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A new open‑access platform 
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Despite numerous research efforts, the precise mechanisms of concussion have yet to be fully 
uncovered. Clinical studies on high-risk populations, such as contact sports athletes, have become 
more common and give insight on the link between impact severity and brain injury risk through the 
use of wearable sensors and neurological testing. However, as the number of institutions operating 
these studies grows, there is a growing need for a platform to share these data to facilitate our 
understanding of concussion mechanisms and aid in the development of suitable diagnostic tools. To 
that end, this paper puts forth two contributions: (1) a centralized, open-access platform for storing 
and sharing head impact data, in collaboration with the Federal Interagency Traumatic Brain Injury 
Research informatics system (FITBIR), and (2) a deep learning impact detection algorithm (MiGNet) 
to differentiate between true head impacts and false positives for the previously biomechanically 
validated instrumented mouthguard sensor (MiG2.0), all of which easily interfaces with FITBIR. 
We report 96% accuracy using MiGNet, based on a neural network model, improving on previous 
work based on Support Vector Machines achieving 91% accuracy, on an out of sample dataset of 
high school and collegiate football head impacts. The integrated MiG2.0 and FITBIR system serve 
as a collaborative research tool to be disseminated across multiple institutions towards creating a 
standardized dataset for furthering the knowledge of concussion biomechanics.

In this study, we seek to address two major outstanding problems that we believe exist with pinning down the 
underlying biomechanical mechanisms of brain injury, and more specifically concussion. Because of the rarity 
of measuring biomechanical data during a concussion, we believe the first of two major issues is the lack of a 
large, high-quality head impact dataset with associated clinical outcomes. Secondly, because many of the sys-
tems, for example the Head Impact Telemetry System (HITS), used to capture the biomechanical data of head 
impacts often generate many false impacts, this can further generate confusing and conflicting results among 
studies. The only way around this is to video verify and confirm every real and fake impact measured, which is 
a tedious process that hampers and slows research significantly, or as is often the case, to publish the data as if 
all impacts are real. This is something that has hampered previous efforts at a large head impact dataset, such 
as that of the Concussion Assessment, Research and Education (CARE) Consortium. Given these two major 
issues, the goal of this study is two-fold: (1) to put forth a much needed centralized and open-source platform 
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for storing and sharing in vivo head impact data and (2) to put forth a deep learning impact detection algorithm 
for differentiating between true and fake impacts of the extensively validated (i.e. high-quality) instrumented 
mouthguard sensor which has been designed to easily interface with the open-source platform. We seek to pro-
vide the research community with this integrated platform for collecting, processing, and sharing high-quality, 
standardized, biomechanical head impact data, to create a comprehensive injury and non-injury dataset. The 
proposed research platform is developed in collaboration with and hosted by the National Institutes of Health’s 
(NIH) Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system1. Our instrumented 
mouthguard device collects kinematic data according to the recommended Common Data Elements (CDEs) 
from the National Institute of Neurological Disorders and Stroke (NINDS), which allows integration and shar-
ing of data collected among different investigators via the platform2. Furthermore, our NIH R24 grant allows 
for the funding of 20 instrumented mouthguards for each site that joins the study to contribute to this platform.

An open-source platform, such as this, is of such great importance because of the known dangers associated 
with brain injury. Traumatic Brain Injury (TBI) is a leading cause of death and disability; however, more recently 
it has been proposed that even mild TBI (mTBI), or concussion, can increase the risk for neurodegenerative 
diseases, such as Alzheimer’s3,4. Researchers have accumulated evidence suggesting that even subconcussive 
impacts, previously thought to be innocuous, result in lasting neurophysiological changes5–7.. Therefore, there 
is a pressing need to uncover the link between the number and severity of head impacts sustained in a lifespan, 
and how this correlates to acute symptomatology and affects risk of long-term chronic neurodegeneration. The 
scientific community would greatly benefit from a metric for concussion diagnosis, such as a potential concus-
sion threshold. However, in order to do this, accurate biomechanical measurements of head impacts is crucial.

Previous efforts to measure head impact kinematics have leveraged sensor devices mounted to athlete’s heads 
through headbands, ear plugs, helmets, bite bars, skin patches, and mouthguards8–12. However, the lack of robust 
coupling to the skull of some of these devices has produced inaccuracies in the measurements observed both 
in laboratory and field settings11,13–16. Thus, it is clear that when using them with athletes in field studies, the 
conclusions drawn have limitations12. When this issue is coupled with the lack of impact detection algorithms 
or video verification of impacts used by many studies, many fake impacts will confuse the conclusions, and the 
results compared between studies can be conflicting17–20. Some studies have found no correlation between bio-
mechanical metrics and the number of incurred events, severity, or time to symptoms20,21. However, others report 
injury thresholds based on head accelerations22,23, which are ultimately used to rate how safe certain protective 
systems are that are on the market. Thus, ongoing research aimed at establishing the relationship between head 
impact biomechanics and brain health is hampered by the lack of a large, high-quality, reliable concussive and 
subconcussive dataset measured in 6 degrees of freedom20–23.

In recent years, it has become clear that mouth wearables (i.e. instrumented mouthguards) have the tightest 
coupling to the skull of current head kinematic wearables9. Specifically, the Stanford instrumented mouthguard 
(herein referred to as the “MiG2.0”) has been very recently extensively validated to ensure high-quality data is 
collected for head impacts24. Using this instrumented mouthguard, along with a newly developed deep learn-
ing algorithm to remove fake impacts, we believe we can produce high quality data to lead to more meaning-
ful study conclusions. Recently, a number of studies have employed machine learning approaches to remove 
fake impacts23–27. Wu et al. used a support vector machine (SVM) to detect head impacts in American football 
players27. Others, such as the work conducted in28 by Motiwale et al. have used deep learning to analyze biome-
chanical signals. A benefit of using deep learning tools, like neural networks, is that the features of interest need 
not be chosen by the researchers but instead are borne out of the data during the training process. Adding more 
data to the system typically improves the model more and more for these kinds of algorithms. This makes the 
expansion of the database ever more useful. An interesting comparison of the predictive power between SVM 
and deep neural networks is the choice of features. In the SVM these need to be engineered, known apriori, so 
that the model can use them to learn the data. However, in neural networks, these features are discovered dur-
ing the training process itself. The benefit of this is that the features are typically optimally chosen to explain the 
data, the downside being that the knowledge of what these features relate to can be difficult, if not impossible, 
to explain. This tradeoff between accuracy and explainability has not yet been explored in the detection of head 
impacts, as it relates to mTBI, and is focused on in this work. While the accuracy of detecting head impacts is 
certainly the most important metric, understanding what is sacrificed to achieve this is also valuable in terms 
of model selection. In this study, we present a deep learning model to analyze and remove fake impacts and 
compare it to an SVM to understand its benefits.

With the extensively validated MiG2.0 and its newly improved deep learning impact detection algorithms 
discussed in this paper, we hope for this manuscript to be a call to collaborators all over to join in the study and 
contribute to the new open-source platform. We hope that this platform and associated high-quality data col-
lection will more quickly and robustly shed light on the mechanisms of brain injury and concussion.

Materials and methods
The MiG. 2.0.  We have developed an instrumented mouthguard, the MiG2.0, for measuring linear and 
angular head kinematics during an impact. Several images of the molded mouthguard as well as the electronics 
embedded within can be found in Fig. 1. The device is capable of sensing six degrees of freedom (6DOF) kin-
ematics via a triaxial accelerometer (H3LIS331DL, ST Microelectronics, Geneva, Switzerland) with maximum 
range of ± 400 g, and a triaxial gyroscope (ITG-3701, InvenSense Inc., San Jose, CA, US) with maximum range 
of ± 4000 degrees/sec. Linear acceleration is acquired at 1000 Hz, while angular velocity is acquired at 8000 Hz17. 
Data is temporarily stored in an on-board buffer, which allows the acquisition of pre- and post-trigger data asso-
ciated with an event. When the linear acceleration threshold value set by the user is crossed at any of the linear 
acceleration components, an event is written to the on-board flash memory chip. Trigger threshold, pre-trigger 
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time, event duration, and sample rate of the inertial measurement units (IMUs) are user adjustable. The device is 
also capable of detecting when it is being worn when using a proximity sensing via an infrared emitter-receiver 
IR pair (TMD2771, Texas Advanced Optoelectronic Solutions Inc., Plano, TX, US) which detects light reflected 
off of the teeth. The sensor board is completely sealed between three layers of ethylene vinyl acetate (EVA) 
material and communication occurs via Bluetooth. A tight fit to the dentition is achieved by forming the EVA 
material around a player-specific dental model. IMUs are located at the incisors to isolate sensors from external 
disturbances. Furthermore, unique shock absorbers are placed at the molars to reduce mandible disturbances 
occurring in chewing, biting, and talking with the device on the teeth, as discussed by Kuo et al.15. It is important 
to note that the accuracy of all kinematic data for the MiG2.0 has been previously validated and reported in a 
recent manuscript24.

Data download using BiteMac and upload to shared FITBIR platform.  To access the kinematic 
data collected by the mouthguard, we developed an application, BiteMac, to interface with the MiG2.0. BiteMac 
is a free iOS and macOS application that enables quick, wireless, and intuitive download of kinematic data in 
comma separated value (CSV) format using the recommended common data elements (CDE) from the National 
Institute of Neurological Disorders and Strokes (NINDS) for collecting sensor data. CDEs were developed by a 
group of experts to facilitate collaboration across investigators, as well as interconnectivity with other informat-
ics platforms29. We have worked with the Federal Interagency Traumatic Brain Injury Research (FITBIR) agency 
to create an open-access platform on their website to share standardized concussion data collected using the 
MiG2.0 or any other head impact kinematic sensor (Methods 2.3).

Finally, we have developed a website which will enable researchers to register to use the MiG2.0 for their 
studies2. This website also contains the necessary scripts to process and standardize data output from the MiG2.0, 
as well as perform impact classification using our machine learning algorithm described later.

The FITBIR online platform.  The FITBIR informatics system30 was developed to share data (whether 
taken with the MiG2.0 or another similar high-quality device) across the TBI research field, in order to facili-
tate collaboration between laboratories and enhance interconnectivity with other informatics platforms thus 
allowing for aggregation, integration, and rigorous comparison of data27. Our integrated system provides the 
common data definitions and standards that are required for community-wide sharing, and qualified research-
ers can join the study and request access privileges to the data stored in FITBIR30. The FITBIR data dictionary 
incorporates and extends the CDE definitions developed by the NINDS CDE Workgroup, whereby domestic and 
international neuroscience experts developed disease-specific CDEs31,32. To date, CDEs have been developed for 
head kinematics sensors, a full list of which can be found at1, the SCAT-5 (Sport Concussion Assessment Tool), 
and the ImPACT exam (Immediate Post-Concussion Assessment Testing)1,32. For example, these CDEs include 
information on the participants as well as their impact data, ranging from the participants’ weight and heights 
to the data measured by the instrumented mouthguards and via the sideline neurocognitive tests. Data can be 
uploaded to our study in the FITBIR platform in CSV format, and we provide collaborating investigators with 
scripts to harmonize the MiG2.0 data with the FITBIR data input format. Data upload can be performed on the 
FITBIR website (the overall workflow for this is illustrated in Fig. 2) and should be carried out at the end of data 
collection by all participating investigators, once per year. Note that data is anonymized to care for all protected 
health information (PHI). As previously discussed in “Data download using BiteMac and upload to shared FIT-
BIR platform”, researchers are able to register to join the study via our website2, and then contribute to the data 
repository on FITBIR upon conducting their study.

MiG2.0 deployment to generate impact detection training and testing dataset.  We deployed 
the MiG2.0 during practices and games to one college football team, Stanford University, and three local Bay 
Area high schools. We video analyzed the data from the collegiate players (n = 12), including 5 outside lineback-
ers, 1 inside linebacker, 1 running back, 2 wide receivers, 1 defensive end, 1 offensive tackle, and 1 center, over 
the course of 17 practice and game days. We also video analyzed the data from the high school players (n = 49) 
over the course of 17 practice and game days. The high schoolers typically play multiple positions, unlike col-
legiate players, so our data sample included almost all football positions, except a kicker. The collegiate football 
games followed the National Collegiate Athletic Association (NCAA) Football Rules, and the practices were 
typically 2  h in duration. The high school games and practices were also approximately 2  h in duration, in 

Figure 1.   MiG2.0 design. (a) The Stanford instrumented mouthguard is a custom-made mouthguard 
instrumented with a triaxial accelerometer and a triaxial gyroscope for measurements of head kinematics. (b) 
The sensory board is located at the incisors. For in mouth sensing the MiG2.0 is equipped with an infrared 
sensor. Unique shock absorbers are placed at the molars to reduce external disturbances.
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accordance with the California Interscholastic Federation (CIF). The human subject protocols were approved 
by the Stanford Administrative Panels for the Protection of Human Subjects (IRB-45932 and IRB-46537). We 
conducted data collection and performed video analysis in accordance with the institutional review boards’ 
guidelines and regulations. Prior to deploying the MiG2.0, research staff obtained informed consent from all 
participants. Participants over the age of 18 provided their own informed consent. Participants under the age 
of 18 had a legally authorized representatives provide consent and then provided their own assent. All consents 
and assents were written and signed by participants or legally authorized representatives. The informed consent 
process used here followed the Stanford Institutional Review Board guidelines.

The obtained kinematics data was used to train and validate an impact classifier in part based on the method 
published by Wu and coworkers for detecting field football head impacts31,32. Retraining the classifier was impor-
tant because the MiG2.0 does not have the same mechanical and electrical design as previous iterations of the 
device33. In our dataset, we included video-verified head impacts, while video-verified noncontact recordings 
were defined as noncontact events. To assign the mouthguard kinematics to one of the aforementioned classes, 
we synchronized mouthguard event timestamps to timestamps from practice and game videos, and all events 
(as detected by over 10 g linear acceleration in any direction) that were on camera were video verified as either 
a real impact or noncontact event by members of the research team. Only data recordings where contact (or 
noncontact) could be clearly and confidently identified were included in the training/validation dataset. Videos 
were acquired from at minimum 2 angles per field at 30 frames per second. However, as over roughly 70% of 
these potential impacts occurred out of view for the cameras, an improvement to the tracking of players would 
yield a larger dataset. In the future, we are hoping to track individual players throughout the entire practice or 
game in order to capture many more impacts and to get a better sense of the impacts that are off camera.

MiGNet: neural network classifier for impact detection validation on field impacts.  In this sec-
tion, we present a deep learning approach to automatically extract important features to distinguish between real 
and false impacts to a higher degree of accuracy using mouthguard time series data as the input. Deep learning 

Figure 2.   Visual representation of the proposed integrated platform for collection, processing and sharing 
of mTBI data. (a) Distribution of MiG2.0 to partner investigators who enroll in the NIH funded study (in 
collaboration with FITBIR) to generate an open-access platform for sharing standardized head kinematic and 
concussion data; (b) MiG2.0′s are deployed to collect field data; (c) Raw data can be accessed and downloaded 
from the mouthguards directly by the investigators using the custom-made BiteMac application; (d) The raw 
data will be processed with our impact detection algorithm to distinguish true impacts from fake impacts; (e) 
Uploading to FITBIR platform can be carried out by investigators to share mTBI data and encourage other 
investigators to join the study as well.
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has become common in many areas of biomedical/biomechanical research34–36 where the signals generated are 
complex and a more automated feature extraction process is desired. One trade off to this approach, compared 
with previous work, such as the SVM classifier used in33 is that the features are no longer selected or directly 
related to any engineered metric. The SVM model used in33 is compared to this new deep learning model for our 
new dataset with the advantages and disadvantages compared.

The dataset of mouthguard signals.  Our dataset consisted of a collection of 1 × 200 timeseries signals. These 
signals are produced by the mouth guards presented in this and previous work. When an impact force exceeds 
a threshold of 10 g the onboard recorder stores the previous 50 ms and following 150 ms of kinematic data (see 
“MiG2.0 deployment to generate impact detection training and testing dataset”). This kinematic data is the 
linear acceleration in 3 dimensions and angular velocities in 3 dimensions. Once a mouth guard is returned 
for processing, a manual tagging process is conducted whereby video analysis is used to confirm if a recorded 
impact corresponds to a video verified head impact from the video recording of the player. This creates a labeled 
dataset of false impact readings and true impact readings. These two classes are then used to train the impact 
detection algorithm in an attempt to remove the need for the manual, and slow, process of video verification.

The dataset used to train this new SVM and the new MiGNet neural network consisted of 358 true impacts 
and 500 false impacts. These video-verified impact signals were obtained from the MiG2.0 mouthguards worn 
by the athletes. The events were classified as true and false impacts by video-confirmation, as described in previ-
ous sections. For the support vector dimensions, a feature extraction process was conducted for the data with a 
column selection process from28 used to identify the most relevant features.

Augmentation and Imbalanced Data Strategy for MiGNet Training.  Due to the complexity of the signals and 
the imbalance in the data, two strategies were executed to achieve the best performance for the network train-
ing. Firstly, to increase the number of signals used to train with, an augmentation of the signals was performed 
whereby the signal of a kinematic variable was shifted along the time axis by a unit of milliseconds. The total 
number of augmented signals from one original sample was a controlled variable. To ensure the signals were still 
representative of realistic impacts, and to ensure sufficient data for training, 5 augmented samples were obtained, 
meaning that the signal was offset by 1-5 ms for each collected signal. However, it is important to note that the 
test set used for later evaluation was unaltered and not used in training.

In addition to the modest dataset size that was available, this dataset was also imbalanced. This resulted in 
suboptimal performance of the network originally. By calculating the different weighting for each class such that 
their importance is equally treated in the loss function used during training, this imbalance can be treated more 
fairly. This essentially allows for the loss-function to pay more attention to losses for the true events, and less so 
for the false events. More details of treating imbalanced classes can be found in37.

As the input data was in a 1D time-varying format, the network architectures were chosen accordingly. 
Several variations of network layer size and architecture were iterated until the final choice of network, shown 
in the schematic of Fig. 3. This included a series of 1D convolution layers that were later combined into a 2D 
output where 2D convolutions were then performed, until culminating in a Softmax output layer. 1D convolu-
tions were used in preference to Long Short-term Memory (LSTM) due to the efficiency of 1D convolution 
layers38,39. Stochastic gradient descent was used to train the network using the Keras framework with Google’s 
TensorFlow as the background engine. Batch sizes of 32 were iterated for 20 epochs with a learning rate of 0.01 
and momentum of 0.9.

Finally, the comparative performance of the neural net and the SVM was evaluated using sensitivity, specific-
ity, accuracy and precision as described below:

True positive (TP) was an impact classified as impact, true negative (TN) was a nonimpact classified as a 
nonimpact, a false positive (FP) was a nonimpact classified as an impact, and a false negative (FN) was an impact 
classified as a nonimpact.

Results
MiGNet architecture determination.  The MiGNet architecture was chosen by comparing a number of 
different layer configurations. As the input signals are all designed to be of a constant size, a 1D convolutional 
layer was always used and an LSTM approach was not investigated. Several different models are listed below 
and the results are shown in Table 1. While most of these models have only a modest depth after testing several 
deep 1D convolutional layers we found minimal difference in performance. Similarly, the number of 2D con-
volutional layers did not significantly affect performance metrics. For the final iteration of the MiGNet, two 1D 
convolutional layers and one 2D convolutional layer was used in order to increase the computational speed of 
the net by providing fewer parameters. For the last hidden layer, Global Average Pooling resulted in the best 
accuracy due to its emphasis on connection between features, maps, and categories. The small size and therefore 
minimal computing power needed is also a benefit as these models are intended to be placed on the mouthguard 
hardware in the future with a minimal computational footprint desired. The different model architectures that 
were compared are listed below:

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

Accuracy =
TP + TN

TP + FP + TN + FN
Precision =

TP

TP + FP
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Figure 3.   MiGNet architecture schematic. The 1D convolutional layers act to extract high-level features of the 
motion signal, feeding into a 2D convolution which fuses the sensor signals together.

Table 1.   MiGNet architecture performances. Performance measures for the different trained MiGNet 
architectures.

TP FP TN FN Sensitivity Specificity Accuracy PPV NPV

Model 1 35 5 410 15 70% 99% 96% 0.88 0.96

Model 2 36 5 410 14 72% 99% 96% 0.88 0.97

Model 3 32 16 399 18 64% 96% 93% 0.67 0.96

Model 4 38 6 409 12 76% 99% 96% 0.86 0.97
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Model 1: 2x [1D convolution layers (ReLU and 64 filters, filter size 3 × 1), a max pooling, 2 more 1D convo-
lution layers (ReLU and 128 filters, filter size 3 × 1)], Global average pooling, a dropout layer with 50%, output 
layer with sigmoid activation.

Model 2: 3x [1D convolution layer (128 filters, 1 × 8 (for the first layer)), then 1 × 5 (for the second layer), 
then 1 × 3 (for the third layer) filter sizes, ReLU activation), batch normalization], global average pooling, output 
layer with Softmax activation.

Model 3: 2x [1D convolution layer (48 (for the first) and 96 (for the second) filters, 15 × 1 filter size, ReLU 
activation), max pooling (pool = 2), dropout layer 40%], a reshaped 2D combination of layer one and layer 2 to 
create a 2D matrix of combined layers, 2D convolution (96 filters, 3 × 15 patch, 3 × 1 strides, ReLU activation), 
global average pooling, dropout layer with 40%, output layer with sigmoid activation.

Model 4: 2x [1D convolution layer (64 (for the first) and 128 (for the second) filters, 5 × 1 (for the first) and 
10 × 1 (for the second) filter sizes, ReLU activation), max pooling (pool = 2), batch normalization layer, dropout 
layer 40%], a reshaped 2D combination of layer one and layer 2 to create a 2D matrix of combined layers, 2D 
convolution (64 filters, 3 × 15 patch, 3 × 1 stride size, ReLU activation), global average pooling, batch normaliza-
tion layer, dropout layer with 40%, output layer with Softmax activation.

These models were tested on the same data and, with the overall goal of minimizing false negative being 
more important than minimizing false positives, model 4 was chosen for the rest of this work. As more data 
is collected in this study, refinement of this architecture will be conducted as needed.With the overall goal of 
minimizing false negative more important than minimizing false positives, Model 4 was chosen for the rest of 
this work. As more data is collected in this study, refinement of this architecture will be conducted as needed. 
The final structure of the model used is depicted in Fig. 3.

MiGNet vs. SVM impact detection validation.  The SVM features were extracted using the inbuilt 
MATLAB function, sequentialfs, and the SVM itself was trained using the inbuilt MATLAB function, fitcsvm. 
Testing these two models on an out of sample set of 65 impacts and 100 non impacts yielded the results shown 
in Table  2. For this dataset, the two methods are comparable in the four metrics, with the MiGNet slightly 
outperforming the SVM overall. However, with more data, these machine learning models typically improve 
performance. Unlike the neural network, though, for the SVM a larger dataset requires that the feature selec-
tion process be repeated. As this feature selection process involves a matrix decomposition for each feature, this 
process is incredibly expensive and largely infeasible where other options are available. For the MiGNet, adding 
more data to train does still have the effect of increasing the training time, but at a much more efficient rate. In an 
attempt to improve the MiGNet performance, a larger dataset was applied to the training, with 3730 nonimpact 
and true impact signals. Retraining on this larger dataset for the SVM would take an infeasible amount of time; 
however, the MiGNet model was retrained within the time it took to train the smaller SVM. With this extra data, 
the MiGNet’s final performance metrics are shown in Table 2 with the MiGNet reporting 96% accuracy, 86% 
precision, 99% specificity, and 76% sensitivity on the out of sample test set.

Discussion
Shared FITBIR Platform.  The purpose of this work was to propose an open-source platform for collecting, 
analyzing, and sharing head impact data, including head impact kinematics and the resulting health outcomes, 
such as sideline neurocognitive test results and whether a concussion occurred. This proposed platform would 
help investigators to further study links between head impact kinematics and various proposed injury metrics, 
thus giving further insights into the biomechanical mechanisms of concussive and subconcussive impacts. Fur-
thermore, in this manuscript, we described a wearable device to accurately detect and capture the features of 
high-speed head impacts and a pipeline to easily integrate the data captured with this device into the FITBIR 
platform. The discussed device has been distributed to a selected group of investigators currently enrolled in 
an NIH funded project aimed at elucidating the biomechanical underpinnings of concussion. The standardiza-
tion of a high-quality concussion dataset to establish a link between head impact kinematics and brain injury is 
paramount especially since these injuries are rare for any one individual. Given this, it appears that the necessary 
data can be more quickly and effectively gathered through large-scale collaborative efforts involving multiple 
institutions through the dissemination of a validated head impact measurement device. The MiG2.0 collects data 
in a standardized form employing the NINDS recommended CDE, thus facilitating collaboration and intercon-
nectivity with informatics platforms such as FITBIR, where data will be released in an open-source format at the 
time of project completion in the next couple of years. We believe that the collective knowledge gained from this 

Table 2.   MiGNet and SVM performance. Performance measures for the trained MiGNet and SVM showing 
the performance on the initial dataset (Test 1) and the larger dataset used to improve the MiGNet (Test 2).

Test 1—SVM Test 1—MiGNet Test 2—MiGNet

Dataset size 165 165 512

Sensitivity 86% 97% 76%

Specificity 94% 90% 99%

Accuracy 91% 93% 96%

Precision 90% 86% 86%
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collaborative effort will improve our understanding of concussion and aid in determining the now elusive link 
between head kinematics and brain injury.

Evaluation of the MiGNet Impact Detection Algorithm.  Combining the use of head impact sensor 
data with independent video analysis, we trained and evaluated an impact detection classifier: a convolutional 
neural net trained and tested with high school and collegiate field data. The MiGNet architecture was developed 
using a greedy optimization scheme, and a parameter sweep was used to find the optimal filter size, kernel width 
and dropout percent.

As a deep learning product, the MiGNet benefits from a large availability of data, and while the augmentation 
strategy described earlier allows for sufficient training data, additional real-world data will improve this platform’s 
performance. As the proposed integrated platform becomes widespread amongst the research community, the 
head impact dataset will enable more accurate training of the neural net, leading to enhanced impact detection 
through MiGNet workflow. Though it may take years to obtain a sizable dataset, the performance of the MiGNet 
gives promise that high-accuracy impact detection may be further achieved based on this methodology.

Limitations.  The classifier described in this study was only evaluated for use with the MiG2.0 in American 
football. Retraining of the classifier is potentially necessary for any device that does not have the same mechani-
cal and electrical design as the MiG2.0. We also recognize the need to test impact detection in other contact 
sports, both helmeted and unhelmeted to determine whether retraining the algorithm is a necessity given that 
other sports will likely involve forms of contact and/or player behaviors that may not have been analyzed by the 
current classifier. Moreover, using video information to establish ground truth data labels has some limitations 
that could perhaps be addressed by advances in computer vision. In this study, we rigorously checked all video 
labels to ensure high confidence in the training set and only used data that was confidently and clearly verified 
on video. Almost all mouthguard data recordings from players buried in a pile were excluded, although helmet 
contact is likely to occur in such situations and may be of a unique nature, which we have disregarded. Thus, we 
have limited our training to only very visible events. We would also like to note that we don’t consider potential 
impacts that were missed by the mouthguard, which tend to be because they are below the minimum threshold 
set to trigger an impact, we instead focus only on the mouthguard recorded events for this study.

Conclusion
There are many unanswered questions underlying the biomechanics of brain trauma: we do not know what force 
levels could lead to a concussive event or whether this threshold changes with age, gender, or type of activity. 
For the research field to answer all of these questions, an integrated platform for collecting, post-processing, and 
sharing standardized, high-quality head impact data is essential. In previous work, we have demonstrated that 
the MiG2.0 can collect high-quality head impact kinematics in helmeted contact sports like American Football. 
In the current study, we provided a validated machine learning algorithm for impact detection and classification 
of on-field events. Overall, by collecting standardized common data elements, the MiG2.0 (and MiGNet) and 
FITBIR platform facilitate collaboration across investigators. This feature makes the MiG2.0 and FITBIR platform 
appropriate for enabling and fostering across-borders and multi-institutional collaboration efforts to produce 
a standardized, high-quality database for head impacts, including the head impact kinematics and resulting 
health outcomes, such as whether concussion occurred. We are hopeful that the knowledge gained from this 
dissemination effort will improve our basic understanding of the science of concussion.
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