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HIGHLIGHTS

« The sources of producing
extracellular derivatives are
extensive, that together affect bone
growth and metabolism.
Extracellular derivatives act as
targeted drug carriers and offer a
fresh perspective in the treatment
landscape.

Orthopedics witnessed innovative
approaches centered around
extracellular vesicles, revealing their
promise in bone healing and
regeneration.

The exact mechanisms by which
extracellular derivatives influence
bone health are complex and subtle,
marking an exciting area of
exploration and study.

Extracellular derivatives have
attractive potential for organoid
applications, and their combination
could usher in a new era of organoid-
based research and therapy.

ARTICLE INFO

Article history:

Received 3 November 2023
Revised 13 December 2023
Accepted 9 January 2024
Available online 11 January 2024

Keywords:
Extracellular matrix
Extracellular vesicles
Bone regeneration
Osteoporosis

GRAPHICAL ABSTRACT

Extracellular derivative Bone metabolism

Bone ,_  Bone = f
formation —7 resorption

Extracellular [
matrix

Osteoporosis
A
7 'S
> Growth @
A ,
N 7 L] Osteoarthritis
) 4 ‘
» o2
4 P . s
| Extracellular Bone regeneration
% vesicles
0063122 4 conr
' @\ it
osina
[ Bone Bone

formation  resorption

Bone tumor

ABSTRACT

Background: Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once
the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone
tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical
treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection.

Aim of review: In complex bone therapy and bone regeneration, extracellular derivatives have become a
promising research focus to solve the problems of bone metabolic diseases. These derivatives, which
include components such as extracellular matrix, growth factors, and extracellular vesicles, have signif-
icant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and
dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective
on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of
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extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for

improving the effectiveness of bone therapy and regeneration processes.

Key scientific concepts of review: In this review, we first listed the types and functions of three extracellular
derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone
metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone
metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical
applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clin-
ical applications. We hope that the comprehensive understanding of extracellular derivatives in bone
metabolism will provide new solutions to bone diseases.
© 2023 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction in relieving the pain caused by bone diseases and auxiliary treat-

Bone as the hardest organ of vertebrates, mainly provides exer-
cise, support, protection, and storage to the body, so bone metabo-
lism is an activity that organisms carry out all lives. Bone
metabolism refers to the continuous process of bone formation
(osteogenesis) and bone resorption (osteolysis) that occurs
throughout life [ 1]. It mainly consists of four parts: bone formation,
bone absorption, calcium homeostasis, and hormone regulation.
Osteoblasts are responsible for the synthesis and deposition of
new bone matrix and are essential for bone development, fracture
healing, and remodeling of old bone or damaged bone tissue [2].
Bone resorption releases minerals back into the bloodstream. This
process helps maintain calcium and phosphorus levels, allows
bone remodeling and repair, and promotes the release of growth
factors stored in the bone matrix [3,4]. Between cells in bone tis-
sue, hormones, and signaling factors are produced that regulate
the activity of bone cells, affect bone renewal, and maintain overall
bone health [5]. Imbalances in bone metabolism can lead to dis-
eases such as osteoarthritis, osteoporosis, bone tumors, and frac-
ture healing difficulties, which may increase the risk of other
complications.

At present, the commonly used treatment methods for bone
metabolic diseases are drug therapy, surgical treatment, and phys-
ical therapy [6]. Physical therapy cannot play the main role, mainly
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ment. Drug treatment is usually the use of anti-bone resorption
drugs, hormone-regulating drugs, and calcium supplements. How-
ever, drug treatment varies not all patients have significant
improvement or benefit, and drugs may be taken for a long time,
resulting in a heavy physiological and economic burden on
patients [7]. Common complications of gastrointestinal problems
may also occur. Surgery is not appropriate for older post-
menopausal women and those at high risk for diabetes [8]. Persis-
tent bone metabolism imbalance caused by osteoporosis,
osteoarthritis bone tumors, and other diseases, the use of current
treatment to treat the symptoms, cannot solve the problem from
the root. Therefore, there is an urgent need for a safe and efficient
treatment that can fundamentally regulate bone metabolism and
promote bone tissue regeneration.

In recent years, more attention has been paid to the application
of extracellular derivatives in disease treatment and their potential
for further clinical application. Extracellular derivatives are mainly
divided into three types: extracellular matrix (ECM), growth fac-
tors, and extracellular vesicles (EVs). ECM is a reservoir of bioactive
molecules such as extracellular growth factors, cytokines, and
enzymes, and provides a dynamic microenvironment and struc-
tural support for surrounding tissue [9,10]. The microenvironment
of ECM can support the endogenic growth of blood vessels and
bone cells, provide a scaffold for new bone formation, and promote
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Fig. 1. Diagram of the types and structure of extracellular derivatives and bone metabolism. Three main extracellular derivatives: ECM, growth factors, and EVs. The common
function of the three is to participate in cell communication and signal transmission in bone metabolism. The difference is that ECM can also provide mechanical properties
and signal storage functions for cells and tissues, growth factors can directly act on related cells of bone metabolism, and EVs can carry nucleic acids of source cells. The
dynamic balance of bone regeneration and bone resorption maintains a good bone metabolism process, whereas the extracellular derivatives also change when the imbalance
occurs, which can regulate bone metabolism through extracellular derivatives. The figure was created with BioRender.com.

the repair and regeneration of damaged bone [2,11]. ECM contains
growth factors that stimulate stem cells to differentiate into osteo-
blasts and induce bone formation. The specific role and function of
growth factors in bone may vary depending on the microenviron-
ment, cell type, and stage of bone development. The interaction
between growth factors and their downstream signaling pathways
contributes to the complex regulation of bone remodeling and
homeostasis. Growth factors can be localized or transported
throughout the body along blood vessels [12]. EVs also can be
transported through the blood. EVs are important mediators of
intercellular communication in the bone microenvironment and
contain a variety of nucleic acids, proteins, lipids, signaling mole-
cules, and other bioactive molecules used for signaling [13]. Differ-
ent from ECM, EVs can transfer regulatory microRNAs that affect
gene expression in recipient cells [14]. EVs are involved in commu-
nication between bone cells and other cell types in the bone
microenvironment, such as immune cells and endothelial cells
[15]. Understanding the signal transduction mechanism of extra-
cellular bone derivatives helps develop new drugs and materials
for the treatment of bone-related diseases. In conclusion, extracel-
lular derivatives are important substances that regulate bone
metabolic homeostasis and are also the most obvious markers of
bone metabolic abnormalities (Fig. 1).

In this review, an overview of the types, sources, and functions
of extracellular derivatives is summarized. Then, special attention
is focused on extracellular derivatives from different cell origins
in bone metabolic disease treatment. Finally, the advantages and
challenges of extracellular derivatives in clinical applications are
concluded, and extracellular derivatives in new orthopedic materi-
als are prospected.

Types and functions of extracellular derivatives

Extracellular derivatives refer to products produced by cells and
released into their surroundings with certain biological activity,
including ECM, growth factors, and EVs. They can influence cellular
behavior, regulate tissue homeostasis, promote tissue repair and
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regeneration, and modulate immune responses. Extracellular
derivatives can load cargo and affect target cells far from the loca-
tion where the cell was produced (Fig. 2).

Extracellular matrix

ECM is a three-dimensional protein structure interspersed
among cells in every tissue and organ. It not only provides the nec-
essary physical scaffolding for cellular components but also sup-
ports biochemical substances for cell differentiation and tissue
homeostasis. ECM provides the integrity and elasticity of tissues.
As cells undergo physiological transformations, the array of recep-
tors, cytokines, and growth factors housed within the ECM modu-
lates accordingly. This dynamic adaptation ensures the balanced
homeostasis, growth, and functional integrity of tissues and organs
[2,13]. This interplay becomes especially evident during tissue
development, where intricate biochemical and biophysical dia-
logues ensue between diverse cellular entities and the continually
evolving cellular and protein microenvironments.

The principal constituents of the ECM are proteins and polysac-
charides. Their various combinations bestow upon cells a distinct
compositional and topological character [16,17]. The collagens
most abundant in ECM in bone are type I, IIl, and V collagens,
whose main function is to serve as a mechanical support and scaf-
fold for bone cells [18,19]. 90 % of collagen in bone tissue is type |
collagen, which forms collagen fibril. It then interacts with other
collagen and non-collagen proteins to assemble into highly
ordered fiber bundles [20]. The functions of type IIl and V collagen
are mainly to regulate the formation of type I collagen. Cross-
linking between collagen proteins can provide mechanical proper-
ties for tissues, cross-linking strength and collagen quality deter-
mine bone strength [21]. A lack of collagen can cause changes in
the ECM, which can increase the risk of fracture [22,23].

The polysaccharide of ECM is mainly the residue after the
degradation of glycosaminoglycan (GAG) which is continuously
processed by enzymes, including hyaluronic acid, heparin sulfate,
chondroitin sulfate, dermal sulfate, and keratin sulfate. In addition,
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Fig. 2. Schematic diagram of the types, generation, and effects of extracellular derivatives. i) The complex network of cells secreting collagen, hyaluronic acid, and
proteoglycan into the extracellular space is ECM, which provides structural support, nutrients, and regulating signal pathways for tissues and organs. ii) Growth factors are
usually produced by cells in response to stimuli or during specific stages of development or tissue repair. They can be secreted locally or transmitted throughout the body,
bind to specific receptors on the cell surface, initiate intracellular signaling cascades, and regulate gene expression, protein synthesis, and cellular response. iii) EVs are formed
through the plasma membrane inward budding or outward foaming, resulting in the cell components being encapsulated in EVs. They can carry various bioactive molecules
such as nucleic acids, proteins, and lipids from the parent cells. EVs also can be absorbed by the recipient cells through mechanisms such as endocytosis and receptor binding,

leading to the transfer of its cargo and subsequent cell function regulation. The figure was created with BioRender.com

glycoproteins and signaling proteins are the main regulatory fac-
tors, which are crucial for regulating the behavior of bone metabo-
lism. Among the glycoproteins of ECM, osteonectin is a common
representative, also known as an acid-rich cysteine-secreting pro-
tein. Osteonectin has the highest expression in osteoblast differen-
tiation and is widely present in mineralized tissues. By binding
collagen and hyaluronic acid crystals, it releases pivotal calcium
regulators, thereby influencing collagen mineralization [24].

In mature mineralized tissues, there is osteopontin (OPN), den-
tin matrix protein-1 (DMP-1), stromal extracellular phosphoglyco-
protein (MEPE), and bone sialoprotein (BSP). OPN has a high base
sequence of serine and aspartic acid, which helps to inhibit the
potential phosphorylation site of mineralization and can be highly
expressed in osteoblasts. It is an important marker of bone forma-
tion and mineralization during bone metabolism. In addition, OPN
also regulates osteoclast differentiation and promotes bone resorp-
tion [25]. Both DMP-1 and MEPE, majorly synthesized by osteo-
blasts (with some contribution from bone marrow cells and
odontoblasts), are pivotal in phosphate metabolism and bone
matrix mineralization [26,27]. BSP is a highly glycosylated non-

collagenous phosphorylated protein, which plays a regulatory role
in osteoblast differentiation and matrix mineralization and is
mainly expressed in the early stage of connective tissue mineral-

ization. The absence of BSP can significantly reduce the length of
long bone, cortical thickness, bone deposition rate, and bone for-
mation rate [28].

Every cellular and tissue phase necessitates intimate interaction
with the ECM. It equips cells with both the interstitial matrix and
the basement membrane. While the basement membrane fur-
nishes support to cell layers and tissue architectures, the intersti-
tial matrix facilitates signal transduction through cell and
receptor adhesion. Consequently, the ECM not only dictates cellu-
lar positioning but also orchestrates vital biological processes,
including cell differentiation, proliferation, polarity, and migration.

Growth factors

The proteoglycan component of ECM regulates the activity of
many growth factors, which are proteins and cytokines that regu-
late bone metabolism and are essential for cell signaling and tissue
development [29]. All growth factors work together to participate
in the bone metabolism process and participate in the various
stages of bone regeneration. The bone healing process after injury
involves catabolism and anabolism, including all the links of bone
metabolism to form new and complete bone tissue. Bone injury is
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accompanied by the destruction of the integrity of local soft tissue
and vascular tissue, resulting in inflammation [30].

In early inflammation, ECM of degranulated platelets and
macrophages can store and release a variety of pro-inflammatory
cytokines, including tumor necrosis factor (TNF), bone morpho-
genetic protein (BMP), typical cytokines associated with inflamma-
tion (IL-1, IL-6), macrophage colony-stimulating factor, and
transforming growth factor (TGF-B) [31-33]. TNF-a is primarily
secreted by macrophages, which can induce apoptosis in stem cells
and repair fractures by allowing muscle cells to gather [34]. The
main marker of proinflammatory response is the local activation
of IL-1B, which in turn activates other secondary inflammatory
mediators. So, IL-6 can be used to fight inflammation and produce
acute proteins. A key function of TGF- is to regulate inflammation,
and a sudden increase in its expression is mostly associated with
malignancy, as well as with defects in the cell growth-inhibiting
response to TGF-B. BMPs are the largest subfamily of TGF-B, which
are the major growth factors that induce bone and cartilage forma-
tion, including BMP-2, BMP-4, BMP-6, and BMP-7 [35,36].

Another important factor affecting bone remodeling is vascular
remodeling, as blood vessels provide outlets for nutrient and gas
exchange and breakdown products. During intramembranous bone
formation, angiogenesis into osteoblast progenitors provides
access. In addition, blood vessels transmit circulating factors such
as vitamin D and parathyroid hormone (PTH) that regulate bone
regeneration throughout the body [37]. In intraoral bone healing,
angiogenesis is also involved in chondrocyte apoptosis and carti-
lage degradation [38,39]. Pro-angiogenic factors include placental
growth factor (PLGF), platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF-2), and BMP, also blood vessels pro-
vide paracrine signals to promote bone growth. The most impor-
tant growth factor in vascular remodeling is vascular endothelial
growth factor (VEGF), which will directly balance bone metabo-
lism, and too much or too little will cause the biological function
of osteoblast or osteoclast. Abu-Amer et al. [40] investigated
whether VEGF was involved in promoting osteolysis. The core pro-
cess of osteolysis was shown to be around the angiogenesis of the
prosthesis, as blocking VEGF function with neutralizing antibodies
prevents angiogenesis and osteolysis. There are two reasons for
this phenomenon, one is the pro-lysis effect of VEGF, and the other
is the physical effect of VEGF and its receptors [41]. In addition,
angiogenesis can prevent or slow down bone loss. Blood vessels
transport lots of inflammatory cells and related proteins and
growth factors, which help promote the formation of osteoclasts
and inhibit osteoblasts.

At the later stage of the bone regeneration process, the early
callus of cartilage is absorbed to form a harder callus, and the
mechanical properties of bone are gradually restored. At this stage,
chondrocytes become hypertrophic, release calcium, and undergo
apoptosis. The reabsorption of mineralized cartilage is driven by
a series of BMP factors secreted, which in turn are involved in bone
metabolism signaling pathways, such as Wnt, BMP, receptor acti-
vator of nuclear factor-xB (RANK) [42,43]. Wnt refers to a family
of secreted signaling proteins that play critical roles in tissue
homeostasis. Wnt proteins act as ligands that bind to specific cell
surface receptors called Frizzled receptors, initiating a complex sig-
naling cascade known as the Wnt signaling pathway. Understand-
ing Wnt signaling is crucial for advancing our knowledge of both
normal development and disease pathogenesis, potentially leading
to the development of therapeutic interventions. The receptor acti-
vator of NF-kB ligand (RANKL) is a transmembrane protein that is
primarily produced by osteoblasts, binds to the RANK, and can dif-
ferentiate osteoclast precursors into mature osteoclasts after acti-
vation [44]. In summary, the key role of growth factors in bone
metabolism is to stimulate the activity of osteoblasts, enhance
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matrix synthesis, participate in the regulation of osteoclast activity,
promote angiogenesis, and accelerate bone healing.

Extracellular vesicles

EVs are small membrane-wrapped structures secreted by all
types of cells, which are important in transmitting and regulating
cells. There are two kinds of EVs: ectosomes and exosomes. Exo-
somes are produced directly from the plasma membrane to the
outward budding, and the diameters of the micro-vesicles,
micro-particles, and large vesicles produced by exosomes range
from 50 nm to 1 pum. In contrast, exosomes are about 100 nm in
diameter and originate from endosomes. As a subset of EVs, exo-
somes have no essential difference in composition [45]. They com-
municate and regulate information by carrying bioactive molecules
inside cells, and are present in almost all cells and organs. The pro-
cess from production to reception of EVs covers all aspects of
pathogenic information transmission and tissue remodeling in
physiological tissues.

EVs contain source cell nucleic acids, lipids, membrane proteins,
and other cell-specific proteins involved in biomolecules essential
for bone metabolism [46]. EVs cargo associated with bone forma-
tion contains two classes of substances, divided into typical and
special species. Typical is the general substance involved in the
production and transport of vesicles, such as enzymes, cytoskeletal
proteins, and specific stress proteins. Special is the bone-associated
EVs special cargo composed of specific osteogenic proteins and
non-collagen matrix proteins, such as OPN, osteocalcin (OCN),
alkaline phosphatase (ALP), osteonectin (ON), BMP, and eukaryotic
initiation factor 2 (EIF2) [47-49], which all function as parent cells.
Specific species can also be EVs that contain cargoes associated
with osteoclast differentiation, including receptor activators of
RANK and RANKL. Another important component of EVs is miRNAs
and ncRNAs. The miRNAs play a regulatory role in embryonic
development, tissue differentiation, and signaling pathway control.
Most EVs-mediated regulatory effects triggered in cells and organs
are mediated by ncRNAs. The most representative categories of
ncRNAs are “antisense RNA” and “IncRNA” [50,51].

In bone metabolism, EVs derived from different cell types in the
bone, such as osteoblasts, osteoclasts, and mesenchymal stem cells
(MSCs), contain specific cargo that can modulate bone cell behav-
ior. For example, EVs derived from osteoblasts or osteocytes can
transport factors involved in bone mineralization, osteoblast pro-
liferation, and matrix synthesis. These EVs can also transfer regula-
tory microRNAs that can influence gene expression in recipient
cells. EVs act as immunomodulatory messengers mediating
immune stimulation or suppression, and EVs secreted by mes-
enchymal stem cells (MSCs-EVs) provide a variety of immunomod-
ulators, including TGF-B, galactin-1, and programmed death
ligand-1 [52]. Moreover, EVs have been implicated in the commu-
nication between bone cells and other cell types present in the
bone microenvironment, such as immune cells and endothelial
cells. This intercellular crosstalk mediated by EVs helps coordinate
bone homeostasis and repair processes [53]. Additionally, EVs
derived from osteoclasts or MSCs can carry factors that regulate
osteoclast differentiation and activity. They can deliver receptor
activators of RANKL, a key molecule involved in osteoclast forma-
tion, to target cells and promote bone resorption. Osteoclasts are
involved in bone resorption and mineralization, and osteoblasts
are involved in bone remodeling through bone matrix synthesis.

Bone mineralization is an important step in bone formation,
during which endothelial cells present in the developing bone
growth plate produce a type of EVs that plays an important role
and has attracted increasing attention. EVs are responsible for
transporting calcium and phosphate between cells, and the
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reaction results in the formation of hydroxyapatite crystals, which
are released into the ECM with EVs and calcified directly after col-
lagen calcification. At this time, a new bone matrix begins to form,
the EVs are located at the initial site of hydroxyapatite deposition
[54,55]. Osteoblast-derived EVs can dynamically mediate mineral-
ization and changes in vesicle content and morphology, resulting
in developmental changes during stromal tissue.

The process of bone metabolism requires the participation of
blood vessels, and EVs are closely related to the formation of blood
vessels. EVs can significantly increase collagen synthesis as well as
the occurrence of newly formed and mature blood vessels at the
wound site. EVs can enhance the secretion of collagen and elastin
in fibroblasts, promote the proliferation and migration of human
fibroblasts and human umbilical vein endothelial cells, and aid vas-
cular reconstruction. Vascular reconstruction will directly affect
the rate of bone metabolism, forming new blood vessels during
bone development, repair, and diseases [56]. Overall, EVs are a
bridge between cells, delivering bioactive molecules, and influenc-
ing the behavior of different cell types involved in bone formation
and absorption. Understanding EV-mediated signaling mecha-
nisms in bone could help develop new therapeutic strategies for
bone-related diseases [57].

EVs from parasites, bacteria, and plants transmit bone meta-
bolic cytokines affecting bone growth. Nematode EVs modulate
macrophage activation and immune responses. Worm EVs can pro-
mote immunity against infections, and the cytokine IL-33 plays a
pivotal role in this process, especially in its interactions with
macrophages [58,59]. IL-33 binding to the IL-33 receptor is a key
interaction that triggers allergic and infectious responses. Another
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strong correlation of IL-33 is with macrophages, which can be
strongly polarized into another activated phenotype when stimu-
lated to form immunity to infection [60,61]. Parasite-derived EVs
not only infect host cells but also influence them to produce EVs,
making these EVs potential targets for drug delivery and biomarker
identification [62].

Plant EVs, similar to mammalian ones, can deliver drugs. They
often contain nutrients beneficial to humans, like folic acid and
vitamin C, which combat stem cell oxidation and aging [63].
Specifically, ginger EVs can address bacteria associated with peri-
odontitis [64,65]. Bacterial EVs, due to their nanoscale structure,
present advantages for drug delivery [66]. Liu et al. [67] developed
bone-targeting, drug-loaded materials using EVs for potential
osteoporosis treatment. While parasite, plant, and bacterial EVs
relate to bone metabolism, their exact roles and mechanisms
remain to be fully understood.

Functions of extracellular derivatives from different cells

Bone metabolism is a series of complex biological events,
including bone formation, bone resorption, Ca®" regulation, and
bone remodeling, all of which maintain dynamic balance. The pro-
cess of bone metabolism mainly involves MSCs, osteoblasts, osteo-
clasts, and endothelial cells (Fig. 3). The statistics of functions of
extracellular derivatives from different cells are shown in Table 1.
There is a close interaction between these cells to regulate bone
metabolism and maintain the balance and function of bone tissue.
Therefore, an in-depth study of the interrelationships between
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Table 1
Functions of extracellular derivatives from different cells.
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Cell types Characterizations

Effects References

Extracellular matrix Growth factors

Extracellular vesicles

Mesenchymal
stem cell

Contain interleukin,
TNF

Generate FGF-2, IGF-1, TGF-p1,
PDGF

Osteoblast More Type I collagen,
osteopontin,

osteocalcin and ALP

Generate parathyroid hormone,
prostaglandin E2, insulin-like
growth factor, TGF-B, BMP

« Contain M-CSF, PDGF-
BB, and more
transmembrane
protein

Contain PDGF-BB, TGF,
and more fibronectin

Osteoclast Geberate TNF-o,, PDGF-BB

Endothelial
cell

Generate PDGF-BB, RANKL, VEGF,
BMP2, matrix Gla protein, bone
protective protein

More HA and HA
enzymes

Tumor cell Generate EGF, TGF, IGF

- CD13, CD29, CD44, CD73 and CD105
receptors expressed

- miR-199b, miR-218, miR-148a, miR-135b,
miR-203, and miR-219 are upregulated

» miR-667-3p, miR-6769b-5p, miR-7044-5p,
miR-7668-3p are upregulated
- Contain RANKL

- Contains CD63, TSG101, HSP70, p-actin, RANK
protein - miR-21 » miR-23a + miR-24 + miR-93 +
miR-100 + miR-122a expression

« Contains CD31, CD34, and vascular endothelial
growth factor receptor 2

- Contains CyclinD1, MMP-9, VEGF

« Induce MSC to
differentiate into
osteoblasts

+ Promote osteoblast
proliferation

« Transmit signal

- Transport specific
protein

- Activate the
osteogenic signaling
pathway

- Activate the OPG/
RANKL/RANK
signaling pathway

- Promote osteoblast
differentiation into
osteoblast

« Conducive to
mineralization

- Coordinate
osteoclast
differentiation

- Stimulates
osteoclast formation
- Target osteoblasts
Regulation of Ca®*

- Promote osteoblast
proliferation and
differentiation

- Promote cell
migration

- Promote
angiogenesis

« Activate the RANK
signaling pathway

- Promote
angiogenesis

- Regulate the
cholesterol content
of bone marrow
MSCs

[52,53,69-
73]

[71-
74,80-84]

[80,88-
92]

[98-103]

[15,105-
107]

Abbreviations: TNF: tumor necrosis factor; PDGF: platelet-derived growth factor; FGF: fibroblast growth factor; IGF: insulin-like growth factor; ALP: alkaline phosphatase;
TGF: transforming growth factor; EGF: epidermal growth factor; RANK: receptor activator of nuclear factor-kB; OPG: osteoprotegerin; MSCs: mesenchymal stem cells;
M-CSF: macrophage delivery stimulator; RANKL: receptor activator of nuclear factor-«B ligand; VEGF: vascular endothelial growth factor; BMP: bone morphogenetic protein.

these cell types will help us better understand and treat bone
diseases.

Mesenchymal stem cells

MSCs, possess both a self-renewal capability and a diverse dif-
ferentiation potential. These cells can mature into osteoblasts,
chondrocytes, or adipocytes, playing a pivotal role in bone metabo-
lism regulation and repair [68,69]. Hede et al.[70] evaluated MSCs-
EVs on bone marrow stimulation combined with bone inward
growth in focal cartilage defects of the knee to optimally repair
damaged cartilage while enhancing subchondral bone healing.
Maiborodin et al. [71] observed that utilizing MSCs-EVs during
dental implantation in the proximal tibial condyle of rabbits aug-
mented the bone tissue density near the implants. The bone frag-
ments generated during this procedure primarily fused among
themselves and with the regenerated bone.

Moreover, the MSCs-EVs exhibit immunomodulatory proper-
ties, potentially attenuating inflammation. There’s a noted reduc-
tion in bone vasodilation and leukocyte infiltration in the
surrounding soft tissue. Li et al. [72] highlighted the distinctions
when culturing primary bone marrow mononuclear cells (BMM)
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on polystyrene dishes versus the extracellular matrix (ECM) devel-
oped with bone marrow mesenchymal stem cells (BM-MSCs). The
findings suggested that BMMs when co-cultured with ECM, could
not differentiate into osteoclasts due to the interference of ECM
on RANK-RANKL signal and the attenuation of ROS. MSCs-derived
ECM studies have demonstrated that acellular biomimetic scaf-
folds, derived from ECM, exhibit biological activities comparable
to natural bone, ensuring minimized graft rejection and enhanced
bone regeneration. Qin et al. [73] confirmed that the osteogenic
efficacy of human induced pluripotent stem cells (hiPSC-MSCs-
EVs) correlates with EV concentration, leading to heightened
osteogenic gene expression and ALP activity.

In addition, coral-MSCs-BMP-2 composite scaffolds loaded with
growth factor BMP-2 and seed cells MSCs cultured in the iliac bone
marrow had better osteogenic ability [74]. Immunohistochemical
examination showed that MSCs induced by composite scaffolds
were partly derived from ECM. Qin et al. [50] revealed that exoge-
nous BMSCs-EVs primarily target the Golgi apparatus, not
lysosomes. These EVs mediate bone regeneration through
miRNA-196a, and when delivered via hydrogel systems, they sig-
nificantly amplify in vivo bone formation. Adipose-derived stem
cells (ADSCs) EVs counteract osteoblast aging in osteoarthritis.
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Ho et al. [75] demonstrated that ADSCs-EVs mediate osteoblasts by
affecting the function of autophagy, MAPK, and Rap-1 signaling
pathways. Its influence on the function of osteoblasts contributes
to bone regeneration based on ADSCs-EVs. ADSCs can be collected
in larger quantities and have higher proliferation capacity during
in vitro culture, which is conducive to the collection of more EVs
and is more conducive to clinical application. The miRNA embed-
ding activity of EVs from chondrocytes, adipose tissue, and BM-
MSCs has great immunomodulatory potential to promote bone
formation. These extracellular derivatives partake in an intricate
intracellular regulatory mechanism, determining their composi-
tion and function. Once released into the extracellular milieu, they
wield the potential to regulate physiological tissue impairment
and organ remodeling.

Osteoblasts

Osteoblasts in bone metabolism are responsible for the synthe-
sis and secretion of bone matrix, involved in the formation of new
bone tissue. The production of osteoblasts is regulated by multiple
pathways, which are surrounded by ECM and extend long pro-
cesses (dendrites). They allow growth factors, protein signals,
and EVs to be passed from one cell to another [76,77]. Osteoblasts
are intermediate cells in the osteoblastic process of MSCs, which
secrete bone-like mineralization of ECM, growth factors, and EVs
in the process of continuous differentiation [78]. Osteoblasts need
the surface to synthesize substrates, the raw material for which is
supplied by collagen in the ECM, and for the manufacture of new
substrates.

The collagen of osteoblast ECM can significantly affect cell
behavior, for example, the tough form of type I collagen inhibits
osteoblast-like cell proliferation and can stimulate osteoblast-like
differentiation. The tough form of type I collagen inhibits
osteoblast-like cell proliferation and can stimulate osteoblast-like
differentiation. ECM without type III collagen will affect the differ-
entiation of osteoblasts, decrease the mineralization ability of
osteoblasts, and reduce the activities of bone salivary protein
(BSP), ALP, and OCN [23,79]. Hence, collagen in ECM not only
anchors cells to provide a matrix, but also can regulate the growth
and osteogenic properties of osteoblasts, and participate in the for-
mation of new bone tissue. Extracellular derivatives of osteoblasts
regulate bone morphology and bone metabolism by interacting
with other signaling molecules, such as growth factors, hormones,
and proteins. These derivatives can promote the proliferation and
differentiation of bone cells and affect the formation and repair
of bone tissue.

The activated proteins BSP and OPN in ECM and EVs are the
three main makers involved in osteogenic differentiation. BSP
appears after ALP and is the main regulator of calcium ion binding
in ECM, promoting the nucleation activity of hydroxyapatite and
enhancing the formation of calcium nodules and bone mineraliza-
tion. OCN appears at the end of osteoblast differentiation and is a
sign of advanced osteogenesis [80-82]. OPN is an abundant non-
collagenous protein produced by osteoblasts that prevents
excessive osteogenesis by blocking the expression of BMP-2 and
simultaneously regulates phosphate content to regulate osteoblast
mineralization [25]. Consistent with OCN, OPN produced by osteo-
blasts is both a marker and an inhibitor of osteogenic
mineralization.

In the ECM of osteoblasts, MGP, R-spondin2, and periosteum
protein, as the Wnt pathway, are important regulators of bone for-
mation, regulating the mineralization and differentiation of osteo-
blasts [79,83,84]. The specific response of osteoblasts to growth
factors and hormones, developmental regulation and selective
response of osteoblast phenotypic genes. EVs carry osteoblast
bioactive molecules, such as proteins, RNA, and cytokines, which
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play an important role in intercellular communication. EVs of
osteoblasts contain RANKL, which can be transferred to the precur-
sor of osteoclasts [85]. Cappariello et al.[86] reported that the use
of osteoblast-derived EVs was able to effectively target bone and
induce bone formation through RANKL, bisphosphonate, and tyro-
sine kinase inhibitors, opening up a pathway for the biotechnology
of bone disease treatment. EVs-specific protein receptors of osteo-
blasts can stimulate the RANKL-RANK signaling pathway and
promote osteoclast formation. During mineralization, osteoblasts
EVs can transmit miR-667-3p, miR-874-3p, miR-6769b-5p, miR-
7044-5p, and miR-7668-3p, which can regulate the Wnt signaling
pathway between osteoblasts and further promote the expression
of B-catenin in ECM [87]. Osteoblasts EVs can also assist in the
transmission of eukaryotic initiation factor 2 (EIF2), integrin signal,
and mammalian target of rapamycin (mTOR) signal between
osteoblasts to promote bone formation. EIF2 signal is involved in
bone growth factor BMP-2 inducing osteoblast differentiation
[88]. Integrin signaling promotes angiogenesis, which facilitates
bone formation, remodeling, and fracture healing. Activation of
mTOR signaling can contribute to the bone by inhibiting peroxi-
some proliferator-activated receptor-y [89].

Osteoclasts

Osteoclasts are multinucleated cells with 2-50 nuclei that are
formed mainly from monocytes and macrophages in the blood or
bone marrow. They are responsible for the absorption and remod-
eling of aging or damaged bone tissue and play a key role in bone
reconstruction. Macrophage delivery stimulator (M-CSF) promotes
osteoclast progenitor cell proliferation, while RANKL, a ligand
secreted by osteoblasts, binds to osteoblast receptors and activates
osteoclast formation and activity [83]. Osteoclasts attach to the
ECM and interact with the bone surface through the ECM, which
plays an important role in the differentiation, migration, and bone
resorption of osteoclasts. Osteoclasts are directly bound to bone
integrins expressed on the cell surface in a process mediated by
oB3 [90]. The integrin-ECM interaction is achieved by binding
oyB3 to the RGD peptide in the ECM component, which polarizes
the osteoclast initiates the formation of actin rings and produces
characteristic fold boundaries [91]. Interfering with integrin or
potential peptide binding sites alters the ability of osteoclasts to
absorb bone. In the absence of o3 integrin subunits, the
cytoskeleton does not effectively reabsorb tissue, leaving actin
rings and wrinkly membranes either unable to form or abnormally
formed, eventually leading to hypocalcemia and osteolytic pheno-
types [91-93]. Similarly, a lack of osteopontin leads to resistant
bone loss, reflecting the importance of ECM function around osteo-
clasts. RGD is a protein surface peptide with cell adhesion, and RGD
of OPN and BSP interacts with o,B3 integrin to initiate osteoclast
adhesion to bone matrix and polarize actin rings in osteoclasts
[94].

OPN stimulates osteoclast activity and makes a critical differ-
ence in sealing the ECM surrounding osteoclasts. OPN has a variety
of ligands, which can be calcium, surface receptors, and heparin. In
addition to bone metabolism, OPN also regulates the immune sys-
tem. BSP main effect on ECM can stimulate osteoclast activity and
behavior to promote bone resorption, but can also prevent the
migration of preosteoclasts and mature osteoclasts [95]. There
are three main modes of interaction between EVs released by
osteoclasts and other cells, namely signaling protein 4D in EVs
binding plexin-B1, EVs binding ephrin-B4 on ephB2, and RANK
binding RANKL in EVs [96-98]. Signaling proteins 4D and ephrinB2
were transferred to the surface of osteoblasts via EVs as signaling
factors derived from osteoclasts and transported the osteoblast
gene microRNA-214-3p [96]. RANK is an important signaling path-
way of bone metabolism. RANKL is present on osteoblasts and
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osteoblasts, binds to RANK on osteoclasts, stimulates signaling
pathways, and causes RANK activation [99,100]. EVs derived from
osteoclasts can be attached to the membrane of target cells and
induce intracellular signaling through corresponding receptors.
EVs also have physiological and pathological effects similar to
osteoclasts in intercellular communication.

Endothelial cells

Endothelial cells are the main constituent cells of the inner wall
of blood vessels and participate in the formation and maintenance
of bone vessels. They promote the growth of new blood vessels and
blood supply by secreting angiogenic factors and cell adhesion
molecules and provide nutrients and oxygen for bone cells.
Endothelial cells in bone tissue come into direct contact with the
pericytes of blood vessels, thereby establishing a closer connection
with the peripheral connective tissue. Endothelial cells transmit
and secrete various cytokines and growth factors through ECM
and EVs to promote osteogenesis and osteoclast formation and par-
ticipate in the regulation of bone metabolism. Endothelial cells
secrete varieties of signaling molecules including platelet-derived
growth factor (PDGF-BB), RANKL, VEGF, BMP2, matrix Gla-
protein, and bone protective protein (OPG) through paracrine
interactions. The derivatives around endothelial cells secrete
growth factors such as BMP-2, MMP, RANKL, and other activated
proteins. It is also an important key chemokines and VEGF series,
attracting mononuclear/macrophages to the site of inflammation
and preventing bone cell apoptosis [101-103]. In addition, PDGF
of endothelial cells and their ECM release an appropriate amount
of PDGF-BB to aggregate LepR + and Nestin + periosteal cells on
the surface to form periosteal bone. PDGF-BB can recruit peripheral
progenitor cells expressing PDGFR-B to new bone regions, allowing
attached cells to stabilize newly formed vascular structures. The
PI3K signal contained in PDGF-BB can promote the proliferation
of MSCs [104,105]. In addition to proliferation, PDGF-BB and
PDGFR-B also increase the migration ability of MSCs but strongly
inhibit the osteogenic differentiation of MSCs.

Tumor cells

In addition to cells related to bone formation and bone resorp-
tion, extracellular derivatives of tumor cells also have a great influ-
ence on bone metabolism. Most patients with advanced breast
cancer tend to have bone metastasis. EVs play an important role
in bone metastasis with other diseases. EVs secreted by breast
tumor cells contain heparin, interleukin, parathyroid hormone,
prostaglandin, and other biological factors that activate osteoclasts
[106]. Loftus et al. [15] found that EVs (MDA-EVs) of breast cancer
cells can mediate the physiological activities of endothelial cells in
bone tissue. When osteoblasts and MDA-EVs were co-cultured, the
proliferation and early mineralization ability of osteoblasts
decreased. This was because MDA-EVs decreased the expression
of cyclin D1 in osteoblasts and affected the osteoblast differentia-
tion pathway, but increased the expression of the RANKL signal
and the pro-angiogenic factors IL6I and L1-B in osteoclasts. MDA-
EVs target osteoclasts and stimulate them to differentiate into
polynucleated osteoclasts.

Then, Stephen et al. [107] found that prostate cancer cells can
mediate the cholesterol balance of bone marrow cells. EVs of pros-
tate cancer cells can activate RANK signaling, and promote osteo-
clast differentiation and bone resorption. After the occurrence of
cancer in the human body, it is easy to transfer to the bone. Bone
marrow cells produce a large amount of cholesterol, and through
cancer cells EVs to resist the increase of cholesterol in bone mar-
row cells can maintain the balance of bone metabolism.
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In addition, Baglio et al. [108] demonstrated that EVs produced
by osteosarcoma (OS) can generate a proto-metastatic inflamma-
tory via physiological alterations in MSCs. EVs from metastatic
OS cells carry a membrane-associated form of TGF-B, which
“tumor-educated” MSCs (TEMSCs) produce IL-6. When injected in
preclinical mouse models, TEMSCs promote OS growth and lung
metastasis formation. Therefore, the co-administration of thera-
peutic IL-6 receptor antibodies eliminates the cancer-promoting
effects of TEMSCs, and IL-6 and TGF-p are reasonable targets for
therapeutic intervention in patients with OS.

The applications of extracellular derivatives in bone disease

Regenerative medicine in a broad sense refers to the technical
and surgical operation of the study of the regeneration of human
tissues and organs, and is also a discipline that studies the mecha-
nism of tissue or organ regeneration [109]. At present, the main
research directions in the field of regenerative medicine are repair-
ing damaged tissues by transplantation of cells, artificial tissues or
organs can be implanted into lesions by preparing biomimetic
materials in vitro, and regeneration of defective tissue is induced
by external stimulation, such as drugs or electrical signals. The
major directions of regenerative medicine research all require the
deep involvement of extracellular derivatives, which provide nutri-
ents and Bridges between tissues. Extracellular derivatives carry
many bioactive substances that can regulate the function and
metabolic process of the recipient cell. Therefore, they have poten-
tial applications in bone metabolic prevention and treatment, such
as osteoporosis, osteoarthritis, bone fracture, and bone tumor. The
role of major biomaterials prepared from extracellular derivatives
in the treatment of bone metabolic diseases is summarized in
Fig. 4. Specifically, the therapeutic effects of different extracellular
derivatives in bone metabolic diseases are shown in Table 2.

Osteoporosis

Osteoporosis is simply a disease of decreased bone density as a
symptom, mainly related to age and metabolism, increasing the
risk of fragility fractures. Osteoporosis involves a variety of growth
factors and signaling pathways, such as BMP, PI3K/AKT, TGF-
B/BMP, receptor activators of RANKL/RANK/OPG system, and
Wnt/B-catenin signaling pathways. Osteoporosis has traditionally
been treated with hormones, selective estrogen receptor modula-
tors, calcitonin, and bisphosphonates. However, drug therapy has
obvious side effects and limited effectiveness.

EVs offer an alternative to therapeutic drugs. Lu et al. [115] suc-
cessfully treated osteoporosis using MSCs-EVs, highlighting the
role of miRNA-21, miRNA-29, and miRNA-221 in targeting the
PI3K/AKT pathway, which enhances metabolism and osteoblast
growth. Mutations in Col10a1 affect chondrocyte maturation, caus-
ing bone issues [116]. Meanwhile, Col2a1 is ECM-specific, and its
deletion results in bone loss and spinal epiphyseal dysplasia.
[117,118]. Liu et al. [119] conducted bone remodeling studies in
a blue medaka model, analyzing bone cells’ transcriptomes for
osteoporosis treatment. Their findings revealed strong MMP13
expression in osteoblast ECM, influenced by RANKL. This expres-
sion suggests MMP13 promotes osteoclast activity under osteo-
porosis. MMP13-positive osteoblasts reshape the ECM,
influencing osteoblast aggregates, and osteoblast-derived MMP13
affects osteoclast maturation [120].

Additionally, MSCs-EVs, with low immune response risks, offer
potential alternative treatments for various diseases and provide a
foundation for new therapeutic research. MSC-EVs cannot target
bone tissue in mice unless combined with alendronate in the treat-
ment of osteoporosis. Hu et al. [121] genetically engineered
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Fig. 4. Schematic diagram of biomaterials prepared by extracellular derivatives for treating bone diseases. The figure was created with BioRender.com.

NIH-3T4 cells highly expressing CXCR3 and collected their exo-
somes, which had CXCR4 protein on their surface and fused with
antagomiR-188 carrying liposomes to obtain hybrid nanoparticles
with bone-targeting and anti-miR-188 capabilities. Hybrid
nanoparticles can aggregate at specific bone sites significantly
reverse age-related trabecular bone loss and reduce cortical bone
porosity by inhibiting lipogenesis and promoting bone formation
of BMSCs in older mice. In addition to modifying EVs to have bone
targeting, endothelial EVs naturally have bone targeting. Song et al.
[122] demonstrated that EVs of endothelial cells can efficiently
deliver miR-155 to reduce bone resorption.

Osteoarthritis

Osteoarthritis (OA) is a chronic degenerative disease caused by
the breakdown of articular cartilage and underlying bones, the
main causes of which are aging, trauma, mechanical load, and obe-
sity [123]. The most effective treatment is joint surgery, such as
joint replacement surgery, but subsequent joint life expectancy is
shortened and revision surgery is required. Rheumatoid arthritis
(RA) is an inflammatory autoimmune disease, which is essentially
caused by the destruction of the balance of immune tolerance, pro-
ducing many kinds of matrix degradation enzymes, pro-
inflammatory cytokines, and autoantibodies, eventually resulting
in joint damage and synovial inflammation [124]. However, the
drug treatment of OA and RA is mainly to relieve pain and reduce
inflammation and has little effect on the treatment of osteoarthritis
[125]. In pathological arthritis processes, the collagen network of
cartilages undergoes irreversible degradation, and that can be used
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as markers for ECM recombination and early diagnosis of diseases
[126].

Cartilage healing strategies are therefore necessary for many
joint disorders. Many methods have been used to replace cartilage
at the lesion site, but traditional cartilage repair strategies still
have some problems, such as failure to produce consistent and
transparent cartilage [127]. Cell therapy is emerging as a potential
OA solution. Liu et al. [128] utilized miR-223-loaded EVs from
human umbilical cord mesenchymal stem cells (hUC-EVs) and
modified them for better targeting. These EVs effectively hindered
chondrocyte death, enhancing OA conditions. With OA progression,
there is reduced collagen and supportive protein due to increased
enzyme expressions [84]. MSCs derivatives can counteract this
degradation. MSCs-EVs significantly promoted the proliferation
and mineralization of chondrocytes, limiting the synthesis of
ECM proteins [129]. MSCs-EVs foster chondrocyte growth but
restrict ECM protein synthesis due to specific cytokines and miR-
NAs. EVs from synovial mesenchymal stem cells (SMSCs-EVs) with
mir-140-5p increased chondrocyte proliferation and migration
[130]. Moreover, ECM formation of chondrocytes was not affected,
and SMSCs-EVs could effectively treat OA in vivo [131]. Zhou et al.
[132] showed that EVs transmitting the miR-126-3p gene can inhi-
bit cartilage degeneration, with overexpression leading to chon-
drocyte growth and reduced inflammatory protein expressions.
Synovial fibroblasts with miR-126-3p showed potential in OA
treatment.

The imbalance of M1/M2 macrophages represents the imbal-
ance of immune regulation causing OA. In the OA model, activating
the M1 macrophages can accentuate inflammation and cartilage
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Table 2
Different extracellular derivatives used in the treatment of bone diseases.
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Diseases Strategy

Effects

References

Osteoporosis MSCs-EVs

HSF-EVs, Osteoblasts-EVs, ECs-EVs

ECs-EVs

Engineered EVs

Osteoarthritis MSCs-EVs

SMSCs-EVs
Engineered EVs

EVs of synovial mucus

Chitosan stabilizes platelet growth factors

Bone defect MSCs-EVs

SHED-EVs

0S-EVs

Platelet plasma hydrogel

BMP/ECM composite scaffold

Bone tumor BMSCs-EVs

Modifica OS-EVs
Fracture union disorder MSCs-EVs
BMSCs-EVs
Congenital bone disease Collagen supplement

Muscle-EVs

- Activate PI3K/AKT pathway

- Col10al and Col2al up-regular to bone matrix repair
- Find new therapeutic microRNAs

- Modulates Ca?* signaling

« MMP-1, -13, -10 promote tissue repair

*MMP-1, -14 promote angiogenesis

- Secretion of IL-33 drives BMSCs differentiation

- Promote osteoblast proliferation and migration

- Promote angiogenesis

- Bone targeting

- Transfer BMP to facilitate bone formation

- Promote angiogenesis

- Carry a cytokine

- Activate Wnt signaling pathway

« Reduce the expression of pro-inflammatory interleukins
- Promote proliferation of chondrocytes

« Decreased expression of IL-1p, IL-6, TNF-o proteins

- Help the ECM formation of chondrocytes

- Enhance proliferation and migration of articular chondrocytes
- Bone targeting

- Inhibit chondrocyte scorch death

« Chondrocyte proliferation and differentiation

- Cartilage repair

- Increase mineralization

- Produce PDGF, FGF, IGF and TGF-B

- Promote soft tissue repair

- Promote the transfer of osteogenic genes and growth factors
- Promote osteogenic differentiation of MSCs

+ Reduced immune response

- Promote the transfer of osteogenic genes and growth factors
- Promote osteogenic differentiation of MSCs

- Reduced immune response

- Bone tissue engineering material raw material

- Deliver growth factors

- Promote bone mineralization ability

combine B-TCP

- Promote angiogenesis

regulating Ca®*

- Promote osteoblast proliferation significantly

« The activity of M2 macrophages was decreased

- Promote angiogenesis

- Simulated fracture hematoma microenvironment

- Promote the proliferation and differentiation of MSCs
- Promote angiogenesis

+ Good biocompatibility

- Facilitate cell adhesion

+ Produc more EVs

- Promote angiogenesis

+ Promote osteoblast production

+ Reduced immune response

- Inhibit cancer cell metastasis

- Transfer bone growth factor

+ Modulates the osteogenic signaling pathway

- Activate the osteogenic pathway

- Decrease osteoclast anchoring protein

- Store and deliver TGF-B

- Promote the production of Col1A1 or Col1A2 protein
- Promote myoblast differentiation

- Promote soft tissue regeneration

[111-114]

[52,116,117]

[56]

[110,118]

[65,121,122]

[127]
[124,132]

[128]

[111]

[50,75,76,142]

[141]

[144]

[112]

[135,136]

[149]

[152]
[153]

[155]
[158]

[113,114]

Abbreviations: ECM: extracellular matrix; EVs: extracellular vesicles; MSCs: mesenchymal stem cells; HSF: human skin fibroblasts; EC: endothelial cells; BMSCs: bone
marrow derived mesenchymal stem cells; BMP: bone morphogenetic protein; TNF: tumor necrosis factor; SMSCs: skeletal muscle satellite cells; TGF: transforming growth
factor; PDGF: platelet-derived growth factor; IGF: insulin growth factor; SHED: stem cells from human exfoliated deciduous teeth; B-TCP: B-tricalcium phosphate; OS:

osteosarcoma; FGF: fibroblast growth factor.

injury, while M2 macrophages induce decreased repair and remod-
eling activity [133]. Macrophage polarization is because microRNA
transmitted by tissue cell derivatives around OA targets TLR4
through RANK, and then inhibits STAT3 to increase M2 polarization
[134]. It is worth noting that miR-24-3p, miR-34a-5p, miR-146a-
5p, miR-181a-5p, and miR-222-3p delivered by extracellular
derivatives can promote M2-polarized macrophages, reduce
immune rejection of cartilage grafts, and promote joint repair
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[135-137]. The extracellular derivatives of MSCs contain a variety
of growth factors and microRNA. It can produce anti-inflammatory
interleukin IL-10, reduce the expression of pro-inflammatory inter-
leukin (IL-1a, IL-1B, IL-6, IL-8, and IL-17). They can enhance the
activity of chondrocytes in OA, and promote chondrocyte prolifer-
ation. The expression of anti-inflammatory and inflammatory fac-
tors can affect the apoptosis of chondrocytes promote
chondrogenesis, and reduce the senescence of osteoblasts [138].
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Bone defect

Bone defects usually occur after infection, bone tumors, and
trauma. A bone defect of a critical size, the smallest intra-bone
wound in a particular bone or species, can never heal in the life
of an animal. Clinical strategies for repairing bone defects include
autotransplantation, allotransplantation, and synthetic biomaterial
transplantation. With the development of new bone repair materi-
als, bone tissue engineering (BTE) is the most promising treatment
for bone defect repair among all orthopedic disease models [139].
BTE refers to the reproduction of seed cells in vitro and planting in
three-dimensional biomaterials (including surface and interior),
the interaction between cells and biomaterials. The secretion of a
series of extracellular derivatives and the surrounding tissues after
implantation of BTE to produce biological reactions, that repair
bone tissue damage. The electrospun PLLA nanofiber scaffold
loaded with BMP-2 can enhance the osteoinductivity of the scaf-
fold [140]. Collagen mimetic peptide GFOGER has been coated on
PCL composite scaffolds, which can bind to the integrin receptor
oxB¢ involved in osteogenesis, up-regulate osteoblast differentia-
tion, and lead to increased bone formation [141].

In recent years, many bone tissue engineering materials com-
bined with scaffolds, MSCs, and their derivatives have been
designed. Loading EVs in hydrogel scaffolds is the most attractive
research hotspot, and the cell sources used are usually MSCs,
BMSCs, and osteoblasts [71,142,143]. BMSCs-EVs significantly up-
regulated the expression of BMP-2, BMP-7, BSP, Col I, Runx2, and
OCN [144]. Human adipose-derived mesenchymal stem cells
(hADSC) have great potential to treat ischemic diseases, suggesting
that also hADSC-EVs may work in bone regeneration by promoting
angiogenesis [145]. Stem cells from human exfoliated deciduous
teeth (SHEDs) derived from secrete a large number and variety of
growth factors, which have stronger proliferation ability and pro-
mote bone mineralization ability. The combination of SHEDs-EVs
and tricalcium phosphate (B-TCP) can enhance alveolar bone
regeneration via osteogenesis and angiogenesis [146].

The effect of EVs is influenced by their quantity, with 3D-
cultured cells secreting more EVs than flat-surface cultured cells.
Yu et al. [147] found that using EVs from periodontal ligament
stem cells (PDLSC) within a hydrogel 3D environment enhanced
bone repair. MSCs in 3D environments produce more EVs, and
when combined with an alginate saline gel, they promote cell
migration, proliferation, and osteogenesis. Hydrogels, serving as
natural substrates for extracellular derivatives, provide storage
and slow-release effects. Adding specific bioactive substances in
hydrogels can boost damage repair and enhance molecule target-
ing. Zhang et al. [148] integrated umbilical cord MSCs-EVs into a
complex scaffold for rat skull defect repair. MSCs-EVs within this
scaffold promote angiogenesis, essential for rapid bone repair.
Swanson et al.[149] designed a 3D scaffold using polylactic-
glycolic acid (PLGA) and polyethylene glycol (PEG) for controlled
OS-EVs release, derived from human dental pulp stem cells
(hDPSC). This approach accelerated bone healing in 8 weeks. In
critical bone defects, controlled EVs release from scaffolds aids
bone formation without needing seeded cells to multiply within
the scaffold.

Bone tumor

Benign or malignant tumors can occur in the bone, such as
osteosarcoma (OS) and metastatic bone cancer. OS is a malignant
tumor that originates in connective tissue. The occurrence and
development of OS are related to the imbalance of bone metabo-
lism. So the researchers needed to address the effects of EVs
secreted by OS cells in the tumor microenvironment [150]. OS-
EVs contain many specific microRNAs and osteoclast metabolites,
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promoting the expression of osteoclast genes and the differentia-
tion of macrophages into osteoclasts [151,152]. In addition to
affecting bone remodeling, extracellular derivatives can also regu-
late tumor angiogenesis [12]. In other words, the dispersion and
signal transmission of OS-EVs will greatly promote the signal
exchange between OS and endothelial cells, resulting in the release
of pro-angiogenic growth factors. More EVs and growth factors are
generated after accelerated angiogenesis, and faster signal trans-
mission efficiency, thus forming a positive cycle.

In addition, OS-EVs trigger a pro-metastatic inflammatory ring
by altering the physiology of MSCs. OS-derivatives can also induce
M2 phenotype in alveolar macrophages to support tumors, which
contributes to immune escape in tumors [108,153]. Tumor cells
produce bones or osteoids in it and most often metastasize to
the lungs. Circular RNA (circRNA) is a closed-loop RNA produced
by the end-to-end connection of RNA transcripts during transcrip-
tion. It is abnormally expressed in epithelial cancers such as lung
cancer, OA, and OS [154,155]. CircRNAs are rich in EVs, which are
members of the small ncRNA family. A large amount of evidence
shows that EVs can participate in the mechanism of tumorigenesis
by transmitting circRNAs. Circ-0000190 in EVs is a new biomarker
and has potential value in the diagnosis of OS. Li et al.[156] found
that OS cells endocytosis EVs released by normal cells containing
circ-0000190. It is possible to load circ-0000190 with exogenous
EVs and use circ-0000190 to mediate the communication of EVs
during the carcinogenesis of OS. By inducing miR-767-5p to regu-
late TET1, the development of OS is hindered.

The OS may affect any bone and often produce a variety of ECM
while showing varying degrees of differentiation. The non-coding
RNA activated by DNA damage (NORAD) is high in OS cells and sur-
rounding tissues, which may be involved in the progression and
metastasis of OS. He et al. [157] found that EVs isolated from
BMSCs can transfer NORAD from BMSC to OS cells, which can inhi-
bit the migration and proliferation of OS cells to other sites. There
are special binding relationships between NORAD and microRNA-
30c-5p (miR-30c-5p) and between miR-30c-5p and Krueppel-like
factor 10 (KLF10). Mechanistically, NORAD acts as a delivery plat-
form for miR-30c-5p, helping up-regulate KLF10, while its mimics
reduce NORAD-induced cancer cell effects. OS cells were injected
into mice to establish a tumor growth and metastasis model. After
the experiment, it was found that the injection of BMSCs-EVs
increased the expression of NORAD and KLF10, but decreased the
expression of miR-30c-5p, thereby inhibiting tumor growth and
lung metastasis.

Fracture union disorder

Recovery from fracture involves a very precise regulation of
bone metabolism. In this process, a variety of cells such as perios-
teal cells, stem/progenitor cells, and osteoblast chondrocytes are
involved and work together. The healing of a fracture is usually
organized and includes early hematoma formation and inflamma-
tion, the development of cartilage and callus, and the final stage of
bone remodeling. Fracture union disorders are mainly caused by
bone metabolism disorders, which can lead to persistent bone
defects. It can also be associated with bone tissue loss of function,
instability, and discomfort. Treatment of fracture healing disorders,
MSCs are the most promising therapeutic cells among seed cells
added in bone tissue engineering [158,159]. Hu et al. [160] found
that the EVs derived from bone marrow mesenchymal stem cells
(BMSCs-EVs) carrying miR-335 can help up-regulate miR-335 in
osteoblasts and reduce VapB, thus enabling osteoblasts to be effi-
ciently utilized in the initial stage of osteogenesis in fracture repair.
The increase of MSCs or differentiation factors can induce MSCs to
differentiate into osteoblasts at the fracture site. The expression of
VapB increased during osteoclast formation, and VapB knockdown
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Fig. 5. Advantages and challenges of extracellular derivative for clinical application. The figure was created with BioRender.com.

resulted in inhibition of bone resorption. Activation of the Wnt/
B-catenin pathway results in decreased VapB expression and
increased OCN, FGF-2, a-SMA, and GDF-10 content, promoting
osteogenic differentiation and fracture healing.

Congenital bone disease

Hereditary genetic defects in congenital rare bone metabolic
diseases alter the correct bone modeling and remodeling in terms
of bone synthesis or bone resorption. The main symptoms are bone
tissue defects that are prone to long bone bending, stress fractures,
or brittle fractures. Bone fragility may be caused by excessive
osteoclastic-driven bone resorption that is not in balance with
the corresponding amount of bone. Excessive bone mass loss leads
to the formation of osteoporosis, dysfunctional mineralization
leads to the pathological condition of osteomalacia and rickets in
children. Osteoblast-driven enhanced mineralized bone deposition
or reduced osteoclast uptake activity leads to osteopenia
[161,162].

Osteogenesis imperfecta (OI) is a genetic disease of inborn bone
metabolic dysfunction, which mainly affects the formation of con-
nective tissue and is prone to frequent fractures. The most com-
mon cause is a dominant mutation in one of two genes, Col1A1
and COL1A2. By storing TGF-p signals in the ECM of Ol-deficient
bone tissue, it acts as a central coordinator of bone remodeling
by coupling the activity of osteoclasts and bone-forming osteo-
blasts. Collagen type I in the ECM helps TGF-B from osteoblasts
to be produced and deposited into the bone matrix, which can be
released and activated by osteoclasts during bone resorption. Grafe
et al. [163] found that the binding of type I collagen to decorin, a
small proteoglycan rich in leucine, a known regulator of TGF-B
activity, was reduced in recessive Ol mice. Anti-TGF-p treatment
with neutralizing antibody 1D11 can correct the bone phenotype
of Ol and improve lung abnormalities in mice. Therefore, the
change of TGF-B stromal cell signal is the main mechanism of
osteogenesis imperfecta, which may hold promise as an effective
treatment for Ol
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Advantages and challenges

Although extracellular derivatives have many advantages, they
still face some challenges in practical applications (Fig. 5). With
further research and technological development, these challenges
are expected to be overcome, leading to the widespread use of
extracellular derivatives in clinical therapy.

Advantages

There are many kinds of signal proteins and bioactive sub-
stances in extracellular derivatives, which can regulate cell adhe-
sion, migration, proliferation, and differentiation. Extracellular
derivatives are active substances released by living cells and there-
fore have a natural source and composition. They do not need to go
through complex preparation processes such as artificial synthesis
or genetic modification [164,165]. Due to their natural origin,
extracellular derivatives are generally more biocompatible and
can reduce immune rejection and other side effects. Compared
with cell therapy, extracellular derivatives have lower immuno-
genicity and do not cause significant immune response, which is
conducive to clinical application and long-term treatment. At pre-
sent, various growth factors have been widely used in clinics, such
as BMP-2 and BMP-7 approved by FDA [166,167]. The use of BMP
can promote bone integration and improve the success rate of sur-
gery. There is also an FDA-approved bioactive molecule for bone
regeneration, a peptide called P-15, which was found to be effec-
tive, safe, and similar to autograft 2 years after surgery for cervical
radiculopathy caused by cervical disc degenerative disease [167].
In China, several startups are preparing external vesicles for use
in the cosmetics and medical beauty fields. In addition to therapeu-
tic use, extracellular derivatives carry lots of proteins, nucleic
acids, and cytokines that also reflect the state and function of their
mother cells. They are envisioned as potential biomarkers for dis-
ease diagnosis and disease early warning [168,169]. Existing extra-
cellular derivatives containing tumor-specific, liver, kidney, and
bone metabolic disease RNAs and proteins have been used as
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markers for cancer diagnosis [170,171]. There are many metabo-
lites in bone metabolism, which are distributed locally in bone tis-
sues or body fluids and detected in cell derivatives. Bone metabolic
balance can be observed through their detection, and bone meta-
bolic diseases can be diagnosed.

Challenges

At first, although there is much research on extracellular deriva-
tives, the main preparation method is achieved by ultra-low tem-
perature gradient centrifugation. But, the standards for collecting
EVs are not uniform, it is necessary to establish a more standard-
ized and standardized preparation process to ensure the consis-
tency and quality of products [172]. Secondly, obtaining an ECM
of high quality and purity from the human body or other sources
may have certain technical challenges, including extraction, han-
dling, and preparation processes, to avoid the presence of contam-
inants affecting its function and stability [172,173]. Thirdly,
extracellular derivatives can be targeted through engineering mod-
ification, but how to achieve the precise delivery and targeting of
extracellular derivatives in vivo is still difficult. However, they
can effectively reach the site of the disease and have a therapeutic
effect, need to be further studied and improved [174]. In addition,
during the modification process, the biological activity of extracel-
lular derivatives may be affected by environmental conditions and
degradation. Maintaining its function and stability when combined
with other materials still needs to be studied. Finally, it remains
challenging to produce extracellular derivatives at scale and cost-
effectively in quantity and quality for clinical needs.

Conclusion

In this paper, the types, sources, functions, and applications of
extracellular derivatives related to bone metabolism were
reviewed, and the advantages and challenges of their clinical appli-
cation were summarized. When living is healthy, extracellular
derivatives maintain bone metabolic homeostasis, while triggering
complex pathways in the case of metabolic abnormalities has the
opposite effect on tissue health. The phenotype of extracellular
derivatives is highly dependent on the derived cell, so each cell
derivative may affect bone metabolism, and bone histiocytes are
also potential therapeutic targets for diseases with impaired bone
regulation.

Extracellular derivatives still have a long way to go in clinical
application. Due to the strict requirements and long process of clin-
ical approval of drugs and implanted devices, many extracellular
derivatives have not yet been marketed and are in preclinical
research. The most established clinical application is the growth
factor, which the FDA approved in 2017 for fibroblast growth factor
to treat neurotrophic keratitis and VEGF for eye drops like pegap-
tanib, bevacizumab, ranibizumab, and bortezomib to treat
age-related macular degeneration, diabetic retinopathy, diabetic
macular edema, and other eye diseases [175,176]. Except for
growth factors, there are no clinically available approved ECM or
EVs treatments. There are no commercially available treatments
for ECM, but the polymers it contains, such as hyaluronic acid,
are widely used in drug delivery, cosmetics, medicine, and food.

Extracellular derivatives have shown potential clinical applica-
tions in several areas, particularly in regenerative medicine and
drug delivery systems. In regenerative medicine, extracellular
derivatives can be used to promote tissue repair and regeneration,
for example, to support heart disease and fracture treatment. The
bionic bone microenvironment scaffold is prepared by combining
ECM with hydrogel to improve osteogenic performance
[147,177-179]. Simulated ECM prepared by biomaterials can
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manipulate the interaction between macrophages and endothelial
cells, regulate immunity, and promote vascular regeneration [180].
As drug carriers, extracellular derivatives can naturally carry and
protect drug molecules, including small molecule drugs, proteins,
and RNA, allowing them efficiently delivered to target cells. EVs
can be combined with drug delivery, which can be used as a car-
rier, through surface modification to make it targeted, and then
loaded with substances with therapeutic effects [121]. As the drug,
EVs also can be used as drugs and are secreted by cells of related
origin that have specific miRNA and protein delivery. They have
bone therapeutic functions and are directly used to treat disease
[86,181]. Extracellular derivatives can also be used in vaccine
development to carry specific antigens to immune cells to provoke
an immune response against infectious diseases or cancer.

In addition to being a therapeutic drug, extracellular derivatives
can also be used as probes for disease detection and prevention.
EVs biomarkers have been studied for cancer diagnosis, neurode-
generative diseases, cardiovascular disease, and other diseases
[182]. Abnormal levels of collagen fragments or glycosaminogly-
cans in ECM may indicate kidney disease or cartilage degeneration
[183,184]. It is used as a non-invasive biomarker to monitor dis-
ease status or response to treatment. There are even more applica-
tions based on extracellular derivatives from patients, and
customized personalized medical solutions, to provide more effi-
cient, safer, and predictable treatment strategies. Also, extracellu-
lar derivatives are used to deliver modified RNA or DNA to treat
specific genetic diseases.

Extracellular derivatives play an important role in regenerative
medicine, among which organoids are the most potential applica-
tions. The extracellular derivatives produced by the organoids
characterize the organoid microenvironment and use the orga-
noids to predict and formulate therapeutic strategies through drug
therapy and simulated transplantation environment. Organoids are
based on simulating the tissue microenvironment by carrying
extracellular derivatives of biomaterials in vitro. The concept of
the liver-bone axis, gut-bone axis has been proposed, that is
through the gut and liver affect bone metabolism [185-187]. Our
team has accumulated rich research experience on extracellular
derivatives in orthopedic diseases, and now focuses on the thera-
peutic effects of organoid extracellular derivatives, hoping that
these organoid extracellular derivatives will lead to the develop-
ment of new therapeutic strategies for bone diseases [188-191].

Since extracellular derivatives have not been commonly
employed for practical clinical applications, more in-depth
research is required into the mechanisms by which to regulate
finely tuned signaling networks within cells and tissues. The active
development of the application function of extracellular deriva-
tives will promote their clinical approval process, and strive to pro-
vide patients with more efficient, safe, and convenient treatment
options.
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