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c Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000, Zenica, Bosnia and Herzegovina 
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A B S T R A C T   

Introduction: Clinicians encounter challenges in promptly diagnosing thoracolumbar injuries (TLIs) and fractures 
(VFs), motivating the exploration of Artificial Intelligence (AI) and Machine Learning (ML) and Deep Learning 
(DL) technologies to enhance diagnostic capabilities. Despite varying evidence, the noteworthy transformative 
potential of AI in healthcare, leveraging insights from daily healthcare data, persists. 
Research question: This review investigates the utilization of ML and DL in TLIs causing VFs. 
Materials and methods: Employing Preferred Reporting Items for Systematic Reviews and Meta-Analyzes 
(PRISMA) methodology, a systematic review was conducted in PubMed and Scopus databases, identifying 793 
studies. Seventeen were included in the systematic review, and 11 in the meta-analysis. Variables considered 
encompassed publication years, geographical location, study design, total participants (14,524), gender distri-
bution, ML or DL methods, specific pathology, diagnostic modality, test analysis variables, validation details, and 
key study conclusions. Meta-analysis assessed specificity, sensitivity, and conducted hierarchical summary 
receiver operating characteristic curve (HSROC) analysis. 
Results: Predominantly conducted in China (29.41%), the studies involved 14,524 participants. In the analysis, 
11.76% (N = 2) focused on ML, while 88.24% (N = 15) were dedicated to deep DL. Meta-analysis revealed a 
sensitivity of 0.91 (95% CI = 0.86–0.95), consistent specificity of 0.90 (95% CI = 0.86–0.93), with a false 
positive rate of 0.097 (95% CI = 0.068–0.137). 
Conclusion: The study underscores consistent specificity and sensitivity estimates, affirming the diagnostic test’s 
robustness. However, the broader context of ML applications in TLIs emphasizes the critical need for stan-
dardization in methodologies to enhance clinical utility.   
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1. Introduction 

The highest incidence of spinal injuries occurs at the transition from 
the thoracic to the lumbar spine and is often due to high-energy trauma 
(Dai, 2012). Spontaneous incidents can occur in patients with spinal 
disease and result in disruption of the ligamentous apparatus and 
compression of nerve structures (Singleton and Hefner, 2023). Thor-
acolumbar (TL) fractures are more common in men aged 20–40 years. 
Flexion is the primary force that causes injury, sometimes in combina-
tion with compression, distraction or splitting forces, while extension 
injuries are rare but life-threatening (Postma et al., 2015). 

Globally, the occurrence of traumatic spinal injuries stands at 10.5 
cases per 100,000 individuals annually, with approximately 37.3% of 
these incidents resulting in spinal cord injuries (Barbiellini Amidei et al., 
2022). From 2010 to 2017, there was an increase in spinal fracture in-
cidences, rising from 21.5 to 24.0 cases per 100,000 inhabitants. The 
primary causes were falls from the same level, categorized as 
low-energy, and traffic accidents, categorized as high-energy. Among all 
patients, 42% were elderly individuals aged 65 years and older, as noted 
by Smits et al. (2020). Predominantly, spinal fractures occurred in the 
thoracic spine, followed by the lumbar and cervical regions. Falls from 
height were the leading cause of injury, followed by traffic accidents. 
den Ouden et al. (2019) reported that spinal cord injury was observed in 
8.5% of cases, with associated injuries documented in 73% of patients. 
The annual occurrence of spinal cord injuries across European nations 
ranges from 13.9 to 19.4 per million population, while in North Amer-
ica, it ranges from 43.3 to 51 per million, as per Lenehan et al. (2009). 
Early pre-hospital mortality rates vary from 48.3% to 79%, while 
inpatient mortality rates range from 4.4% to 16.7% (Lenehan et al., 
2009). In the United States, the prevalence of spinal cord injury falls 
between 721 and 906 per million population, while in Australia and 
Europe, it ranges from 681 to 280 per million, respectively (Lenehan 
et al., 2009). The reported annual incidence rate of traumatic spinal 
fractures, excluding those due to osteoporosis, varies between 19 and 88 
per 100,000 individuals (Lenehan et al., 2009). 

Males are affected 3.37 times more frequently than women, with the 
cervical spine being the most frequently affected (46.02%) and the 
lumbar spine the least (24.8%). The most common mechanisms of injury 
include road traffic accidents (39.5%) and falls (38.8%), while reported 
mortality ranges from 0% to 60%, and 36.4–59.1% of patients undergo 
surgery (Kumar et al., 2018). TL spine fractures account for 10% of 
skeletal injuries and are commonly observed at the junction of the 
thoracic and sacral regions (Fernández-de Thomas and De Jesus, 2023). 
Clinicians face the challenge of diagnosing TL fractures in a timely 
manner, which has prompted the integration of artificial intelligence 
(AI) and machine learning (ML) technologies into clinical practice 
(Sharma, 2023). Despite varying evidence, the potential for AI to 
transform healthcare by extracting insights from everyday healthcare 
data is significant (Bečulić et al., 2024). 

ML involves computer learning and problem solving through algo-
rithms categorized as ‘supervised”, ‘unsupervised’ and ‘reinforcement 
learning’ (Sarker, 2021). “Big Data” has driven AI in medical di-
agnostics, particularly in spinal imaging, with promising results (Young, 
2023). ML, including deep learning (DL) with neural networks, shows 
potential in the assessment of spinal disorders. In traumatic TL spinal 
injuries (TLI), ML supports personalized medicine and improves di-
agnoses, treatment prognoses and cost calculations (Karabacak and 
Margetis, 2023). Despite the recognized benefits, studies are limited due 
to the lack of efficient ML algorithms. This review examines ML and DL 
for the rapid diagnosis of TL spinal injury, comparing them with con-
ventional methods and highlighting the potential clinical benefits. 

2. Material and methods 

2.1. Study methodology and registration 

A comprehensive review was systematically conducted to evaluate 
the current use of ML and DL in diagnostic procedures for VF associated 
with TLI. The research methodology adhered to the established proce-
dural framework described in the PRISMA (Preferred Reporting Items 
for Systematic Reviews and Meta-Analyzes) guidelines (Page et al., 
2021). This systematic review was registered in the Open Science 
Framework (OSF) registry under the unique identifier 
OSF-REGISTRATIONS-RE5YP-V1. 

2.2. Search strategy 

On September 15, 2023, a thorough review of English-language 
publications was performed using the PubMed and Scopus databases. 
The search utilized key terms such as “deep learning,” “machine 
learning,” and “thoracolumbar injuries,” or “thoracolumbar vertebral 
fractures,” employing the PICOS strategy outlined in Table 1 for the 
PubMed search. A similar search approach was executed in the Scopus 
database. Further elaboration on the search methodology is available in 
Table 2. 

2.3. Inclusion and exclusion criteria 

Rigorous inclusion and exclusion criteria were applied when con-
ducting this study to ensure a methodical and targeted selection of ar-
ticles. Articles that were eligible for inclusion had to fulfill certain 
criteria: they had to be written in English, be directly related to the 
convergence of DL and ML in the detection of TLI and contain relevant 
data that meet the objectives of the study. Conversely, exclusion criteria 
were used to further refine the selection process. Articles in categories as 
book chapters, conference papers, reviews, non-English language liter-
ature, animal studies, and original articles without relevant data were 
excluded. 

A total of 793 entries were found in PubMed and Scopus, and 398 
duplicates were removed. After screening 395 unique entries, 21 were 
excluded due to non-discoverability. A total of 374 records were 
screened for eligibility, resulting in the exclusion of 357 reports based on 
specific criteria, such as book or book chapters, conference papers, re-
views, non-English language literature, animal studies, and missing 
relevant data. Finally, 17 studies were included in the review, reflecting 
a systematic and careful approach to ensure the selection of articles that 
directly aligned with the aims and criteria of the study (Fig. 1). 

2.4. Data extraction, synthesis and statistical analysis 

The data extracted from the studies that meet the criteria include 
information on the authors and year of publication, the geographical 
location of the study, the study design used, the total number of patients 
with gender distribution, the machine learning or deep learning 
methods used, the specific pathology or research focus, the diagnostic 
modality, the variables considered in the test analysis, the details of the 
internal and external validation and the main conclusions of the study. 

Table 1 
PICOS search strategy.  

Acronym Search strategy 

P (population or 
problem) 

Thoracolumbar injuries OR thoracolumbar vertebral 
fractures 

I (intervention) Machine learning or deep learning – assisted radiological 
analysis 

C (comparison) None 
O (outcome) None 
S (study design) Original research studies  
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The studies included in the meta-analysis had to provide data on 
false positive (FP), false negative (FN), true negative (TN) and true 
positive (TP) results to enable statistical analysis. In the absence of this 
information, the data required to calculate FP, FN, TN and TP were 
based on prevalence, sensitivity, specificity and sample size, and the 
calculation followed the guidelines of Rosner (2015). This approach 
allows the estimation of key parameters that are crucial for 
meta-analysis and improves the quality of statistical analysis in the 
absence of direct FP, FN, TN and TP data. After data processing, a 
random-effects meta-analysis was performed to assess the sensitivity 
and specificity of the included studies using Meta-DiSc 2.0. This analysis 
step was performed using the Shiny R application developed by Plana 
et al. (2022), which provides an integrated platform for the analysis and 
visualization of results. The MetaDTA shiny R application by Nyaga and 
Arbyn (2022) was used to analyze the hierarchical summary receiver 
operating characteristic curve (HSROC). The same approach was used to 

calculate logit-transformed sensitivity, logit-transformed specificity and 
measures such as diagnostic odds ratio (DOR) and false positive rate 
(FPR). 

2.5. Risk of bias and applicability assessment 

Risk of bias and applicability were assessed using the Quality 
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) instrument 
(Whiting et al., 2011). Two authors (E.B. & H.B.) performed the 
assessment independently, and discrepancies in scores were resolved by 
consensus of all authors. To investigate the presence of weighted pub-
lication bias, Deek’s funnel plot was used (Mizutani et al., 2023). 

3. Results 

3.1. Main research findings and trends 

The total number of included studies was 17, and all were retro-
spective (Table 3). Of these studies, 52.9% (N = 9) were published in 
2023, with smaller proportions in 2020 (N = 1; 5.88%), 2021 (N = 2; 
11.76%) and 2022 (N = 5; 29.41%) (Fig. 2). Most studies were con-
ducted in China (N = 5; 29.41%), followed by Taiwan and South Korea 
(N = 3; 17.65%) with the same proportion. Japan contributed with 
11.76 % (N = 2), while Australia, Switzerland, the USA and Italy each 
accounted for 5.88 % (N = 1) (Fig. 3). The total number of participants 
was 14,524, and three studies reported the number of men and women 
in the cohorts studied, giving a male to female ratio of 0.52:1. In the 
analysis, 11.76% (N = 2) of the studies focused on ML, while the ma-
jority, 88.24% (N = 15), were devoted to DL. All included studies dealt 
with fractures of the TL spine. 

Three studies (17.65%) investigated fractures associated with oste-
oporosis, while five studies (29.41%) investigated different types of 
fractures and the ability of ML and DL to differentiate between them. 
One study (5.88%) addressed sports injuries, while the remaining 
studies (47.06%) investigated various forms and causes of TL injuries. 
Six studies (35.29%) used radiographs to analyze with ML and DL 

Table 2 
Search strategy.  

Search (Machine learning OR deep learning) AND (thoracolumbar injuries 
OR thoracolumbar vertebral fractures OR spine) 

Filter none 
Search 

details 
(“machine learning" [MeSH Terms] OR (“machine" [All Fields] AND 
“learning" [All Fields]) OR “machine learning" [All Fields] OR (“deep 
learning" [MeSH Terms] OR (“deep" [All Fields] AND “learning" [All 
Fields]) OR “deep learning" [All Fields])) AND ((“thoracolumbar" 
[All Fields] AND (“injurie" [All Fields] OR “injuried" [All Fields] OR 
“injuries" [MeSH Subheading] OR “injuries" [All Fields] OR “wounds 
and injuries" [MeSH Terms] OR (“wounds" [All Fields] AND 
“injuries" [All Fields]) OR “wounds and injuries" [All Fields] OR 
“injurious" [All Fields] OR “injury s" [All Fields] OR “injuryed" [All 
Fields] OR “injurys" [All Fields] OR “injury" [All Fields])) OR 
(“thoracolumbar" [All Fields] AND (“spinal fractures" [MeSH Terms] 
OR (“spinal" [All Fields] AND “fractures" [All Fields]) OR “spinal 
fractures" [All Fields] OR (“vertebral" [All Fields] AND “fractures" 
[All Fields]) OR “vertebral fractures" [All Fields])) OR (“spine" 
[MeSH Terms] OR “spine" [All Fields] OR “spines" [All Fields] OR 
“spine s" [All Fields]))  

Fig. 1. PRISMA flowchart.  
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Table 3 
Data summary of included studies.  

Author 
(Year) 

Country Study 
design 

Number of 
patients 
(Male/ 
Female) 

ML/DL 
algorithm or 
Method 

Pathology or focus Diagnostic 
modality 

Diagnostic test 
analysis related 
variables 

Validation 
(internal 
and 
external) 

Conclusions 

Murata 
et al. 
(2020) 

Japan Retro 300 (n/d) DCNN TL VFs RTG Acc: 0.86 
Se: 0.847 
Sp: 0.873 

I: Yes 
E: No 

The DCNN algorithm 
identifies VF on PTLR with 
high accuracy and 
sensitivity 

Li et al. 
(2021) 

Taiwan Retro 941 (n/d) DL TL VFs CT, RTG, 
MRI 

Acc: 0.89 
Se: 0.83 
Sp: 0.95 

I: No 
E: Yes 

Artificial intelligence model 
detected vertebral fractures 
on plain lateral radiographs 
with high accuracy, 
sensitivity and specificity, 
especially for osteoporotic 
lumbar fractures 

Chen et al. 
(2021) 

Taiwan Retro 438 (n/d) DL, DCNN VF RTG Acc: 0.7359 
Se: 0.7381 
Sp: 0.7302 
AUC: 0.72 

I: Yes 
E: Yes 

The algorithm trained by a 
DCNN to identify VFs on 
PARs showed the potential 
of delivering a highly 
accurate and acceptable 
specific rate and is expected 
to be useful as a screening 
tool 

Ma et al. 
(2023) 

China Retro 529 (n/d) ML OVCF after PKP 
(NVCF) 

MRI Se: 0.907 
Sp: 0.939 
AUC: 0.923 

I: Yes 
E: No 

Machine learning 
performed better than 
logistic regression in 
predicting mew fractures 
after OVCF. 

Chen and 
Liu 
(2022) 

China Retro 198 (n/d) DL, RCNN TL VFs CT Acc: 0.864 
Se: L typ A 0.967 
L typ B 0.777 
T typ A 0.902 
T typ B 0.786 
Sp: 0.730 
L typ A 0.957 
L typ B 1.000 
T typ A 0.920 
T typ B 0.998 

I: Yes (kappa 
0.815) 
E: No 

Classification accuracy 
based on deep learning 

Doerr et al. 
(2022) 

USA Retro 111 (n/d) DL, R–CNN Trauma TL injuries 
(compression, 
burst fractures, 
translation or 
rotation) 

CT Acc: 
Compression f. 
0.814 
Burst fracture 
0.686 
Translation or 
rotation 0.801 

I: No 
E: No 

RCNN is accurate in 
analyzing CT scans 

Yeh et al. 
(2022) 

Taiwan Retro 190 (n/d) DL Benign or 
malignant spinal 
fractures 

MRI Se: 0.94 
Sp: 0.91 

I: Yes 
E: Yes 

ResNet50 DL model may 
provide information to 
assist less experienced 
clinicians in the diagnosis of 
VF on MRI. 

Rosenberg 
et al. 
(2022) 

Italy Retro 151 (n/d) DL, R–CNN TL fractures RTG, CT, 
MRI 

Acc: 0.88 
(ResNet) 
0.86 (VGG16) 
Se: 0.91 
(ResNet); 0.90 
(VGG16) 
Sp: 0.89 
(ResNet). 0.83 
(VGG16) 

I: Yes 
E: No 

DL models can be adapted 
to accurately detect 

Iyer et al. 
(2023) 

Australia Retro 308 (n/d) DL TL VFs CT Acc: 0.8595 
Se: 0.881 
Sp: 0.842 

I: No 
E: No 

Analysis of CT images with 
DRL and IL methods for 
more precise localization of 
the pathological process 

Jo et al. 
(2023) 

South 
Korea 

Retro 400 (n/d) DL 
(InResNetV2) 

PLC, TL fractures MRI Se: 0.820 
Sp: 0.940 
AUC: 0.916 

I: Yes 
E: Yes 

The DL algorithm detected 
PLC injury in patients with 
TL fracture with high 
diagnostic efficiency, 
comparable to that of an 
experienced radiologist. 

Li et al. 
(2023) 

China Retro 57 (21/ 
36) 

DL Occult vertebral 
fractures 

CT Acc: 0.846 
Se: 0.846 
Sp: 0.846 
AUC: 0.692; 
0.775; 0.680; 
(SVM; LR; 

I: Yes 
E: Yes 

CT radiomics, combined 
with machine learning, 
allows for the identification 
of OVFs not readily 
appreciable on CT. 

(continued on next page) 
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algorithms, five studies (29.41%) used CT, four (23.53%) used MRI, and 
two (11.76%) used a combination of diagnostic modalities. Of the total, 
12 studies (70.85%) performed internal validation of results, while nine 
studies (52.94%) reported external validation. 

3.2. Risk of bias assessment 

The assessment of risk of bias and applicability is shown in Fig. 4a 
and b. The assessment shows that only one study had an unclear risk of 
bias, while the other studies had a low risk of bias (Fig. 4c). The same 
relationship was observed for the applicability of the studies (Fig. 4d). 
The Deek’s funnel plot test for diagnostic odds ratios was performed 
(Fig. 4e) and yielded a non-statistically significant result with a t-sta-
tistic of − 1.53 and a p-value of 0.1369. 

Table 3 (continued ) 

Author 
(Year) 

Country Study 
design 

Number of 
patients 
(Male/ 
Female) 

ML/DL 
algorithm or 
Method 

Pathology or focus Diagnostic 
modality 

Diagnostic test 
analysis related 
variables 

Validation 
(internal 
and 
external) 

Conclusions 

Bayes) – axial 
0.805.0.882 I 
0.834 (SVM. LR 
Bayes) - sagittal 

Ono et al. 
(2023) 

Japan Retro 552 (n/d) DL Osteoporotic 
lumbar vertebral 
fractures (OLVF) 

RTG Acc: 0.894; 
Se: 0.836; 
Sp: 0.920; 

I: Yes 
E: Yes 

The proposed CNN-based 
method demonstrated high 
performance in determining 
the presence of OLVF and 
classifying old or fresh 
OLVF on radiography 

Ryu et al. 
(2023) 

South 
Korea 

Retro 198 (n/d) DL Lumbar VCFs - 
vertebral 
compression 
fractures 

RTG (LSLR) Acc: 0.929 
Se: 0.944 
Sp: 0.917 

I: Yes 
E: Yes 

High accuracy of the DL 
model for VCF detection 
with the help of LSLR 

Germann 
et al. 
(2023) 

Switzerland Retro 200 (n/d) DCNN Lumbar VFs MRI Acc: 0.964 
Se: 0.941 
Sp: 0.969 

I: Yes 
E: Yes 

DCNN can achieve high 
diagnostic performance in 
vertebral body 
measurements and 
insufficiency fracture 
detection on heterogenous 
lumbar spine MRI 

Cheng et al. 
(2022) 

China Retro 390 (n/d) ML The difference 
between 
compression and 
burst fractures 

RTG Acc: 0.99 
normal 
vertebral bodies 
0.74 
compression 
fractures 
0.94 burst 
fractures 

n/a Assistance in the rapid 
detection of spinal fractures 
to emergency medicine 
physicians 

Hong et al. 
(2023) 

South 
Korea 

Retro 9276 
(3171/ 
6105) 

DL VF and 
osteoporosis 

RTG Acc: 0.91 (0.92 
– external) Se: 
0.76 (0.75 – 
external) 
Sp: 0.94 (0.97 
external) 
FP: 0.74 (0.82 
external) 
FN: 0.95 (0.96 
external) 

I: Yes 
E: Yes 

Spine radiography from 
DCNN models detected 
prevalent vertebral 
fractures and showed better 
detection performance than 
clinical models. 

Zhang et al. 
(2023) 

China Retro 285 (119/ 
166) 

DL VFs CT Acc: 0.9793 
Se: 0.9523 
Sp: 0.9835 

n/a Multilevel AO system 
automatically classifies 
acute vertebral body 
fractures in TL on CT 
images with high 

Legend: DL, deep learning; ML, machine learning; TL, thoracolumbar; OVF, occult vertebral fractures; PKP, percutaneous kyphoplasty; OVCF, osteoporotic vertebral 
compression fracture; NVCF, new vertebral compression fracture; PARs, Plain abdominal frontal radiographs; DRL, deep reinforcement learning; IL, imitation learning; 
DCNN, deep convolutional neural network; VF, vertebral fracture; PTLR, plain thoracolumbar radiography; PLC, posterior ligamentous complex; AI, artificial intel-
ligence, OLVF, osteoporotic lumbar vertebral fractures; CNN, conolutional neural networks; VCF, vertebral compression fracture; LSLR, lumbal spine lateral radio-
graphs; R–CNN, region based-convolutional neural network; PLC, posterior ligamentous complex; TLICS, Thoracolumbar Injury Classification and Severity Score; AO, 
AO Spine thoraculumbar spine injury classification system. 

Fig. 2. Temporal distribution of included studies.  
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3.3. Results of meta-analysis 

The total number of studies that met the criteria for meta-analysis 

was 11 (64.1%), with 94.1% (N = 13,673) of the sample included in 
the study. The number of true positives (TP) accounted to 4865 
(35.58%), false positives (FP) to 870 (6.36%), false negatives (FN) to 

Fig. 3. Geographical distribution of included studies.  

Fig. 4. Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2): a) analysis of bias risk; b) analysis of applicability; c) summary of bias risk assessment; d) 
summary of applicability analysis; e) Deek’s funnel plot depicting publication bias. 
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475 (3.47%) and true negatives (TN) to 7843 (57.36%). 
The meta-analysis showed a sensitivity of 0.91 (95% CI = 0.86–0.95) 

(Fig. 5). The study by Zhang et al. (2023) had the highest sensitivity with 
an estimated value of 0.99 (95% CI = 0.98–1.00), while Chen et al. 
(2021) reported the lowest sensitivity of 0.70 (95% CI = 0.63–0.76). The 
specificity was an estimated value of 0.90 (95% CI = 0.86–0.93). Further 
analysis resulted in a DOR value of 94.603 (95% CI = 49.215–181.85). 
The LR+ was calculated to be 9.36 (95% CI = 6.575–13.325). In 
contrast, the LR-was low at 0.099 (95% CI = 0.061–0.16). The FPR had a 
value of 0.097 (95% CI = 0.068–0.137). 

Fig. 6 shows the HSROC analysis of the studies included in the meta- 
analysis. The logit-transformed sensitivity results in a value of 2.327, 
which means a high probability of accurately identifying true positive 
cases. At the same time, the logit-transformed specificity is estimated to 
be 2.199, indicating a high probability of correctly identifying true 
negative cases. The estimated variances for the logit-transformed 
sensitivity and specificity are 0.070 and 0.037, respectively, illus-
trating the extent of variability of these parameters between studies. In 
addition, the estimated covariance between the logit-transformed 
sensitivity and specificity is 0.021, indicating the DOR between the 
two measures. These results emphasize the precision and reliability of 
the diagnostic test, and accounting for variances and covariances pro-
vides valuable insight into the uniformity and potential heterogeneity of 
performance between studies. 

4. Discussion 

The total number of studies included in our systematic review was 
17. These studies investigated the applicability of ML and DL in the 
diagnostic evaluation of TLI-related VF. The chronological onset of 
increased research efforts in this area underscores the transformative 
path that these computational methods have taken. 

The analysis of the included studies revealed a notable leadership 
position of China in the field of AI applications for the diagnosis of TL 
spinal injuries and fractures. Taiwan ranked second, followed by South 
Korea. The heightened incidence of TLI has led to an increased interest 
in the publication of articles in this field, a phenomenon that is partic-
ularly emphasized in China (Li et al., 2019). In addition, there is a 
noticeable trend towards the escalating utilization of modern neuro-
surgical technologies in this country (Dewan et al., 2019; Zhou et al., 
2023). China’s remarkable strides in research capacity and scientific 
activities is reflected in the significant increase in investment in research 
and development, accompanied by a notable increase in the number of 
research personnel and publications (Marginson, 2022) 

The gold standard for the diagnosis of fractures and injuries of the TL 
spine is CT or MRI, particularly in the context of human interpretation. 
The first diagnostic step includes sagittal and anteroposterior radio-
graphs, which offer the advantage of a lower radiation dose compared to 
CT or MRI (Rutsch et al., 2023). However, this method has its limita-
tions, particularly in the detection of VF (Li et al., 2021). This limitation 
is particularly pronounced in OVF, where the bone marrow edema 
crucial for diagnosis remains invisible on X-ray images but is visible on 
MRI (Li et al., 2023; Ono et al., 2023). The increasing number of patients 
with pain in the TL spine region has led to an increase in referrals for 
further diagnostics. In 48% of cases, fractures are most localized be-
tween vertebrae Th12-L2 (Rosenberg et al., 2022). Studies indicate a 
higher prevalence in patients over 50 years of age and in post-
menopausal women (Iyer et al., 2023; Ryu et al., 2023). Furthermore, 
most studies on this topic were conducted between 2022 and 2023, with 
a decline observed in 2020. The possible cause of this decline is attrib-
uted to the global COVID-19 pandemic (Kuo et al., 2023). AI is expected 

Fig. 5. Estimated values of sensitivity and specificity for included studies in meta-analysis 
Legend: T – thoracal; L – lumbar; TL – thoracolumbar; * and ** - different DL models used od same cohort. 

Fig. 6. Hierarchical summary receiver operating characteristic (HSROC) curve 
of included studies. 
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to be particularly beneficial for doctors, especially in the emergency 
room and primary care. Studies have shown that physicians, including 
radiologists and neurosurgeons, cannot always recognize VF (Murata 
et al., 2020). The application of AI in this context promises to improve 
diagnostic accuracy and patient outcomes (Krishnan et al., 2023). 

Pizones et al. (2011) conducted a study on a cohort of 30 patients (15 
men and 15 women) with traumatic injuries of TL spine. The primary 
objective was to demonstrate the role and efficacy of MRI in the diag-
nosis of spinal injuries. While X-ray and CT diagnosed 41 VF, MRI 
detected 50 VF and nine contusions. This raises questions about the 
diagnostic efficacy of radiographs and CT in VF or possible errors in 
interpretation by radiologists. The study conducted by Levi et al. (2006) 
investigated unrecognized VF in trauma centers, focusing on 24 patients 
who experienced neurological deterioration due to unrecognized con-
ditions. Five patients developed radiculopathies, 16 suffered spinal cord 
injuries and three died. In the study, these outcomes were attributed to 
incorrect measurements, insufficiently specific diagnoses or 
poor-quality X-rays. Consistent with these findings, a study of 585 pa-
tients showed delays in making the correct diagnosis, with the longest 
delay being 115 days. Seven patients were X-rayed in the medical 
emergency department and the doctors did not recognize the VF (Levi 
et al., 2006). 

In addition, the identification of VF was delayed in 22 cases 
(Aso-Escario et al., 2019). Physicians face challenges in diagnosing 
spinal injuries quickly and accurately, particularly in recognizing TL 
fractures and differentiating between burst and compression fractures 
from radiographs. These diagnostic difficulties have a significant impact 
on patient prognosis. In response, AI has emerged as a promising avenue 
over the past decade. Current AI methods, while still in the early stages, 
involve analyzing X-ray, CT or MRI data to make a definitive diagnosis, 
determine the appropriate treatment approach (conservative or surgi-
cal) and assess the risk of potential disability to the patient (Cheng et al., 
2022; Rosenberg et al., 2022). AI in orthopedics is already making initial 
progress in overcoming specific orthopedic challenges, for example 
image recognition, preoperative risk assessment, clinical 
decision-making and the analysis of large data sets (Myers et al., 2020). 
ML helps in predicting patient-specific postoperative complications, 
assessing patterns of injury risk and clinical decision making (Han and 
Tian, 2019). 

The use of ML and DL in diagnostics has been shown to be beneficial 
in various pathologic conditions, e.g., vertebral compression fractures 
(VCF) (Ryu et al., 2023), occult vertebral fractures (OVF) (Li et al., 
2023), osteoporotic lumbar vertebral fractures (OLVF) (Ono et al., 
2023), posterior ligament complex (PLC) injuries (Jo et al., 2023) and 
secondary vertebral fractures (VF) caused by pre-existing osteoporosis, 
neoplasms or traumatic injuries (Li et al., 2021). In the field of neuro-
surgery, a systematic literature review by Danilov et al. (2021) notes the 
broad applicability of AI, with approximately 41% of studies focusing on 
neuro-oncology and 19% on functional neurosurgery, including epilepsy 
surgery. Research on the use of AI technologies in neurosurgery is 
mainly focused on neuro-oncology, functional, vascular and spinal 
neurosurgery, and traumatic brain injury (Danilov et al., 2021). Among 
the predominant algorithms, Deep Convolutional Neural Network 
(DCNN) and Region-based Convolutional Neural Networks (RCNN) 
stand out. In the study by Wu-Gen Li et al. (2023), which focused on CT 
diagnosis in conjunction with ML for OVF, three algorithmic models 
were presented: Support Vector Machine (SVM), logistic regression (LR) 
and Bayesian model. Logistic regression (LR) was found to be the best 
performing model in the sagittal plane of CT with an accuracy of 0.846, a 
sensitivity of 0.846 and a specificity of 0.846. In contrast, the SVM 
model performed best in the axillary plane of CT with an accuracy of 
0.731, a sensitivity of 0.462 and a specificity of 1.000. 

AI models based on DL and ML show significant potential for diag-
nostic procedures related to VF due to traumatic brain injury. The 
included studies show that the DCNN is an algorithm with high diag-
nostic accuracy and precision in the detection of TL spinal fractures. 

Murata et al. (2020) claim that human knowledge, experience and in-
telligence are not interchangeable with AI. They report higher accuracy, 
sensitivity and specificity for spinal surgeons (98.4%, 96% and 100%) 
compared to DCNN (86%, 84.7% and 87.3%). In contrast, Jo et al. 
(2023) finds that DL and DCNN perform equally as well as radiologists in 
terms of diagnostic performance, with similar results in terms of accu-
racy, sensitivity and specificity. Germann et al. (2023) reported no sig-
nificant differences between radiologists and DL/DCNN in the 
interpretation of findings. However, both studies used MRI, which is 
known for its high accuracy in the diagnosis of certain pathologies. 

A robust classification system is essential for effective communica-
tion, treatment guidance and accurate prognosis in spinal surgery 
(Bajamal et al., 2021). The Thoracolumbar Injury Classification and 
Severity Score (TLICS) has become well known due to its wide accep-
tance (Gamanagatti et al., 2015; Nataraj et al., 2018). Despite the 
introduction of a new AO (Arbeitsgemeinschaft für Osteosynthesefragen) 
spine classification that incorporates elements of Magerl/AO and TLICS, 
further standardization and empirical validation is needed (Joaquim 
and Patel, 2013). Radiologic modalities such as X-ray, CT or MRI play a 
central role in diagnosis, although TLICS remains the preferred tool for 
the assessment of thoracic and lumbar spine injuries (Reinhold et al., 
2013). The WFNS Spine Committee endorses the validity and applica-
bility of both the AO and TLICS classifications in clinical practice for 
traumatic thoracolumbar fractures (Bajamal et al., 2021). New research 
suggests potential advantages of the complicated AO classification, 
particularly in the absence of CT/MRI scans (Park et al., 2016). MRI is 
recommended primarily for its accuracy in visualizing the disco liga-
mentous complex and detecting associated pathology in spinal trauma 
(Bajamal et al., 2021). 

When investigating the precision of ML and DL algorithms in TLI, it is 
important to consider several radiologic abnormalities. Kyphotic lesions 
characterized by a reduction in anterior vertebral height of more than 
50% play a crucial role in surgical planning and evaluation of the results 
of the procedure. Proper assessment of the posterior ligamentous com-
plex (PLC) is essential, as an inadequate PLC directly affects the extent of 
the fracture. MRI is recommended when the interspinous gap widens by 
20% or more to rule out unhealthy PLC (Jo et al., 2023). In the evalu-
ation of upper spinal cord fractures with DL algorithms, the studies by 
Chen et al. (13) and Zhang et al. (2023) found varying degrees of 
sensitivity, with CT showing higher sensitivity than radiography with 
DL. In addition, the AO system was suggested to be superior to the DL 
method in the clinical setting. Specificity varied between studies, with 
Chen et al. (2021) reporting the lowest specificity and Li et al. (2021) 
reporting the highest specificity, suggesting that X-ray with DL performs 
better than CT without DL or MRI without DL in detecting vertebral 
fractures, possibly due to the overall advantages of CT/MRI over X-ray. 

The estimated value for the specificity of the ML and DL algorithms 
in this meta-analysis is 0.90 (95% CI = 0.86–0.93), indicating high ac-
curacy. A value of 0.91 (95% CI = 0.86–0.95) was determined for the 
sensitivity. These calculations represent the first synthesis of studies 
addressing the specificity and sensitivity of ML and DL algorithms in 
identifying VFs caused by TLIs. Yang et al. (2020) found a sensitivity of 
0.87 (95% CI: 0.78–0.93) in different orthopedic fractures using ML and 
DL models for identification, which closely agrees with our results. In 
the same study, the specificity was 0.91 (95% CI: 0.85–0.95), which is 
consistent with the results of our assessment. When analyzing hip frac-
tures, a slightly lower sensitivity of 0.844 (95% CI: 0.791–0.885) was 
found (Rahim et al., 2023). 

The field of ML and DL research has a high publication rate, and new 
articles appear frequently. Consequently, the literature landscape may 
have evolved considerably at the time of publication and may contain 
relevant articles not yet included in this review. The AI models devel-
oped to analyze plain lateral radiographs had limitations in terms of 
their scope and diagnostic capabilities, particularly in detecting VF in 
TLI (Ryu et al., 2023). The models only recognized eight vertebrae and 
had difficulty identifying fractures above T9. Furthermore, their 
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development was aimed at detecting VF without investigating under-
lying causes such as neoplasms, osteomyelitis or multiple myeloma. 
Clinical evaluation and confirmation by other imaging modalities 
remain paramount for the accurate diagnosis of pathologic VF in TLI. In 
addition, the models failed to distinguish between acute and subacute 
stages of VF, degenerative spondylolisthesis and disk degeneration, 
which may lead to misinterpretation. These shortcomings highlight the 
importance of using the models with critical awareness and ensuring 
comprehensive clinical assessments for a definitive diagnosis (Li et al., 
2021). In addition, the performance of ML and DL models for detecting 
VF may vary in different age groups due to the heterogeneity of training 
data in some studies that include fractures in pediatric and geriatric 
populations. This variability in baseline data suggests potential limita-
tions in generalizing the performance of the models to younger or older 
patients (Iyer et al., 2023). Other limitations cited include the exclusion 
of old fractures and the lack of assessment of the functional prognosis of 
fractures (Murata et al., 2020). 

ML algorithms are not limited to linear data; they can also be used to 
handle non-linear relationships between variables and outcomes. This is 
particularly useful where risk factors and outcomes observed in patients 
may exhibit complex patterns. Furthermore, ML algorithms can analyze 
large amounts of data and identify which factors are most relevant to the 
outcome. Also, ML algorithms can achieve higher accuracy than con-
ventional models and even handle missing data quite efficiently (Doerr 
et al., 2022). DL models for VF detection often comprise millions of 
parameters and are primarily used for data fitting. However, this 
complexity can lead to overfitting, hindering the models’ ability to 
classify unseen data. Reducing the number of parameters through 
techniques like model compression and architectural optimization can 
foster improved generalization and robustness. Training DL models for 
VF detection necessitates the inclusion of images with diverse charac-
teristics to enhance generalizability. Future studies should include more 
CT and MRI images. It is necessary to conduct training using images with 
various characteristics, performance, and applicability (Begagić et al., 
2023b). Evaluating ML and DL performance and applicability in primary 
care settings, beyond secondary and tertiary care, is crucial for 
real-world implementation, especially in Low- and Middle-Income 
Countries (Begagić et al., 2023a). 

Like any study, this one has its limitations, which are primarily due 
to the relatively small number of studies included. In addition, stan-
dardization of the reporting procedure for accuracy scores would be 
essential in the near future to enable the inclusion of studies in a meta- 
analysis to obtain a more comprehensive and in-depth overview of the 
applicability of ML and DL in the review of VF caused by TLI. 

5. Conclusion 

In our systematic review of diagnostic approaches for thoracolumbar 
spine fractures, deep learning was predominantly used, while machine 
learning was only explored to a limited extent. The study showed 
consistent specificity and sensitivity estimated in the meta-analysis, 
highlighting the robustness of the diagnostic test. However, the 
broader context of ML applications in TLIs suggests that there is a critical 
need for standardization of methods. The report highlights the impor-
tance of rigorous modeling techniques, clear criteria for model selection, 
and internal and external validation to ensure the reliability of machine 
learning models for clinical integration. Future research should address 
the identified limitations, expand modalities and prioritize robust 
methods to strengthen the evidence base for informed decision making 
between clinician and patient and ultimately improve patient care and 
clinical outcomes. 
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