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Cervical cancer is the fourth most common cancer in women worldwide. More

than 90% of cases are caused by the human papillomavirus (HPV). Vaccines

developed only guard against a few HPV types and do not protect people who

have already been infected. HPV is a small DNA virus that infects the basal layer

of the stratified epithelium of the skin and mucosa through small breaks and

replicates as the cells differentiate. The mucosal types of HPV can be classified

into low-risk and high-risk groups, based on their association with cancer.

Among HPV types in high-risk group, HPV type 16 (HPV-16) is the most

common, causing 50% of all cancer cases. HPV infection can occur as

transient or persistent infections, based on the ability of immune system to

clear the virus. Persistent infection is characterized by the integration of HPV

genome. HPV-16 exhibits a different integration pattern, with only 50%

reported to be integrated at the carcinoma stage. Replication of the HPV

genome depends on protein E1, an ATP-dependent helicase. E1 is essential for

the amplification of the viral episome in infected cells. Previous studies have

shown that E1 does not only act as a helicase protein but is also involved in

recruiting and interacting with other host proteins. E1 has also been deemed to

drive host cell proliferation. Recent studies have emphasized the emerging role

of HPV E1 in cervical carcinogenesis. In this review, a possible mechanism by

which E1 drives cell proliferation and oncogenesis will be discussed.
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Introduction

Cervical cancer (CC) is one of the most frequent common

malignancies in women worldwide. Persistent infection with

some types of human papillomaviruses (HPVs) is the major

factor contributing to the development of cervical

carcinogenesis (Schiffman et al., 2007; Petry, 2014). To

observe the histological abnormality of the patients,

colposcopy with biopsy, endocervical scraping, and cone

biopsies are performed. The abnormalities detected in biopsy

samples are termed cervical intraepithelial neoplasia (CIN) or

dysplasia. These CINs are divided into 3 major stages, i.e.,

CIN1, CIN2, and CIN3, including carcinoma in situ (Waxman

et al., 2012). Moreover, if cancerous cells are observed, they will

be ident ified as squamous ce l l ca rc inoma (SCC)

or adenocarcinoma.

HPVs are epitheliotropic viruses with an 8 kbp double-

stranded circular DNA genome contained in the naked

icosahedral capsid. The HPV’s genomic DNA is packaged as a

minichromosome with cellular nucleosomal histone (Acheson,

2011). HPV belongs to family Papillomaviridae and currently

divided into 5 genera, namely Alpha-, Beta-, Gamma-, Mupa-

and Nupapapillomavirus containing members, all of which can

infect humans (Brooks et al., 2013). To this date, more than 200

HPV types have been identified (McBride, 2017). In the

Alphapapillomavirus genus, HPVs are divided into two major

groups - high-risk HPVs (Hr-HPVs) and low-risk HPVs (Lr-

HPVs) - based on the cancer risk associated with their infection.

Hr-HPVs include types 16, 18, 31 and 33 (Ghittoni et al., 2015),

whereas Lr-HPVs include types 6 and11 (Brooks et al., 2013).

Papillomaviruses can infect a wide range of animal species;

however, each type of papillomavirus is highly host- and tissue-

specific. HPV infects cells in the basal layer of the epithelium,

following wounds or breaks in the epithelium. Upon infection,

HPVs maintain their genome as an extrachromosomal

element, or episome, in the nucleus of infected cells. At this

infection stage, and while the cells are in the lower strata of the

epithelium, only the early genes are expressed (Graham, 2017).

When the infected cell proliferates, the HPV genome replicates

and increases the episomal copy numbers in the cell. The viral

genome is replicated along with host cell DNA replication;

after cell division occurs, the daughter cell contains a copy of

the HPV genome. There is no new virion progeny produced in

this initial phase. When the cell proliferates and differentiates,

HPV DNA replication increases, resulting in a high episomal

viral genome copy number (Burd, 2003). Finally, in the upper

strata of the epithelium, the late proteins are encoded for

capsid formation and released in the upper strata of the

epithelium (Longworth and Laimins, 2004). Most HPV

infections are transient and are cleared within approximately

2 years; nevertheless, if the host immune system is unable to
Frontiers in Cellular and Infection Microbiology 02
clear the infection, a persistent infection occurs, possibly

leading to viral genome integration into the host cell

(Plummer et al., 2007).

The HPV genome encodes about 8 open-reading frames

(ORFs), of which are divided into three functional regions -

early (E) region, late (L) region, and noncoding part or long

control region (LCR) (Yousefi et al., 2021). The early region

encodes 6 early proteins (E1, E2, E4, E5, E6, and E7), whereas

the late region encodes only 2 structural proteins, L1, and L2, that

compose the capsid of HPVs (Chan et al., 2019). Whilst E1 has

been shown to encode the primary protein responsible for viral

replication (Berg and Stenlund, 1997), E2 is involved in

transcriptional regulation (Chojnacki and Melendy, 2018), and

E4 regulates virion release (Doorbar et al., 1996). The late proteins

L1 and L2 are the major (80%) and minor (20%) capsid proteins,

respectively. In contrast to these proteins, the functional roles of

E5, E6 and E7 have been extensively characterized in the context

of cancer. For instance, HPV E5 plays a role in immune evasion

whereas E6 and E7 causes hyper-proliferation of the cell and

cancer progression (Crook et al., 1991; Ganguly, 2012). The major

role of the HPV E6 oncoprotein is to immortalize the cells via the

ubiquitin-dependent proteasome degradation of p53, a cellular

tumor suppressor protein, thus evading cancer cell death (Nguyen

et al., 2002; Kelley et al., 2005). In addition, E6 can also degrade

other apoptotic signaling cascade molecules (Filippova et al.,

2002). HPV E7 oncoprotein plays a critical role in cervical

carcinogenesis through dysregulation of cell cycle. This protein

inactivates the retinoblastoma tumor suppressor protein (pRb)

and downregulates E2F (Moody and Laimins, 2010). It is therefore

evident that the role of HPV proteins, other than E5, E6, and E7,

in carcinogenesis is under-investigated. Recently, it has been

shown that HPV E1 may be involved in carcinogenesis. Here,

we will review the possible role of E1 in cervical carcinogenesis.
The structure of E1 protein

The E1 protein serves as the primary replication protein of

HPV and is an ATP-dependent helicase that binds to the viral

origin of replication and unwinds the viral DNA to initiate

replication (Hughes and Romanos, 1993). Across all

papillomaviruses, the E1 protein is the most conserved,

primarily owing to its helicase function, which is essential for

the viral episome replication. It is possible that all phases of the

viral replication cycle namely, establishment, maintenance, and

amplification, require E1 function. The E1 protein consists of

three main domains, each with a distinct and important

function, i.e., The N-terminal regulatory domain, the DNA

binding domain, and the helicase domain (Figure 1A)

(Bergvall et al., 2013). The N-terminal of the protein contains

the nuclear localization signal and the nuclear export signal,
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which functions to transport E1 between the nucleus and

cytoplasm. The DNA binding domain recognizes specific

sequences near the viral origin of replication, which is bound

by the helicase domain to form a doughnut shaped complex

around viral DNA (Enemark and Joshua-Tor, 2006).
Mechanisms of HPV E1 in viral
DNA replication

To initiate HPV DNA replication, E1 interacts with E2 (Berg

and Stenlund, 1997; Bergvall et al., 2013; Porter et al., 2017), which

aids in its recruitment to the origin of replication (Frattini and

Laimins, 1994) (Figure 1B). It must be noted that E1 can also

establish viral replication in an E2 independent manner, albeit with

lower efficiency (Bonne-Andrea et al., 1997). Upon binding to the

origin of replication as an E1-E2-ori ternary complex, additional E1

molecules are recruited to assemble E1 double-trimers and E1
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double-hexamers, which whilst unwinding DNA also recruits

several DNA replication factors, such as DNA polymerase a
primase (Pol a-prim), topoisomerase I (Topo I), and replication

protein A (RPA) (Loo and Melendy, 2004; Bergvall et al., 2013).
Relationship between HPV16 E1
expression and cervical
cancer progression

The most well-characterized function of HPV in cervical

carcinogenesis is the overexpression of E6 and E7 oncoproteins,

which mainly target p53 and pRb tumor suppressor proteins

(Munger et al., 1992; Mantovani and Banks, 2001). However, a

relationship between HPV E1 expression and cervical cancer

progression has been reported. Interestingly, HPV16 E1 mRNA

expression is positively correlated with cervical cancer progression

(Baedyananda et al., 2017). This finding was in agreement with
frontiersin.org
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FIGURE 1

Structure and function of HPV E1. (A) Diagram of the HPV E1 protein domains. Three major functional domains of HPV E1, i.e., N-terminal, DNA
binding domain (DBD), and the domain which construct the helicase domain: minimal oligomerization domain, ATPase domain, and C-terminal
brace. (B) Schematic representation of the initiation of the HPV DNA replication associated with E1 protein. HPV E1 proteins are recruited to
bind to the E1 DNA binding site at the origin by HPV E2. E1 and E2 are assemble as E1-E2-ori ternary complex. Additional of E1 proteins are
recruited to assemble as E1 double-trimer and double-hexamer, respectively. Then, the ds-DNA are unwound, and the DNA replication are
initiated by the recruitment of host DNA replication factors.
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another independent study that reported lower E1 expression in

patients with low-grade squamous intraepithelial lesion (LSIL)

compared to high-grade squamous intraepithelial lesion (HSIL)

and cancer (Schmitt et al., 2011).

The physical state of the HPV genome, namely integrated,

episomal, or mixed, is correlated with cervical carcinogenesis

(Pirami et al., 1997; Williams et al., 2011). HPV integration is

associated with overexpression of E6 and E7 (Jeon et al., 1995),

which in turn have been shown to enhance the pathogenicity of

HPV (Munger et al., 1992; Burke et al., 2012; Burke et al., 2014).

However, recent findings have reported that E1 mRNA expression

is neither impacted by the number of copies of the HPV16 genome,

nor its physical state (Baedyananda et al., 2017). Similar

observations have also been made in relation to E6 and E7

(Wang-Johanning et al., 2002), which implicates other factors,

including epigenetic modifications in the control of HPV mRNA

expression. Moreover, HPV genome has been reported to be highly

methylated in cervical cancer samples with high copy numbers of

integrated HPV (Chaiwongkot et al., 2013). In agreement, E1

promoters p97 and p670 are hypermethylated in cervical cancer

samples when compared to normal samples (Baedyananda et al.,

2017), thereby suggesting the possibility of these samples possessing

high numbers of HPV genome copies.

The possible functions of HPV16 E1
in cervical carcinogenesis

HPV16 E1 dysregulates the expression of
genes involved in cell survival

Failure to induce apoptosis could drive tumorigenesis through

multiple mechanisms (Ichim and Tait, 2016). In HPV16 E1

overexpressing cells, several host genes that are involved in

protein synthesis (RPL36A), metabolism (ALDOC), immune

response (ISG20), DNA damage (ATR, BRCA1, and CHK1), and

cell proliferation (CREB5, HIF1A, NFKB1, PIK3CA, JMJDIC,

TSC22D3, FOXO3), have been shown to be significantly

downregulated (Baedyananda et al., 2021). Of the transcriptional

factors, CREB5, HIF1A, NFKB1, and PIK3CA, downregulation of

NFKB1 and PIK3CA supports tumor growth and survival (Xia

et al., 2014; Masoud and Li, 2015). JMJD1C (Jumonji Domain

Containing 1C) is a histone demethylase, tumor suppressor protein

that is usually found to be reduced or lost in breast cancer

(Watanabe et al., 2013). TSC22D3 is a gene that encodes

Glucocorticoid-induced leucine zipper (GILZ), which in turn

activates FOXO3a-mediated transcription of the pro-apoptotic

protein, Bim (Joha et al., 2012). Loss of FOXO3a activity has

previously been linked to disease progression in carcinogen-

induced lung adenocarcinoma (Blake et al., 2010), neck cancer

(Shou et al., 2012) and urothelial cancer (Shiota et al., 2010). How
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HPV16 E1 promotes cell survival via regulation of FOXO3 in

cervical carcinogenesis is still unclear.
HPV16 E1 mutations associated with
cervical cancer

A variety of mutations in E1/E2 genes have been identified in

cervical cancer samples. The clinical stage of patients with the

discovered HPV E1 mutations have also been noted in various

studies. Many of these variants were linked with lower grade

lesions such as noted in previous studies where a 63-bp

duplication variant was associated with lower disease

progression (Sabol et al., 2008; Baedyananda et al., 2017).

Other mutations have demonstrated reduced abilities to

support HPV replication (Yao et al., 2019) and also failed to

suppress the viral early promoter (Yao et al., 2019; Hirose et al.,

2020). When examining within-host variations of HPV16 it was

noted that non-synonymous substitutions occurred more

frequently in invasive carcinoma specimens. These mutations

also occurred more frequently in E1/E2 regions than in other

regions of the viral genome (Hirose et al., 2020). Many factors

determine the functional impact of mutations i.e., type of

mutation, location of the mutation. Further studies are

required to understand how information gained from this

could be therapeutically exploited.
Helicase function of HPV E1 and possible
roles in cancer

Genome instability, a hallmark of cancer (Hanahan and

Weinberg, 2000; Hanahan and Weinberg, 2011), is caused by

several factors that induce DNA damage (Langie et al., 2015),

which could be exacerbated by defective DNA damage repair

response and tumor suppressor molecules (Negrini et al., 2010).

Inactivating mutations in DNA helicases have detrimental

effects, such as in Werner syndrome, characterized by the

appearance of premature aging features and early onset of age-

related diseases such as cardiovascular diseases, diabetes

mellitus, and carcinoma (Martin, 1985). Patients with Bloom’s

syndrome are also predisposed to carcinogenesis (German,

1997). In addition, cells transformed by the Epstein-Barr virus

(EBV) and simian virus 40 (SV40) have exhibited upregulated

helicases expression. In the context of HPV infection, E1 helicase

facilitates HPV genome replication, via the host cells’ DNA

damage repair pathways and contributes to carcinogenesis

(Moody and Laimins, 2009; King et al., 2010; Fradet-Turcotte

et al., 2011; Sakakibara et al., 2011). HPV E1 proteins are able to

directly cause double strand DNA breaks in the host genome.
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The ATR-dependent DNA damage response pathway is

activated by HPV replication or presence of HPV replication

proteins, E1 and E2. This has been shown by the accumulation

of gH2AX, ATR-interact ing prote in (ATRIP) , and

topoisomerase IIb-binding protein 1 (TopBP1) in replication

centers. Conversely, the viral oncoproteins E6 and E7 did not

play a role in the accumulation of gH2AX, ATRIP and TopBP1

(Reinson et al., 2013).

Moreover, the homeobox transcription factor HOXC13 has

been shown to upregulate the expression of HPV16/18 E1 and

E2 (Ishii et al., 2020), which may enhance the helicase activity of

E1 to result in DNA damage and genome instability. HPV E1’s

ability to directly cause host DNA damage and the implications

on carcinogenesis should be further explored to better define the

role of HPV E1 in carcinogenesis.
Role of HPV16 E1 in antiviral
immune evasion

Type I interferons (IFN), such as, IFN-a and IFN-b, form
integral components of the innate immune response, playing

important roles in antiviral , anti-proliferative and

immunomodulatory functions (Seth et al., 2006). HPV18 E1

modulates the expression of the genes involved in toll-like receptor,

interferons and apoptosis pathways, and antiviral interferon-

stimulated gene set (Castillo et al., 2014). Similarly, HPV16/18 E1

protein has been shown to enhance the expression of immune

response genes, i.e., IFNb1, IFNl1, and interferon-stimulated gene

(ISG) (Castro-Muñoz et al., 2019), thus implicating roles for HPV E1
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in immune modulation, as evasion of the host immune response is

key to persistent infection and HPV-related carcinogenesis.
Conclusion

Several studies have explored possible roles of HPV16 E1 in

cervical carcinogenesis and have attributed numerous cellular

mechanisms, including increased expression of genes involved in

cell survival and apoptosis, inhibition of the antiviral immune

response, viral genome maintenance, helicase activity and

inactivating mutations (Figure 2). However, there are no

functional evidence of HPV16 E1 directly on cancer

development. It is possible that E1 is the only protein with both

DNA helicase and ATPase activity, which may or may not be

relevant for carcinogenesis. Unfortunately, only few studies worked

on HPV16 E1 related to cancer development. For further study, the

function of E1 protein in cervical carcinogenesis should be deeply

explored. More functional assays related to the hallmarks of cancer,

e.g., cell proliferation, apoptosis, cell cycle arrested, migration/

invasion, wound healing, and colony formation, should be done

in E1 overexpressed/knockdown/knockout cells. Moreover, many

genes such as BCL2L1, CSP2, FOXO3a, JMJDIC, and TSC22D3,

were dysregulated in either HPV18 or HPV16 E1 overexpressed/

knockdown cells (Castillo et al., 2014; Baedyananda et al., 2021). To

better understand the E1 associated cellular pathways, the

relationship between E1 and those genes as well as E1 protein-

protein interaction should be investigated. Since HPV E1 proteins

are helicases, studying cells over-expressing HPV16 E1 and
FIGURE 2

Role of HPV E1. Left panel: the well-known helicase function of HPV. Right panel: the possible roles of HPV E1 in cervical carcinogenesis include
dysregulating the expression of genes involved in cell survival, E1 mutation, E1 overexpression, inducing DNA damage, viral genome
maintenance, and regulating the expression of immune response genes.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.955847
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Baedyananda et al. 10.3389/fcimb.2022.955847
observing the impact on genome instability could expand our

understanding of the carcinogenic role of HPV16 E1. In addition,

the association between the expression of some cellular genes

mentioned above and various stage of cervical specimens should

be determined to confirm the phenomenon truly occur in human.

Taken together, uncovering the cellular and molecular mechanisms

underlying HPV16 E1-mediated cervical carcinogenesis is therefore

critical to identify novel biomarkers and/or druggable targets and/or

a possible forth HPV oncoprotein beside E5, E6 and E7.
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