS-type method that determines whether a priori defined set of genes shows 
statistically significant, concordant differences between two biological states, which uses all available molecular 
measurements for pathway analysis. GSEA works as follows:

	 1.	 Sort genes by signal-to-noise ratio;
	 2.	 Calculate enrichment scores;
	 3.	 Permute 1000 phenotype labels for significance.

Results
Extension of original pathways with large-scale network predicts new pathway compo-
nents.  In general, functionally linked interacting genes have a significantly higher level of coherence in bio-
logical systems22. The pathway neighboring genes may play important roles in the regulation of disease-related 
pathways. The inclusion of important neighboring genes will enable us to understand cancer mechanisms with 
models of pathway activities. One hypothesis of the proposed method is that the genetic interactions are variables 
between controls and cases which is responsible for different phenotypes varying in cancer. Hence, two weighted 
gene-gene interaction networks are then achieved based on case samples and control samples, respectively. All 
genes that interact with the pathway contribute to the regulation of the pathway. So, genes of two extended path-
ways under different phenotypes are eventually united as a final extended pathway gene set.

To test the effectiveness of the proposed method, we first take BRCA dataset for a comparative evaluation. As 
shown in Fig. 4, the extended pathways can systematically indicate new genes involved in original pathways. The 
pathway sizes increased on average from 28.30% to 224.56% of the original size except for hsa04740 (Olfactory 
transduction). The hsa04740 is closely related to multiple protein isoforms and include 405 genes, but only 54 
genes are mapped to the weight network. Finally, the extended hsa04740 includes 138 genes.

The extended p53 signaling pathway is illustrated in Fig. 5, because of its importance for cancer analysis. A 
total of 68 genes in the p53 signaling pathway are mapped onto the large-scale PPI network. The result show that 
the extension algorithm identifies 120 new genes which are important neighboring genes of the p53 signaling 
pathway. Hence, the extension of original pathways can provide a basis for discovering new candidate compo-
nents of the original pathway.

Pathway identification in breast cancer.  One of the important applications of pathway analysis is to 
identify altered pathways which are correlated well with the corresponding cancer. Here, we firstly take BRCA 
dataset for a comparative evaluation. We apply ORA and EP-ORA to this dataset with the BH corrected P-value. 
Using a P-value cutoff of 0.05, ORA and EP-ORA result in picking 6 and 18 pathways as significant, respectively 
(Supplementary file, Table S1). Both methods have effectively identified Cell cycle and Focal adhesion which 
have been confirmed by the published literatures to be closely associated with breast cancer (see Table 1). The 
above results show that the overlapped pathways found by different methods can be used as robust cancer-related 
pathways. Several pathways well known to be related to breast cancer are only identified by EP-ORA, such as p53 
signaling pathway, DNA replication, Pathways in cancer, B cell receptor signaling pathway, etc. Interestingly, the 
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p53 signaling pathway is identified by EP-ORA. Abundant data from mechanistic, molecular pathological and 
transgenic animal studies support an important role for p53 in mammary carcinogenesis23.

We then apply GSEA and EP-GSEA to the BRCA dataset. In standard GSEA, the analysis performs 1000 per-
mutations using case-control gene expression samples (case 33 vs. control 37) and original pathways with an FDR 
cutoff of 25%. However, no pathway is identified (see Table 2). It is probably a consequence of the low power issue 
related to GSEA methodology24. Subsequently, we use the same expression dataset and extended pathways for 
EP-GSEA analysis. The results show that 3 pathways are identified (see Table 2). These three pathways are closely 
related to breast cancer, which have been verified in many published studies. For example, Li et al.25 point out that 
the metabolism of xenobiotics by cytochrome P450 and drug metabolism-cytochrome P450 enzymes in breast 
tissues may play important roles in breast cancer risk.

Taken together, in comparison to ORA and GSEA, EP-ORA and EP-GSEA using extended pathways can more 
effectively identify cancer-related pathways for breast cancer.

Examining crosstalk between embedded pathways.  Cancer is a complex disease involving a 
sequence of gene-gene interactions in a progressive process, which cannot occur without dysregulation in mul-
tiple biological pathways. From a systems biology perspective, biological pathways are connected together by 
crosstalk to perform a specific biological function as a system. In biology, the pathway crosstalk means that signal 
components in signal transduction can be shared between different biological pathways, and responses to a signal 
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Figure 4.  Comparison of the original pathway sizes and the extended pathway sizes.

Figure 5.  The p53 signaling pathway (hsa04115) is extended in the weighted network. Red nodes denote genes 
in original pathway and blue nodes denote the extended genes that are most associated with the corresponding 
pathway.
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inducing condition can activate multiple responses in cells, tissues, or organisms12. Therefore, understanding the 
crosstalk between pathways is important for understanding the function of both cells and more complex diseases. 
Now, we embed original and extended pathways into large-scale biological networks and show the crosstalk 
between them.

As an example, for these types of connections, we map three pathways, cell cycle, p53 signaling pathway and 
pathways in cancer, onto the large-scale biological network (see Fig. 6). The crosstalk between the three pathways 
suggests that they may share similar functions in breast cancer. The above results show that a large number of 
genes exist as linkers between pathways. Accordingly, a careful examination of these intermediate genes may help 
reveal the mechanisms underlying the interconnection of different pathways. Many genes in the large-scale net-
work are well connected with different pathways, and may therefore play a functional role in the communication 
between the pathways.

Validation of the alternative dataset.  To further verify the improvement of EP-ORA, EP-GSEA over 
ORA, GSEA. Using the same process as above, we apply the method in this article to other two datasets (LUAD 
and COAD).

The results of lung adenocarcinoma data (LUAD) are shown in Tables 3 and 4 (see Supplementary Tables S3 
and S4 for more details). The results show that a total of three pathways are overlapped by EP-ORA and ORA 
(adjusted P-value ≤ 0.05). The bile secretion pathway related to lung cancer is only identified by EP-ORA. 
For the bile secretion pathway, Liu et al.26 reported that bile acid receptor accelerates to the lung cancer pro-
cess induced by lung fibroblast-tumor cells interaction, with high activation of phosphorylated STAT3 and 
alteration of cytokine secretion. Compared with GSEA, EP-GSEA identifies more pathways which are closely 
related to lung cancer (FDR ≤ 25%). Interestingly, the non-small cell lung cancer pathway is only identified by 
EP-GSEA.

It is interesting to check pathways that are ranked top by one approach but not by the other approaches, which 
should reflect the different effects of the two approaches. Accordingly, corrected P-value is used to rank pathways. 
Focusing on colon adenocarcinoma (COAD), we apply ORA and EP-ORA to COAD dataset (see Supplementary 

Pathway ID Pathway Name

EP-ORA ORA

Ad. Pvalue Rank Ad. Pvalue Rank

hsa03030 DNA replication29 0.001145 1 0.114869 11

hsa04110 Cell cycle30 0.004948 2 0.004196 1

hsa05200 Pathways in cancer* 0.004948 2 0.072255 7

hsa00250 Alanine, aspartate and glutamate 
metabolism31 0.0157 4 0.495336 72

hsa04120 Ubiquitin mediated proteolysis32 0.024373 5 0.090582 8

hsa00350 Tyrosine metabolism33 0.024373 5 0.278437 29

hsa04114 Oocyte meiosis34 0.024373 5 0.319667 39

hsa04662 B cell receptor signaling pathway35 0.024373 5 0.561115 85

hsa04810 Regulation of actin cytoskeleton36 0.024373 5 0.124388 13

hsa05214 Glioma37 0.024373 5 0.468975 52

hsa04510 Focal adhesion38,39 0.024373 5 0.021221 4

hsa00230 Purine metabolism40 0.024373 5 0.468975 52

hsa00240 Pyrimidine metabolism 0.030055 13 0.522621 81

hsa04360 Axon guidance41 0.031465 14 0.099764 10

hsa04115 p53 signaling pathway23 0.03901 15 0.36821 49

hsa05223 Non-small cell lung cancer42 0.040912 16 0.544195 84

hsa04914 Progesterone-mediated oocyte 
maturation 0.040912 16 0.319667 39

hsa05222 Small cell lung cancer43 0.040912 16 0.151603 17

Table 1.  Significant pathways identified in BRCA dataset using ORA and EP-ORA. Note: The asterisk-labeled 
pathways have been confirmed to be associated with cancer by biologists.

Pathway 
ID Pathway Name SIZE ES NES

NOM 
p-val

FDR 
q-val

GSEA — — — — — — —

hsa00980 Metabolism of xenobiotics by 
cytochrome P45025,44 123 0.4314 1.7249 0.0061 0.2165

EP-GSEA
hsa00982 Drug metabolism - 

cytochrome P45025 117 0.4245 1.6614 0.0182 0.2251

hsa03440 Homologous recombination45 64 −0.5635 −1.8259 0 0.1725

Table 2.  Significant pathways identified in BRCA dataset using GSEA and EP-GSEA.

https://doi.org/10.1038/s41598-019-48372-1
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Table S5 for more details). Here, we deliberately select several pathways related to CRC (Colorectal cancer) that 
have been widely confirmed in literatures. As shown in Table 5, most of the CRC-related pathways obtained tend 
to be ranked higher with EP-ORA than with ORA. For example, MicroRNAs in cancer, Cell cycle, Pathways in 
cancer and p53 signaling pathway, ranked 1, 2, 4 and 20 by EP-ORA, are ranked 9, 6, 27 and 57 by ORA, respec-
tively. Interestingly, the colorectal cancer pathway is ranked 17 by EP-ORA, but ranked only 79 by ORA. The 
pathways that rank lower in EP-ORA are mostly not associated with the corresponding cancer. For example, the 
Parkinson’s disease pathway(hsa05012) which has been confirmed by the published literature27 to be inversely 
associated with colon cancer is ranked 2 by ORA, but ranked 53 by EP-ORA(see Supplementary Table S5), and 
so on.

We then apply GSEA and EP-GSEA to the COAD dataset. Most of the CRC-related pathways are also ranked 
higher in EP-GSEA than in GSEA (see Table 6). The only exception to this is the p53 signaling pathway ranked 7 
by the GSEA, but ranked only 137 by EP-GSEA (see Supplementary Table S6 for more details).

The experimental results demonstrate that more and ranked top pathways found by the proposed method are 
cancer-related pathways which are supported by the published literatures based on biological experiments. In 
conclusion, compared with ORA and GSEA, EP-ORA and EP-GSEA can more effectively identify cancer-related 
pathways for different datasets.

Figure 6.  The crosstalk between three extended pathways. The upper triangular shape nodes represent the cell 
cycle pathway (hsa04110), the lower triangular shape nodes represent the p53 signaling pathway (hsa04115), 
the square nodes represent the pathways in cancer (hsa05200). Red nodes denote genes in original pathway and 
blue nodes denote the extended genes that are most associated with the corresponding pathway.

Pathway ID Pathway Name

EP-ORA ORA

Ad. Pvalue Rank Ad. Pvalue Rank

hsa03030 DNA replication46 3.37E-05 1 0.03242 1

hsa04976 Bile secretion26 0.006128 2 0.913641 74

hsa03008 Ribosome biogenesis in 
eukaryotes 0.006128 2 0.03242 1

hsa04110 Cell cycle* 0.035295 4 0.03736 3

hsa03013 RNA transport47 0.042657 5 0.260906 8

Table 3.  Significant pathways identified in LUAD dataset using ORA and EP-ORA. Note: The asterisk-labeled 
pathways have been confirmed to be associated with cancer by biologists.

https://doi.org/10.1038/s41598-019-48372-1
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Discussion
The pathway-based analysis is an effective technique that overcomes the limitations of the current single-locus 
methods. This procedure provides a comprehensive understanding of the molecular mechanisms that cause com-
plex diseases28. Currently, a major pathway analysis challenge in the context of cancer research is how to integrate 
and analyze various types of -omics data and large-scale biological networks to identify cancer-related pathways.

We present a novel network-based approach for integrative analysis of DNA methylation and gene expression 
data to extend classical pathways. Our method can effectively identify altered pathways which are correlated well 
with the corresponding cancer by inputting the gene lists of extended pathways into the classical gene set anal-
ysis (ORA and FCS) on three datasets (BRCA, LUAD and COAD). By applying the method to the breast cancer 
dataset, we demonstrate the method’s potential to identify breast cancer-related pathways. The analysis of colorec-
tal cancer and lung adenocarcinoma confirm the proposed method’s ability to correctly identify cancer-related 

Pathway ID Pathway Name

EP-GSEA GSEA

FDR q-val Rank FDR q-val Rank

hsa03430 Mismatch repair48 7.51E-02 1 0.159836 4

hsa03030 DNA replication* 0.13927312 4 0.178407 12

hsa03320 PPAR signaling pathway49 0.15703186 8 0.335938 94

hsa04514 Cell adhesion molecules 
(CAMs)50 0.16466248 12 0.327053 81

hsa04390 Hippo signaling pathway51 0.16826709 18 0.348485 101

hsa05217 Basal cell carcinoma52 0.17509021 40 0.448808 152

hsa04010 MAPK signaling pathway53 0.17821518 59 0.287580 51

hsa04310 Wnt signaling pathway54 0.17876078 60 0.349692 102

hsa04014 Ras signaling pathway55 0.18037082 66 0.327 80

hsa04110 Cell cycle56 0.18181872 71 0.105239 2

hsa05200 Pathways in cancer* 0.22708593 94 0.517886 176

hsa05223 Non-small cell lung cancer* 0.24327828 105 0.785674 239

Table 4.  Significant pathways identified in LUAD dataset using GSEA and EP-GSEA. Note: The asterisk-labeled 
pathways have been confirmed to be associated with cancer by biologists.

Pathway ID Pathway Name

EP-ORA ORA

Ad. Pvalue Rank Ad. Pvalue Rank

hsa05206 MicroRNAs in cancer57 8.17E-03 1 0.081369 9

hsa04110 Cell cycle58 0.033908 2 0.034836 6

hsa05200 Pathways in cancer* 0.139902 4 0.157574 27

hsa05214 Glioma59 0.139902 4 0.087544 12

hsa03030 DNA replication60 0.139902 4 0.023618 4

hsa03013 RNA transport61 0.139902 4 0.087544 12

hsa05210 Colorectal cancer* 0.199796 17 0.457577 79

hsa04115 p53 signaling pathway62 0.2504 20 0.328427 57

Table 5.  Significant pathways identified in COAD dataset using ORA and EP-ORA. Note: The asterisk-labeled 
pathways have been confirmed to be associated with cancer by biologists.

Pathway ID Pathway Name

EP-GSEA GSEA

FDR q-val Rank FDR q-val Rank

hsa03008 Ribosome biogenesis in 
eukaryotes63 0.057690 1 0.104035 1

hsa03430 Mismatch repair64 6.78E-02 2 0.138024 13

hsa03030 DNA replication* 0.082642 3 0.108252 4

hsa04110 Cell cycle* 0.090359 4 0.1261105 11

hsa05210 Colorectal cancer* 0.314139 88 0.5851279 193

hsa04115 p53 signaling pathway* 0.37533 137 0.113597 7

hsa05200 Pathways in cancer* 0.515173 207 0.664264 230

Table 6.  Significant pathways identified in COAD dataset using GSEA and EP-GSEA. Note: The asterisk-
labeled pathways have been confirmed to be associated with cancer by biologists.
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pathways in different cancer datasets. This suggests that the integration of DNA methylation and gene expression 
through a known gene interactions network is effective in pathway analysis. In the future, we will employ more 
datasets to assess the validity of our method. Readers can download our code from the website (https://github.
com/ZHANGQiaosheng/IaPathway).

Data Availability
The data supporting the findings of this work are contained within the manuscript.
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