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ChEC-seq kinetics discriminates transcription
factor binding sites by DNA sequence and
shape in vivo
Gabriel E. Zentner1,w, Sivakanthan Kasinathan1,2,3, Beibei Xin4, Remo Rohs4 & Steven Henikoff1,5

Chromatin endogenous cleavage (ChEC) uses fusion of a protein of interest to micrococcal

nuclease (MNase) to target calcium-dependent cleavage to specific genomic loci in vivo. Here

we report the combination of ChEC with high-throughput sequencing (ChEC-seq) to map

budding yeast transcription factor (TF) binding. Temporal analysis of ChEC-seq data reveals

two classes of sites for TFs, one displaying rapid cleavage at sites with robust consensus

motifs and the second showing slow cleavage at largely unique sites with low-scoring motifs.

Sites with high-scoring motifs also display asymmetric cleavage, indicating that ChEC-seq

provides information on the directionality of TF-DNA interactions. Strikingly, similar DNA

shape patterns are observed regardless of motif strength, indicating that the kinetics of

ChEC-seq discriminates DNA recognition through sequence and/or shape. We propose that

time-resolved ChEC-seq detects both high-affinity interactions of TFs with consensus motifs

and sites preferentially sampled by TFs during diffusion and sliding.
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G
enome-wide determination of protein binding sites is of
great interest for understanding normal and pathological
cellular processes. Numerous techniques have been

developed to map global protein–DNA interactions, and the
most popular is formaldehyde crosslinking chromatin immuno-
precipitation with high-throughput sequencing (X-ChIP-seq).
Although ChIP-seq has been used to gain numerous insights into
the regulation of DNA-templated processes, it has notable
limitations attributable to crosslinking and sonication1.
Formaldehyde, the most commonly used reagent for ChIP
crosslinking, preferentially generates protein–protein crosslinks2

and can lead to epitope masking. X-ChIP-seq may also artificially
inflate transient factor-chromatin interactions3,4, a problem that
appears to be particularly acute at highly transcribed regions5–7.
The resolution of X-ChIP-seq is also limited by sonication,
though the addition of nuclease digestion steps (as in ChIP-exo,
high-resolution X-ChIP and ChIP-nexus) can greatly improve its
resolution8–10. In addition, sonication may introduce biases
towards protein binding sites in open chromatin11,12. ChIP-seq
performed without crosslinking, as in occupied regions of
genomes from affinity-purified naturally isolated chromatin
(ORGANIC) profiling, circumvents issues associated with
crosslinking and provides high resolution due to the use of
micrococcal nuclease (MNase) to fragment chromatin12,13.
However, the solubility of chromatin-associated proteins may
be poor under the relatively gentle extraction conditions required
for non-crosslinking methods9.

While ChIP-seq is most frequently used to map genome-wide
protein–DNA interactions, a number of orthogonal methods,
each involving fusion of chromatin proteins to DNA-modifying
enzymes, have also been implemented. In one such method, DNA
adenine methyltransferase identification (DamID)14, a protein of
interest is fused to the Dam methyltransferase, resulting in
methylation at regions bound by the protein and containing
GATC sequences. In conjunction with microarray analysis,
DamID has been used extensively to characterize genome-wide
protein–DNA interactions in a range of model systems15–19.
DamID allows the identification of protein-binding sites in living
cells without the need for crosslinking or immunoprecipitation,
and, as it relies on total DNA extraction rather than chromatin
solubilization, it is quantitative and can thus be used with small
amounts of starting material. However, the resolution of DamID
is limited to kilobase-sized regions15 and the DNA-methylating
activity of the fusion protein is constitutive. A second enzymatic
method is Calling Card-seq, in which a chromatin protein of
interest is fused to a transposase to facilitate targeted integration
of transposons into the genome20. This method offers advantages
similar to DamID with the added benefit of somewhat higher
resolution, though it may be limited by transposase sequence
preferences and also depends on the presence of restriction sites
an appropriate distance from the inserted transposon to create
templates for circularization and inverse PCR.

A third enzymatic method, chromatin endogenous cleavage
(ChEC)21, makes use of a fusion protein comprising a chromatin
protein of interest and MNase, which degrades unprotected DNA
in the presence of calcium. ChEC has been used to characterize
protein binding at specific genomic loci in yeast, such as the
GAL1-10 promoter, HML and rDNA21,22, and has been used in
conjunction with low-resolution microarray analysis to assess the
association of nuclear pore components with the genome23. The
benefits of ChEC are similar to those of DamID and Calling
Card-seq, with resolution that is one to two orders of magnitude
higher than that of these techniques, approaching base-pair
resolution when analysed by primer extension23. Importantly,
ChEC is controllable, as robust MNase activity depends on the
addition of calcium to millimolar concentrations, several orders

of magnitude greater than the 50–300 nM free calcium observed
in unstimulated yeast24 and mammalian cells25–29.

We asked whether a combination of ChEC with high-
throughput sequencing (ChEC-seq) would allow high-resolution
determination of protein binding sites on a genome-wide scale
while circumventing issues with crosslinking, protein solubility,
and antibody quality. Indeed, ChEC-seq yielded several times
more binding sites for the budding yeast transcription factors
(TFs) Abf1, Rap, and Reb1 than have been reported by ChIP-
based methods. Making use of the inducible nature of ChEC, we
found that binding sites for these TFs could be partitioned into
two distinct temporal classes. The first displayed high levels of
cleavage less than a minute after the addition of calcium and
contained robust matches to known consensus motifs. In
contrast, the second class of sites did not display appreciable
levels of cleavage until several minutes after calcium addition and
was depleted of motif matches. Sites containing motifs also
displayed asymmetric cleavage patterns, indicating that ChEC-seq
can detect directional TF–DNA binding. Strikingly, we found that
sites both with and without motifs displayed notable DNA shape
features relative to random sites, indicating that the kinetics of
ChEC can separate TF binding sites (TFBSs) recognized by a
combination of DNA shape and sequence or shape alone. We
speculate that rapidly cleaved sites, containing high-scoring
motifs, represent direct, high-affinity binding of TFs to DNA,
while slowly cleaved sites, with low-scoring motifs, are loci
transiently sampled by TFs during diffusion and sliding due to
their favourable shape profiles. Our results establish ChEC-seq as
a robust genome-wide high-resolution mapping technique
orthogonal to ChIP-seq that we anticipate will be broadly
applicable to numerous biological systems.

Results
Overview of the ChEC-seq experimental strategy. We generated
a construct encoding a 3� FLAG epitope and MNase for
PCR-based C-terminal tagging of endogenous loci in budding
yeast. We chose to interrogate the genome-wide binding of the
three canonical general regulatory factors: ARS Binding Factor 1
(Abf1), Repressor Activator Protein (Rap1) and RNA polymerase
I Enhancer Binding protein (Reb1). Abf1 contains a bipartite
DNA-binding domain (DBD) consisting of a zinc finger and an
uncharacterized domain and regulates RNA polymerase II tran-
scription as well as DNA replication30 and repair31. Rap1
contains a Myb-family helix–turn–helix DBD and regulates the
expression of ribosomal protein genes32 and telomere length33.
Reb1, like Rap1, contains a Myb-family helix–turn–helix DBD
and is involved in the regulation of RNA polymerase I and II
transcription34–36. ChEC in conjunction with southern blotting
has been successfully used to map the binding of Reb1 to
rDNA37,38. In addition, all three factors have been implicated in
the formation of nucleosome-depleted regions at promoters
throughout the yeast genome39–41.

TFs are often expressed at levels expected to drive nonspecific
interactions with chromatin via mass action42,43 and scan for
their binding sites via trial and error sampling of sites on
chromatin4. We therefore anticipated that a substantial fraction
of cleavages in the TF–MNase strains could be due to random
diffusion and collision of the fusion proteins with chromatin.
To control for this, we generated a strain harbouring a construct
encoding 3� FLAG-tagged MNase fused to an SV40 nuclear
localization signal under the control of the REB1 promoter
integrated at the URA3 locus (‘free MNase’). As there are more
molecules of Reb1 than either Abf1 or Rap1 in a yeast cell44, we
surmised that free MNase driven by the Reb1 promoter would
also serve as a suitable control for Abf1 and Rap1 ChEC-seq
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experiments. The free MNase control is analogous to the unfused
Dam control used in DamID experiments15. Expression of free
MNase and TF–MNase fusions was well tolerated, as cells
displayed no overt growth phenotype (Fig. 1a), though they
showed increased background DNA damage as assessed by gH2A
levels (Fig. 1b), in the absence of exogenous calcium.

We followed the previously described in vivo ChEC protocol21,
wherein living yeast cells are permeabilized with digitonin before
the addition of Ca2þ to induce chromatin cleavage (Fig. 1c).
We presumed that treatment of permeabilized cells with Ca2þ

would generate both specific cleavages at TFBSs and nonspecific
cleavages resulting from mass action-driven interactions of the
TF–MNase fusions with chromatin, leading to the generation
of small protected fragments representing TFBSs. We thus
performed size selection of ChEC DNA before sequencing
library preparation to enrich for small DNA fragments.

Before size selection, we analysed the kinetics of bulk genomic
DNA degradation by TF–MNase fusions and free MNase by
agarose gel electrophoresis. Analysis of widely spaced, minute-
scale time points revealed notable smearing of genomic DNA by
all three TF–MNase fusions by the 2.5 m time point. In contrast,
2.5 m of digestion in the free MNase strain yielded only
very slight smearing of high-molecular-weight genomic DNA
(Supplementary Fig. 1a). This pattern persisted until 20 m, when
robust smearing of genomic DNA by free MNase could be
observed. We interpret these patterns to indicate that specific
cleavage mediated by TF–MNase fusions occurs relatively rapidly,
at specific sites, following Ca2þ addition, while digestion with
free MNase takes longer due to the fact that it is not specifically
targeted to any sites on chromatin. A similar pattern was
observed with second-scale digestion of DNA with Reb1-MNase,
where slight smearing of genomic DNA was evident as early as
10 s, but no such degradation was observed in the free MNase
strain (Supplementary Fig. 1b).

ChEC-seq maps genome-wide TF binding. Visualization of
mapped ChEC-seq fragments revealed robust, discrete sites of
cleavage over negligible background signal with variable dynamic
range depending on the extent of digestion (Fig. 2a–c). A modest
amount of cleavage was observed as quickly as 10 s, presumably
due to activation of TF–MNase molecules bound to DNA at the

outset of the time series, and increased markedly by 20 s. Signal to
noise was generally highest at the 30 and 40 s time points, and
dynamic range decreased thereafter, presumably due to TF
unbinding and subsequent digestion of binding sites combined
with an overall increase in background signal due to increasing
nonspecific cleavage. Strong cleavage was observed at Abf1 and
Reb1 sites identified by ORGANIC profiling12 (Fig. 2a,c) and a
Rap1 site identified by ChIP-exo8 (Fig. 2b). Free MNase digestion
yielded only nonspecific patterns of cleavage with a much reduced
dynamic range compared with that seen for Abf1, Rap1 and Reb1
at the same genomic regions (Fig. 2a–c), indicating that the
patterns of cleavage in the TF–MNase strains are specifically due
to chromatin targeting of MNase by fusion to TFs and that
ChEC-seq is unlikely to suffer from a chromatin accessibility bias.
We also assessed the specificity of our ChEC-seq data by
determining ChEC cleavages at Abf1, Rap1 and Reb1 peaks
previously determined by various ChIP methods8,12,45 and at an
identical number of randomly generated genomic regions.
Average enrichment of cleavages within ChIP peaks was
8.5-fold to 70-fold higher than at random sites (Supplementary
Fig. 1c–e), further indicating that ChEC-seq specifically detects
TFBSs.

ChEC-seq reveals temporally distinct classes of TFBSs. Data
generated by steady-state methods such as ChIP and DamID have
two dimensions: binding site location and occupancy. In addition
to these, ChEC-seq data provide a third dimension: time. We
wondered if analysis of ChEC-seq cleavage kinetics could provide
insight into the modes of DNA recognition by TFs. We thus
determined the maximum signal for each base position in the
genome irrespective of digestion time and called peaks on this
composite dataset using a genome-wide thresholding approach,
followed by analysis of signal within each peak across all time
points.

For Abf1, we detected 12,351 peaks (Supplementary Data 1).
Of note, this is an order of magnitude more peaks than was
detected using ORGANIC profiling12. To ask whether there are
temporally distinct classes of Abf1 sites, we performed
unsupervised k-means clustering of peak signal with k¼ 2. This
analysis revealed a striking partitioning of the data into fast and
slow classes based on the time point at which maximum signal
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Figure 1 | Phenotypic characterization of strains bearing MNase-tagged TFs. (a) Growth of free MNase and TF–MNase strains on YPD. (b) Western blot

analysis of H2A serine 129 phosphorylation (gH2A) in free MNase and TF–MNase strains. The gH2A/total H2A ratio is indicated under each lane.
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calcium is added to induce cleavage by CP-MNase. Digested DNA is then purified and prepared for high-throughput sequencing.
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was reached (Fig. 3a, Supplementary Fig. 2a). We wondered if this
temporal partitioning of sites might reflect differences in the
affinity of Abf1 for the DNA sequences underlying these peaks
and so scored each site using a previously published position
frequency matrix45. We observed a robust relationship between
temporal class and motif strength, with the highest motif scores
corresponding to the fast class and lower motif scores
corresponding to slow sites (Fig. 3a). Consistent with this, de
novo motif discovery within fast sites revealed a robust match to
the Abf1 consensus, similar to that previously determined by
ORGANIC12, while a nonspecific AT-rich sequence was the most
enriched sequence in slow sites (Fig. 3a). To test the
reproducibility of these data, we performed two additional
replicates at the 30-s time point and compared the sum of
cleavages within each peak. This comparison revealed excellent
correspondence between replicates (Spearman’s rank correlation
r¼ 0.966–0.981; Supplementary Fig. 3a). Extending these
analyses to Rap1 and Reb1, we detected 7,260 Rap1 peaks, over
twelve times the number of Rap1 peaks previously determined by
ChIP-exo8, and 8,268 Reb1 peaks, greater than four times the
number of Reb1 sites previously reported in ChIP studies8,12

(Supplementary Data 1). As was observed for Abf1 peaks,
Rap1 (Fig. 3b, Supplementary Fig. 3b) and Reb1 (Fig. 3c,
Supplementary Fig. 3c) peaks could be divided into fast and slow
clusters also distinguished by motif strength. De novo motif
discovery using fast but not slow Rap1 and Reb1 peaks also
revealed robust matches to previously determined consensus
sequences similar to those found by ChIP-exo and/or ORGANIC,
and AT-rich motifs bearing some resemblance to those
found in slow Abf1 sites were found in Rap1 and Reb1
slow sites (Fig. 3b,c). Cleavage levels for Rap1 and Reb1 peaks
were also robust across 30-s replicates (Rap1 Spearman’s rank
correlation r¼ 0.963–0.990; Supplementary Fig. 3b and Reb1

Spearman’s rank correlation r¼ 0.945–0.989; Supplementary
Fig. 3c). We also analysed the reproducibility of cleavage levels
across 2.5-m replicates for Abf1 and found robust correlations
(Spearman’s rank correlation r¼ 0.901–0.958; Supplementary
Fig. 3d).

We considered the possibility that, because slow sites generally
lack robust consensus motifs, these sites could simply be due to
chromatin accessibility or other biases. If this was the case, then
we would expect the majority of slow sites to overlap across data
sets for multiple TFs. However, analysis of the overlap of slow
sites between TFs revealed that 7,550/8,649 (87.3%) of Abf1 slow
sites, 4,115/5,286 (77.8%) of Rap1 slow sites, and 4,974/5,557
(89.5%) of Reb1 slow sites were unique. This suggests that slow
sites represent preferred sites without robust consensus motifs for
TFs that may be sampled during diffusion and sliding.

To further assess the specificity of our ChEC-seq peaks, we
called peaks on the free MNase data set (Supplementary Data 1)
and used these peaks to generate a false discovery rate (FDR) for
each TF–MNase peak set. The FDR was defined as the percentage
of TF–MNase peaks that were also found in the free MNase
dataset. FDRs calculated were 2.37% for Abf1, 3.71% for Rap1
and 2.42% for Reb1. These small FDRs indicate that at most a
very minor fraction of the peaks in each experiment (Abf1,
292/12,353; Rap1, 269/7,260; Reb1, 200/8,268) might be
artifactual. These FDRs may be overestimates, because a number
of free MNase peaks occur in telomeric and rDNA regions, which
tend to have high signal in ChIP experiments, but to which Rap1
and Reb1 have been shown to bind by multiple ChIP
approaches8,12. The correlation between TF and free MNase
signals at peaks was also very poor (Spearman’s rank correlation
r¼ 0.080–0.118; Supplementary Fig. 4). We conclude from these
analyses that ChEC-seq peaks are dependent on targeting of
MNase to chromatin by fusion to a TF.
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ChEC-seq peaks are enriched in ChIP-seq datasets. Recent work
has indicated that the extended formaldehyde crosslinking
(10–15 min) usually performed in X-ChIP experiments captures
transient interactions of TFs with degenerate motifs during
binding site scanning3,4. We thus anticipated that X-ChIP
experiments would capture ChEC-seq sites regardless of their
temporal profile and motif strength. As our cluster analysis
revealed two distinct classes of sites distinguishable by motif
strength, we refined the binary classification of ChEC-seq sites by
parsing sites by motif strength for further analysis. For the
purposes of all subsequent analyses, we define sites with a motif
match P value o0.001 as ‘high-scoring sites’ and those with a
motif match P value Z0.001 as ‘low-scoring sites’.

While X-ChIP methods capture protein–DNA interactions
regardless of duration when a long crosslinking step is used,
ORGANIC preferentially enriches for stable, high-affinity
protein–DNA interactions12. We thus hypothesized that, if low-
scoring sites were representative of transient chromatin
interactions during scanning, they would be less enriched
relative to high-scoring sites in ORGANIC compared with
X-ChIP experiments. To examine this, we performed an
X-ChIP experiment in which chromatin was digested with
MNase (MNase-X-ChIP-seq) for Abf1. We then generated
average plots of Abf1 X-ChIP-seq and ORGANIC signal
around each class of sites. As we hypothesized, Abf1
enrichment was essentially equal at high- and low-scoring sites
when assessed by X-ChIP-seq (Fig. 4). In contrast, average Abf1
enrichment was approximately twofold lower at low-scoring
compared with high-scoring sites when assayed by ORGANIC
(Fig. 4). These analyses further support the specificity of ChEC-
seq and suggest that low-scoring ChEC-seq sites represent
transient interactions of TFs with preferred sites during binding
site scanning.

We next assessed the overlap of ChEC-seq peaks with
peaks obtained by various ChIP approaches. High-scoring Abf1
ChEC-seq peaks overlapped with 929/1,277 (72.7%) of peaks
discovered by X-ChIP-chip45 and/or ORGANIC12, while low-
scoring Abf1 ChEC-seq peaks intersected with 696/1,277 (54.5%)
of these ChIP peaks (Supplementary Fig. 5a). High-scoring Rap1
ChEC-seq peaks overlapped with 395/654 (58.9%) of peaks
reported by X-ChIP-chip and/or ChIP-exo, while low-scoring
Rap1 ChEC-seq peaks coincided with 270/654 (41.3%) of
these ChIP peaks (Supplementary Fig. 5b). High-scoring Reb1
ChEC-seq peaks overlapped with 1,839/2,820 (65.2%) of peaks
discovered by X-ChIP-chip and/or ORGANIC, while low-scoring
Reb1 ChEC-seq peaks corresponded to 1,136/2,820 (40.3%) of
these ChIP peaks (Supplementary Fig. 5c). These results indicate
that ChEC-seq captures a substantial fraction of TFBSs previously
identified by ChIP-based methods. Furthermore, the stronger
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overlap of high-scoring ChEC-seq peaks with ChIP peaks, most
of which were reported to contain consensus motifs, is consistent
with the robust motif matches in this class of ChEC-seq sites.

ChEC-seq detects directionality in protein–DNA interactions.
As we fused MNase to the C-terminus of each TF, we wondered if
we could obtain structural information about the orientation of
each TF on DNA and thus analysed cleavage patterns around
high-scoring and low-scoring sites for each TF. High-scoring
Abf1 sites showed robust and essentially equivalent peaks of
cleavage upstream and downstream of the motif match (Fig. 5a).
We also observed a moderate frequency of cleavage within the
motif match, likely indicating MNase accessibility of the non-
specific spacer between the two specific halves of the Abf1
motif46. Low-scoring Abf1 sites displayed low levels of cleavage
throughout the motif match and the upstream and downstream
regions (Fig. 5a). High-scoring Rap1 sites also showed strong
cleavage peaks to either side of the motif match, as well as a
strong cleavage peak in the centre of the motif match (Fig. 5b).
The cleavage in the centre of the Rap1 motif match may be
attributable to cleavage within the 3-bp linker that spans the
two hemisites making up the Rap1 consensus sequence47.
Low-scoring Rap1 sites displayed a noisier version of the
tripartite cleavage pattern observed at more robust motif
matches (Fig. 5b). In contrast to Abf1 and Rap1, high-scoring
Reb1 sites displayed a strongly asymmetric pattern of cleavage,
with nearly all cleavages occurring upstream of the motif match
(Fig. 5c). However, this pattern was not observed at low-scoring
Reb1 sites (Fig. 5c). These data suggest that ChEC-seq, with
appropriate structural consideration of the protein under study, is
capable of providing information about the orientation of TFs
bound to DNA.

Although all three TFs tested presumably bind in a directional
manner to their nonpalindromic motifs, robust cleavage
asymmetry was observed only in Reb1 experiments (Fig. 5c).
This may be explained by structural flexibility of the proteins
under study and/or the relatively long length of the TF–MNase
linker (33 aa). In the case of Abf1, its C terminal B200 aa contain
no domains and as such might be quite flexible, allowing MNase

on a long linker to cleave on either side of its binding sites. Rap1
contains a C-terminal RCT protein–protein interaction domain,
but this domain is predicted to be positioned above the central
Rap1 DBDs and so may afford MNase access to DNA on either
side of its binding sites48.

To investigate the effect of linker length on the observed
ChEC-seq profiles, we shortened the TF–MNase linker from 33 to
8 aa (short linker strains are hereafter referred to as TF-SL) and
performed ChEC-seq. The Abf1-SL strain displayed the same
cleavage patterns at Abf1 sites determined in the longer linker
strain, suggesting that it is structural flexibility in the Abf1 C
terminus that dictates cleavage patterns in these strains (Fig. 6a).
As expected, the Reb1-SL strain displayed a cleavage pattern very
similar to that of the Reb1 strain (Fig. 6b). We did not observe
cleavage in the Rap1-SL strain, potentially due to the long
expected distance of the Rap1 C terminus from DNA48.

To further explore the effects of structural flexibility on
ChEC-seq cleavage patterns, we expressed Reb1 tagged with
MNase at its N terminus from a plasmid and performed
ChEC-seq. Tagging of the Reb1 N terminus with MNase resulted
in a symmetric cleavage pattern (Fig. 6c) similar to that observed
in the Abf1 and Rap1 strains (Fig. 5a,b), suggesting that structural
flexibility of the protein under study has a substantial effect on
the cleavage pattern observed.

High-scoring and low-scoring TFBSs share DNA shape features.
What drives preferential interaction of TFs with low-scoring
sites? Recent work has suggested that, in addition to sequence,
DNA shape can drive recognition of specific loci by TFs49,50. We
thus wondered if low-scoring sites might contain DNA shape
features conducive to recognition and so analysed minor groove
width (MGW), Roll, propeller twist (ProT) and helix twist (HelT)
at high-scoring and low-scoring sites for each TF. For each TF
and category of DNA shape features, we compared the patterns
between high-scoring and low-scoring sites. Pearson correlation
coefficients (PCCs) close to 1 and large Kolmogorov–Smirnov
(KS) P values indicate similar DNA shape profiles. Abf1 high-
scoring and low-scoring sites displayed highly similar patterns
of MGW (PCC¼ 0.98; KS P¼ 0.68), Roll (PCC¼ 0.99;
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KS P¼ 0.68), ProT (PCC¼ 0.98; KS P¼ 0.94), and HelT
(PCC¼ 0.98; KS P¼ 0.68) (Fig. 7a). Similarly, Rap1 high-
scoring and low-scoring sites showed very similar MGW
(PCC¼ 0.97; KS P¼ 0.18), Roll (PCC¼ 0.98; KS P¼ 0.68),
ProT (PCC¼ 0.98; KS P¼ 0.99), and HelT (PCC¼ 0.98; KS
P¼ 0.94) (Fig. 7b). Last, analysis of Reb1 high-scoring and low-
scoring sites likewise yielded good correspondence of MGW
(PCC¼ 0.94; KS P¼ 0.83), Roll (PCC¼ 0.98; KS P¼ 0.83), ProT
(PCC¼ 0.99; KS P¼ 0.83) and HelT (PCC¼ 0.93; KS P¼ 0.99;)
(Fig. 7c). Shape parameters at randomly selected binding sites
displayed weak correlation with and significant difference
(PCCo0.3; KS Po0.05) from those at both high-scoring and
low-scoring sites for all three factors.

We next asked if a small subset of low-scoring sites with
relatively good matches to the consensus might be driving the
DNA shape trends observed in the average plots. To test this, we
generated heatmaps for each shape parameter and TF ranked by
motif match P value. Heatmaps for Abf1 (Supplementary Fig. 6),
Rap1 (Supplementary Fig. 7), and Reb1 (Supplementary Fig. 8)
high-scoring and low-scoring sites were highly similar, suggesting
that the identified shape patterns are not dependent on the
presence of a strong consensus motif. We also compared the
relative abilities of a shape model and a sequence model to
distinguish between sites containing high-scoring and low-
scoring motifs using L2-regularized multiple linear regression.
The resulting values for area under the receiver operating
characteristic (AUROC) showed that sequence is a better
discriminator between high-scoring and low-scoring sites than
shape (Supplementary Fig. 9), indicating that DNA shape is more
similar than sequence between these two classes of sites. These
results suggest that ChEC-seq kinetics separates TFBSs on the
basis of their recognition mode (sequence and shape versus shape
alone).

Discussion
We have shown that ChEC-seq robustly identifies global protein–
DNA interactions with high spatial and temporal resolution.
Time-resolved analysis of ChEC-seq sites distinguishes two
classes of TFBSs by cleavage kinetics and motif strength.
High-scoring sites exhibited rapid cleavage during ChEC time
courses, suggesting that they are already partially occupied when

calcium is added and rapidly reach maximum occupancy. In
contrast, low-scoring sites reached cleavage maxima twenty
minutes after calcium addition but were largely unique to each
TF, arguing that they do not simply reflect DNA accessibility
in vivo. Strikingly, high-scoring and low-scoring sites displayed
very similar profiles of DNA shape features.

The fact that low-scoring sites are only robustly detected
several minutes into the ChEC time course suggests two
possibilities: (1) low-scoring sites are only robustly cleaved after
high-scoring sites are digested away or (2) the transient nature of
TF-DNA interactions at low-scoring sites necessitates several
minutes of incubation to detect robust cleavage levels. Although
our current results cannot distinguish these two possibilities, the
ability of ChEC-seq to kinetically separate high-affinity binding
events and transient sampling interactions is a distinct advantage
of the method over existing mapping approaches. We speculate
that high-scoring sites represent sites of high-affinity protein–
DNA interactions driven by recognition of both DNA sequence
and shape, while low-scoring sites are lower affinity sites
preferentially sampled during binding site scanning due to their
favourable shape profiles (Fig. 8). Our observations suggest that
TFs first physically recognize sites with similar shapes and then
further narrow down that group through the formation of
sequence-specific hydrogen bonds with motifs. In this regard,
DNA shape could serve as a trigger for a shift in protein
conformation between the previously proposed scanning and
folding modes51, which facilitate rapid binding site searching and
stable protein–DNA interactions, respectively. Thus, it may be
that DNA shape and protein conformation work in concert to
limit the binding site search space.

A common finding from large-scale mapping efforts is that
many TFs with well-established sequence specificities bind more
sites without than with consensus motifs. For instance, for a
group of 36 TFs with well-known DNA binding specificities,
B36–100% of X-ChIP-seq sites reported by the ENCODE project
do not contain consensus motifs52. It has been proposed based on
these and other similar results that indirect tethering of proteins
to DNA via protein–protein interactions is more prevalent than is
generally thought. Alternatively, these sites might represent
transient interactions with DNA that are captured and inflated
by cross-linking53. Consistent with this latter interpretation,
analysis of Sox2 association with the genome by live-cell
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microscopy showed that its residence time at sites with poor
consensus motifs is B15-fold shorter than at sites with
strong motifs, despite the fact that these sites can be captured
in ChIP-exo experiments4. Notably, these transient interactions
appear to be quite prominent, as Sox2 undergoes multiple
diffusions before locating a consensus binding site. Our
results indicate that the majority of sites without motif
matches represent capture of transient scanning interactions
with sites displaying preferred DNA shape features. ChEC-seq
is thus a powerful tool for distinguishing high-affinity, sequence-

dependent interactions from interactions with preferred
low-scoring sites during sampling of binding sites in vivo,
which is not possible with current steady-state mapping
technologies. The high spatiotemporal resolution of ChEC-seq
allowed us to gain mechanistic insights into TF-DNA sliding,
which will likely enable the development of models for in vivo
TFBS searching.

ChEC-seq has notable advantages relative to genome-wide
mapping methodologies based on ChIP or other enzymatic
fusions. In particular, the inducible nature of ChEC-seq provides
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kinetic information not currently available on a genome-wide
scale, and it was the rapidly inducible nature of ChEC-seq that
allowed us to separate TFBSs based on their recognition by DNA
sequence and shape or shape alone. ChEC-seq also revealed
structural information on TFs bound to their cognate sites. One
limitation of ChEC-seq is that multiple time points must be
performed to capture fast and slow sites; however, one early
(that is, 30 s) and one late (that is, 20 m) should be sufficient to
capture both classes. The major limitation of ChEC-seq is the
requirement for expression of a fusion protein. Although tagging
of endogenous loci has generally been laborious in non-yeast
systems, the recent development of CRISPR/Cas9-based genome
editing54 has greatly simplified tagging, and we speculate that
MNase tagging of endogenous loci in non-yeast systems will be
commonplace to generate reagents for genome-wide mapping of
protein binding with high spatial and temporal resolution.

Methods
Yeast strain construction. The yeast ChEC-tagging vector pGZ108 was
constructed by insertion of a PCR amplicon encoding a 3� FLAG tag and aa
83–231 of MNase (representing the mature sequence of MNase, GenBank P00644)
followed by two stop codons (50-TAGTAG-30) between the PacI and AscI sites of
pFA6a-3HA-kanMX6 (ref. 55; Addgene #39295), replacing the 3�HA tag. The
total length of the linker between the C terminus of the protein of interest and
MNase is 33 aa (GRRIPGLIKDYKDHDGDYKDHDIDYKDDDDKAA). ChEC-
tagging vectors with the HIS3MX6 and TRP1 markers (pGZ109 and pGZ110),
derived from pFA6a-3HA-HIS3MX6 (ref. 55) (Addgene #41600) and pFA6a-3HA-
TRP1 (ref. 55; Addgene #41595), were also created but not used in this study. These
vectors retain compatibility with the F2/R1 primer pairs commonly used for
epitope tagging of endogenous yeast genes. The ChEC-tagging short linker vector
pGZ173 was constructed as above, except that the 3� FLAG tag was excluded from
the inserted PCR amplicon. The linker length of this vector is 8 aa (GRRIPGLI).
Yeast ChEC strains were created by transformation with ChEC cassettes amplified
from pGZ108 using gene-specific F2/R1 primers (http://yeastgfp.yeastgenome.org/
yeastGFPOligoSequence.txt). The REB1 promoter-3FLAG-MNase-NLS construct
(pGZ136) was created by gene synthesis (Operon) and cloned into the XhoI and
EcoRI sites of pRS406 for integration at URA3. A codon-optimized SV40 NLS
(PPKKKRKV) was added to the C terminus of MNase by PCR before ligation into
pRS406. The vector for expressing N terminally MNase-tagged Reb1 (pGZ172) was
constructed by Gibson assembly56 of PCR amplicons encoding the REB1 promoter,
MNase-3FLAG, and the REB1 ORF into the SacI site of pRS413. Following
transformation of yeast with pGZ172, the chromosomal copy of REB1 was deleted
using a kanMX6 deletion cassette amplified from pFA6a-kanMX6 with an F2/R1
primer pair. Plasmids and yeast strains used in this study are listed in
Supplementary Tables 1 and 2, respectively.

ChEC. For each ChEC experiment, a 50-ml culture was grown to an OD600 of
0.5–0.7 at 30 �C in YPD. Cells were pelleted at 3,000� g and washed three times
with 1 ml Buffer A (15 mM Tris pH 7.5, 80 mM KCl, 0.1 mM EGTA, 0.2 mM
spermine, 0.5 mM spermidine, 1� Roche cOmplete EDTA-free mini protease
inhibitors, 1 mM PMSF), centrifuging as above between washes. Cells were
resuspended in 600 ml Buffer A containing 0.1% digitonin and permeabilized at
30 �C for 5 min. CaCl2 was added to 2 mM and ChEC digests were performed at
30 �C. At each time point, a 100-ml aliquot of the digest was transferred to a tube
containing 100ml 2� stop buffer (400 mM NaCl, 20 mM EDTA, 4 mM EGTA)
and 1% SDS. Protein was then digested with 80 mg proteinase K at 55 �C for 30 m.
Nucleic acids were extracted with an equal volume of phenol/chloroform/isoamyl
alcohol and precipitated with 2.5 volumes 100% ethanol and 30 mg Glycoblue
(Ambion). Pellets were washed once with 1 ml 100% ethanol, dried, and
resuspended in 30ml 0.1� TE buffer, pH 8.0. RNA was digested with 10 mg
RNase A at 37 �C for 20 m.

Western blotting. Yeast cells were grown to an OD600 of 0.4–0.5 in YPD and
whole-cell extract (WCE) was prepared from 2 OD600 as described57. Antibodies
used for western blotting were rabbit anti-gH2A (H2A phospho S129) (Abcam
ab15083, 1:500) and rabbit anti-H2A (Millipore 07-146, 1:1,000). Images were
obtained using the Licor Odyssey and bands were quantified using Image Studio
Lite (Licor). The ratio of gH2A/total H2A in the WT WCE was set to 1.0 and
gH2A/total H2A ratios in the ChEC strains were expressed relative to this value.

Library preparation and sequencing. Before generating sequencing libraries,
ChEC DNA was subjected to size selection using Ampure XP beads (Agencourt).
A beads:sample ratio of 2.5:1 (v:v) was used and the unbound fraction, containing
small DNA fragments, was extracted to remove RNase and precipitated as above,
and used for library preparation. Sequencing libraries were constructed as

described46,58, except that KAPA polymerase was used for library amplification.
Libraries were sequenced for 25 cycles in paired-end mode on the Illumina
HiSeq 2500 platform at the Fred Hutchinson Cancer Research Center Genomics
Shared Resource. Paired-end fragments were mapped to the sacCer3/V64 genome
build using Novoalign (Novocraft) as described to generate SAM files46,59.
For visualization of ChEC-seq tracks, data were normalized as follows. The number
of fragment ends corresponding to each base position in the genome was divided
by the total number of read ends mapped. This accounts for differences in
sequencing depth across samples. Read end-normalized counts/bp were then scaled
by multiplication of each position with the total number of mapped bases in that
sample. Normalization was performed using a custom perl script
(pairs_single_end_sizes.pl in Supplementary Software 1).

Comparison of ChEC-seq data to ChIP data. The sum of ChEC cleavages within
100 bp windows centered on each peak midpoint was determined using the bedmap
feature of the BEDOPS suite60. Abf1 and Reb1 ORGANIC peaks (10 m MNase,
80 mM salt) were from Kasinathan et al.12, Rap1 ChIP-exo peaks were from Rhee
and Pugh8, and Abf1, Rap1 and Reb1 X-ChIP-chip peaks were from MacIsaac
et al.45 An equal number of random sites for each peak set was generated using
the random feature of the BEDTools suite, filtered to exclude any high-scoring or
low-scoring sites61. Overlap of ChEC-seq and ChIP peaks was performed using
BEDTools intersect using 100 bp windows centered around the motif match
midpoint for ChEC-seq peaks or the peak midpoint for ChIP peaks. To analyse
X-ChIP signal at Abf1 ChEC-seq sites, we performed Abf1 MNase-X-ChIP as
described13. Average plots were generated using bedgraph files with a custom perl
script with a shell wrapper (average_plot.pl and window.sh in Supplementary
Software 1).

Peak calling. The maximum signal across all time points for each base position in
the genome was determined using a custom perl script (combine_chec_bed.pl in
Supplementary Software 1) that output a single bedgraph file with the maximum
value for each position. Peaks were called on this bedgraph file using a genome-
wide thresholding approach using a custom perl script with a shell wrapper
(threshold_bed.pl and call_peaks.sh in Supplementary Software 1). To be included
in a peak, a base position was required to have a value at least 10 times the genome-
wide average. Positions exceeding the specified threshold within 30 bp of one
another were merged into a single peak (an interpeak distance of 30). Thresholds
used were: Abf1, 10.02165; Rap1, 9.24372; Reb1, 8.17298; free MNase, 10.57292.
Reproducibility of peak occupancies was assessed by Spearman correlation. To
calculate an FDR for each dataset, TF and free MNase peaks were overlapped using
BEDOPS element-of and the number of overlapping peaks was divided by
the total number of TF peaks. FDRs calculated were: Abf1-MNase, 2.37%;
Rap1-MNase, 3.71%; Reb1-MNase, 2.42%. Information on called peaks is given
in Supplementary Data 1.

Temporal analysis of ChEC-seq data. The sum of ChEC cleavages within 50 bp
windows centered on each peak midpoint was determined. Rows were then Z-score
transformed to allow comparison of ChEC-seq signal across rows (multiple time
points). This analysis was performed with a custom perl script (chec_heatmap.pl in
Supplementary Software 1). Matrices were clustered with Gene Cluster 3.0 (ref. 62)
and visualized with Java Treeview (http://jtreeview.sourceforge.net).

Motif analysis. FASTA sequences were obtained for each 50 bp window
surrounding each peak midpoint using BEDTools fastaFromBed. FASTA
sequences were then scored using a custom perl script (pssm_scorer.pl in
Supplementary Software 1) implementing the FIMO algorithm63 and using
previously determined position frequency matrices downloaded from ScerTF64.
FASTA sequences were uploaded to the MEME-ChIP65 web server for de novo
motif discovery. Logos were generated with LogOddsLogo66, using the yeast GC
content option.

Cleavage pattern analysis. A custom perl script with a shell wrapper
(average_plot_ends.pl and window_ends.sh in Supplementary Software 1) was used
to determine average fragment end counts from pairs.bed files (created using
pairs2bed.sh, Supplementary Software 1) at each position in a 100 bp window
surrounding each motif match center. Cleavage data from the time point with
maximal signal for each factor and class of sites in Fig. 3 heatmaps were used for
average analysis. Cleavage data from 30 s and 5 m time points were used for average
analysis of SL and N-terminal cleavage. Counts were normalized by multiplication
of each position by the size of the budding yeast genome (taken here to be
12,495,000 bp) divided by the number of fragments mapped for a given time point.
Normalized free MNase counts were then subtracted from TF–MNase counts.

DNA shape analysis. FASTA sequences generated from the previously generated
100 bp windows centered on motif match midpoints were used as input for our
DNA shape method67 for high-throughput prediction of DNA structural features.
A set of 100 bp windows generated by BEDTools random not overlapping
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high-scoring or low-scoring sites and equal in number to the low-scoring sites for
each factor was used as the random control for DNA shape analysis. The resulting
patterns for minor groove width (MGW), Roll, propeller twist (ProT) and helix
twist (HelT) were analysed using the framework of the motif database
TFBSshape68. Statistical comparisons between DNA shape profiles were performed
using a PCC and KS test with the null hypothesis that the distributions of DNA
shape profiles derived from sequences containing high-scoring and low-scoring
motifs are identical. PCCs close to 1 and large KS P values, therefore, indicate
similar DNA shape profiles.

Multiple linear regression. To test if DNA sequence or shape are more similar
between sequences containing high-scoring and low-scoring motifs, we trained two
models based on L2-regularized multiple linear regression, one model using DNA
sequence and the other model using four DNA shape features: MGW, ProT, Roll
and HelT. The sequence was encoded in binary features, whereas the shape features
were normalized between 0 and 1, as previously described49. Using the sequence-
based and shape-based models, values for the AUROC were calculated for the
classification between sequences containing high-scoring and low-scoring motifs
and compared to the classification of sequences containing high-scoring motifs and
random sequences. An AUROC value of 0.5 indicates a random classifier.
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Corrigendum: ChEC-seq kinetics discriminates
transcription factor binding sites by DNA sequence
and shape in vivo
Gabriel E. Zentner, Sivakanthan Kasinathan, Beibei Xin, Remo Rohs & Steven Henikoff

Nature Communications 6:8733 doi: 10.1038/ncomms9733 (2015); Published 22 Oct 2015; Updated 16 Dec 2015

An incorrect version of the Supplementary Data 1, in which data in columns E, F, G, H and K of the sheet ‘Reb1’ were sorted
independently from the other columns, was inadvertently published with this Article. This version was not used in any of the analyses
presented in the paper. The HTML has now been updated to include the correct version of Supplementary Data 1.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need

to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
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Corrigendum: ChEC-seq kinetics discriminates
transcription factor binding sites by DNA sequence
and shape in vivo
Gabriel E. Zentner, Sivakanthan Kasinathan, Beibei Xin, Remo Rohs & Steven Henikoff

Nature Communications 6:8733 doi: 10.1038/ncomms9733 (2015); Published 22 Oct 2015; Updated 5 Jun 2017

We have been alerted to an inconsistency regarding the control used as input in the DNA shape analysis shown in Fig. 7 of this paper.

As described in the Methods section of the Article, ‘FASTA sequences generated from the previously generated 100 bp windows
centered on motif match midpoints were used as input for our DNA shape method for high-throughput prediction of DNA structural
features. A set of 100 bp windows generated by BEDTools random not overlapping high-scoring or low-scoring sites and equal in
number to the low-scoring sites for each factor was used as the random control for DNA shape analysis.’ Thus, in Fig. 7, the
transcription factor binding sites with high- and low-scoring consensus motifs were centered on the best match to the motif, while the
random control sites were not.

In an accompanying Correspondence, Matthew Rossi, William Lai and B. Franklin Pugh show that when the random sites are centered
on the best match to the motif, no significant difference is observed between low-scoring and random sites. We therefore cannot
conclude from this analysis that the low-scoring sites identified by ChEC-seq represent shape-dependent, sequence-independent
binding sites.

This inconsistency does not affect the validity of ChEC-seq as a method to identify transcription factor binding sites.

We thank Rossi, et al. for bringing this to our attention and direct readers to the Correspondence and our Reply, which details
additional analyses of DNA shape features at ChEC-seq-identified transcription factor binding sites.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
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