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In response time (RT) research, RT outliers are typically excluded from statistical analysis
to improve the signal-to-noise ratio. Nevertheless, there exist several methods for outlier
exclusion. This poses the question, how these methods differ with respect to recovering
the uncontaminated RT distribution. In the present simulation study, two RT distributions
with a given population difference were simulated in each iteration. RTs were replaced
by outliers following two different approaches. The first approach generated outliers
at the tails of the distribution, the second one inserted outliers overlapping with the
genuine RT distribution. We applied ten different outlier exclusion methods and tested,
how many pairs of distributions significantly differed. Outlier exclusion methods were
compared in terms of bias. Bias was defined as the deviation of the proportion of
significant differences after outlier exclusion from the proportion of significant differences
in the uncontaminated samples (before introducing outliers). Our results showed large
differences in bias between the exclusion methods. Some methods showed a high rate
of Type-I errors and should therefore clearly not be used. Overall, our results showed that
applying an exclusion method based on z-scores / standard deviations introduced only
small biases, while the absence of outlier exclusion showed the largest absolute bias.

Keywords: response time, reaction time, outlier exclusion, simulation study, mental chronometry

INTRODUCTION

Response time is the variable of interest in a large number of studies in (cognitive) psychology
(Donders, 1969; Posner, 1978; Luce, 1991). Response times are collected in tasks stressing the
subjects to respond as fast and as accurate as possible. Therefore, they are measures of maximum
performance equally weighting response speed and accuracy. Nevertheless, performance varies
across trials of such tasks and the response time of some trials typically strongly differ from
the response time distribution. Such trials / response times are called outliers (Cousineau and
Chartier, 2010) and are usually excluded from data analysis. However, there exist several methods
for excluding outliers with different assumptions and formulas. The aim of this article is to compare
different methods for excluding outliers and to investigate how these methods perform with respect
to recovering the uncontaminated response time distribution. Before describing response time
outliers more precisely, some expressions that will be used in the present article should be specified.
The terms response time and reaction time (RT) are both typically used for describing the response
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latency in (psychological) studies. In this article, the terms will
not be distinguished. We will refer to the RT distribution not
containing outliers as “valid,” “genuine,” or “uncontaminated”
RTs. For the RT distribution distorted by outliers, the term
“contaminated” RT distribution will be used. Furthermore, we
only focus on methods, which exclude outliers, but do not
discuss methods which correct outlying RTs by transforming the
contaminated RT distribution or by replacing them.

To clarify, which observations are outliers, there are two
major questions: I. What is the probability of observing such
an (extreme) RT (Ratcliff, 1993; Motulsky and Brown, 2006;
Leys et al., 2013)? II. What is the underlying (cognitive) process
leading to the occurrence of such a RT (Luce, 1991; Ratcliff,
1993; Cousineau and Chartier, 2010)? As one will see, both
questions overlap to a certain degree, and outlier exclusion
methods differ in how they address these issues. Outliers can be
divided into short and long outliers (Ratcliff, 1993), i.e., outliers
at the left and right tail of the RT distribution (also labeled as
fast and slow outliers). For the underlying process leading to
short outliers, a response without appropriate processing of the
stimulus is discussed. Short outliers are therefore also referred to
as “fast guesses” (Whelan, 2008; Cousineau and Chartier, 2010).
In two-alternative forced choice tasks, the mean accuracy of
short outliers should therefore be around 0.5 as a consequence
of guessing. In contrast, possible underlying processes for the
occurrence of long outliers are lack of attention or distraction
(Whelan, 2008; Cousineau and Chartier, 2010). As such processes
are certainly not of interest, outliers are removed to ensure that
the analyzed RT distribution only consists of data generated by
the (cognitive) processes intended to be examined1. Excluding
outliers should therefore increase the signal-to-noise ratio (given
that the proportion of correctly excluded outliers is larger than
the proportion of incorrectly excluded valid RTs). To sum up,
in view of question II, short and long outliers are thought to
be based on different processes as the genuine RT distribution.
Note at this point, that although the processes underlying short
and long outliers may differ, the methods for excluding outliers
treat them in a comparable fashion and are mainly based on the
probability to observe such a RT (question I; see section “Outlier
Exclusion Methods”). RTs derived from different processes that
are not at the tails of the RT distribution (no short and long
outliers) cannot be detected by outlier exclusion methods, which
exclude outliers based on an upper and lower threshold (Whelan,
2008). Consequently, following question I, for such methods it
is only possible to account for outliers at the tails of the RT
distribution. As it is not possible to account for outliers “inside”
the RT distribution, question II can only be reasonably applied
to outliers at the tails. When applying an exclusion method
based on an upper and lower threshold, one has to stay with the
assumption that all RTs inside the distribution emerge from the
same processes. Therefore, question II is naturally restricted to
outliers, which can be detected by means of question I. As almost
any outlier exclusion method is calculated by means of the RT

1Note that there is of course research, in which these processes are of interest, e.g.,
investigating decreasing attention during an experiment. Whether there is a need
to exclude outliers has to be decided according to the topic of interest.

distribution, several candidates for RT distributions should be
mentioned first.

The typical RT distribution shows a bell-like shape with a tail
at the right side. Valid RTs, i.e., RTs generated by the process
of interest, should not start before 100–200 ms (Luce, 1991;
Whelan, 2008), because there is at least the need to encode
the stimulus and execute the response (Ashby and Townsend,
1980). Therefore, valid RTs are physiologically limited to a
minimum boundary at the left side of the distribution. However,
there is a debate which distribution provides the best fit to
empirical observed RTs.

As empirical RT distributions are typically skewed, they
should not be described by a Normal (Gaussian) distribution
(Ratcliff, 1979; Whelan, 2008; Cousineau and Chartier, 2010).
As an alternative, the Gamma distribution was discussed for
modeling RTs (McGill and Gibbon, 1965). This distribution
assumes a series of different, discrete stages, which the cognitive
system processes one after the other. It theoretical focus rests
on sensory processing in psychophysics (McGill and Gibbon,
1965) and may therefore not be suitable to account for the broad
range of (cognitive) processes involved in RT tasks. A further
candidate is the Wald distribution (Luce, 1991). It describes
the density of a diffusion process to a single boundary (Matzke
and Wagenmakers, 2009). This renders it unclear how the Wald
distribution can account for more complex tasks with two (or
more) responses (boundaries) (Matzke and Wagenmakers, 2009).
A widely used approach to describe RT distributions is the Ex-
Gaussian distribution (Ratcliff, 1979; Whelan, 2008; Marmolejo-
Ramos et al., 2015; Moret-Tatay et al., 2018). It is composed of
the sum of a Gaussian (Normal) and an Exponential distribution.
Despite there is a lack of detailed theoretical derivation, it fits
empirical RT distributions very well (Ratcliff, 1979; Whelan,
2008; Marmolejo-Ramos et al., 2015). The distribution consists
of three parameters: µ (mean of the Gaussian distribution),
σ (standard deviation of the Gaussian distribution) and τ

(decay rate of the Exponential distribution). Considering the
interpretation of these parameters, recent research showed that
they cannot be uniquely mapped to distinct processes (e.g.,
Matzke and Wagenmakers, 2009; Rieger and Miller, 2020).
The Gaussian part of the distribution causes the “bell-shape,”
while the Exponential part causes the tail at the right side of
the distribution. As these distributions themselves do not take
outliers into account, common methods for outlier exclusion
assess, how a single RT deviates from the RT distribution. The
more a RT deviates from the majority of RTs, the more likely
it is an outlier. A set of outlier exclusion methods based on RT
distributions will be discussed in the following section in detail.

The methods for outlier exclusion, which will be examined in
this simulation study, are introduced in the following sections.
First, one option to treat RT outliers is to not treat them at all,
i.e., analyzing the data without excluding outliers. This method
may only be appropriate if one can be convinced that the
same (cognitive) processes may generate the entire observed RT
distribution (compare question II). However, the theoretical and
methodical prerequisites of this assumption should be extensively
taken into account beforehand, rendering it hard to draw such a
conclusion. Instead, if one could be sure that outlier influences
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are equal across experimental conditions, it may be appropriate
to not correct for outliers, as their influence is negligible when
comparing experimental conditions. Nevertheless, as for the
underlying (cognitive) processes, it is questionable how one can
(reliably) specify the influence of outliers in observed RT data.

One possibility to correct for RT outliers is to exclude outliers
above or below a priori determined absolute cutoffs. This method
is often called truncation or trimming (Bush et al., 1993; Ratcliff,
1993; Ulrich and Miller, 1994). As these terms are sometimes
also used for outlier exclusion methods based on relative cutoffs,
we remain to refer to this method as outlier exclusion based
on (absolute) cutoffs. The rationale to use absolute cutoff values
is simple: as there is a minimum RT for meaningful responses
(Ratcliff, 1993; Whelan, 2008), “fast guesses” can be eliminated
by excluding all RTs below this criterion. For slow outliers, RTs
beyond a threshold of e.g., 2 s should clearly be no performance at
maximum and consequently excluded. Nevertheless, defining the
absolute cutoff values is not trivial, therefore requiring informed
a-priori knowledge about the overall response speed in a given
task. Furthermore, it is not clear if all outliers fall outside the
cutoff boundaries and if all valid RTs fall within these boundaries
(Ulrich and Miller, 1994). This problem cannot be solved by
exclusion methods based on relative cutoffs as well. However,
these methods provide a standardized approach to determine
the cutoff values.

There are several outlier exclusion methods based on relative
cutoffs. For the present simulation study, we will focus on cutoffs
based on the mean ±2 or 3 standard deviations (SDs) and the
Tukey outlier exclusion method (Tukey, 1977). These methods
have in common that the cutoffs are calculated using descriptive
statistics of the observed RT distribution. A widely used method
(see Leys et al., 2013) is to exclude RTs which are larger/smaller
than the mean ±2 SDs (Miller, 1991; Zimmerman and Williams,
2000). About 95% percent of values from a Normal distribution
lie within the mean ±2 SDs (although empirical RT distribution
are clearly not normal distributed). Consequently, this method
should exclude a similar proportion of RTs when applied
to different data sets (with similar distribution). Considering
methods based on the mean and SD, there is a variety of cutoffs
used in RT research (cf. Miller, 1991). To compare different
thresholds, we also tested a method based on the mean ±3
SDs, which should exclude about 0.5% of data points given a
Normal distribution. Note that the maximum possible z score
in a sample depends on the sample size (Shiffler, 1988). Using
a criterion based on the mean ±3 SDs (z = 3), the sample
size must be >10 to possibly detect any outlier. Given that RT
distributions are skewed, critics for these methods mention a
different likelihood of exclusion for fast and slow RTs (Miller,
1991). Furthermore, as outlier influence mean and SD, the outlier
exclusion criterion is influenced by the (magnitude of) outliers
itself (Miller, 1991). Tukey (1977) provided another method for
outlier exclusion based on relative cutoffs, which is often referred
to as Tukey’s method. It is the criterion used in visual outlier
detection using boxplots (Dawson, 2011) and is calculated with
means of the interquartile range (IQR). The IQR is defined as
the difference of the third quartile (0.75 quantile) minus the first
quartile (0.25 quantile) of a distribution. Quartiles are robust

against outliers at the tails (in large samples). Tukey’s method
identifies RTs as outlier, which are larger than the third quartile
plus 1.5 times the IQR (> q0.75 + 1.5 × IQR) or smaller than
the first quartile minus 1.5 times the IQR ( < q0.25 − 1.5× IQR).
How conservative this method is (how many RTs are excluded
as outliers) is strongly influenced by the sample size (Dawson,
2011). Similar to the idea of a criterion based on SDs and Tukey’s
method, we will also test in the present simulation study two
methods directly based on quantiles. For example, by excluding
RTs smaller than the 0.025 quantile and larger than the 0.975
quantile, the proportion of excluded RTs can be exactly set to 5%.
As a consequence of excluding fixed proportions, these methods
will always exclude valid RTs if no outliers are present in the data
(Ulrich and Miller, 1994).

A recent paper strongly suggested to use the Median Absolute
Deviation (MAD) method for outlier exclusion (Leys et al.,
2013). The authors regarded this method as especially robust,
as the median is not influenced by outliers and the exclusion
criterion is therefore not affected by outliers (Leys et al., 2013).
Note that other authors argued to not use the median for
describing RT data, as sample medians overestimate population
medians in small skewed samples (Miller, 1988). The MAD
is defined as: MAD = b×Med(

∣∣xi −Med(x)
∣∣). b is a constant

(usually b = 1.4826; based on the assumption of a normal
distribution; see also Rousseeuw and Croux, 1993). This constant
is multiplied with the median (Med) of the absolute value (|
|) of all observations minus the median of all observations
(Med(x)). To sum up, the MAD consists of the median of absolute
deviations from the (sample) median times a constant. RTs are
excluded as outliers if they exceed the median±2.5×MAD (Leys
et al., 2013, suggested a threshold of 2.5 as default).

A recent review of outlier detection and treatment
suggested an outlier exclusion method for RT data based
on a transformation approach (Cousineau and Chartier, 2010).
The rationale is to achieve a symmetrical shape for the RT
distribution after transformation, resulting in the same exclusion
probability for long and short outliers. Following formula is used

for the transformation: yi =
√

xi−min (x)
max(x)−min (x)

For each transformed value, the square root of the
untransformed value minus the minimum value of the sample
divided through the sample range is calculated. The fraction
bounds all values between 0 and 1, while the square root enlarges
small values (Cousineau and Chartier, 2010). Afterwards, these
values are z-transformed and values exceeding a particular
z-score (e.g., 2 or 3) are excluded. For the present simulations,
we excluded RTs associated with a z-score larger/smaller than
±2 as outliers.

In view of the different approaches these procedures use, the
aim of this study is to compare different RT outlier exclusion
methods using simulations. Several studies using simulations
already investigated the influence of outliers on RTs including
methods to correct for this influence. In the following section,
we will outline which research questions these studies addressed,
leading to the questions, which the present study aims to
clarify. The influence of outlier exclusion on RT distribution
is generally recognized. Nevertheless, there is no consensus
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whether the influence on the RT distribution due to the presence
of outliers or due to bias introduced by outlier exclusion is
more adverse. Cousineau and Chartier (2010) argued to use
a conservative threshold to exclude outliers, i.e., keeping the
original data with a high probability. Using such a criterion,
the probability to erroneously exclude valid RTs is low. Outlier
exclusion should also be taken with care when comparing
conditions with different sample sizes (Miller, 1991). In such a
situation, the outlier exclusion can introduce an asymmetric bias.
Ratcliff (1993) investigated several outlier exclusion methods
as well as the influence of outliers on the RT distribution.
The results showed a reduction of power to detect a mean
difference when outliers were present. Outlier exclusion could
compensate for this reduction. Furthermore, outlier exclusion
did not increase the Type-I error rate. In contrast to Cousineau
and Chartier (2010), a lower cutoff threshold for slow outliers
(associated with a higher proportion of excluded RTs) was
associated with a lower reduction in power (Ratcliff, 1993).
Overall, Ratcliff suggested to exclude outliers based on specific
absolute cutoff values, which should be derived according to
characteristics of the RT distribution. Ulrich and Miller (1994)
investigated the influence of outlier exclusion based on excluding
observations according to a lower and upper cutoff in general.
They systematically varied the proportion of excluded fast and
slow RTs and investigated (among others) changes on summary
statistics and statistical power. Their simulations showed a large
bias on summary statistics, but a beneficial effect on statistical
power. Appropriate exclusion cutoffs could compensate for the
reduction of power due to outlier. The authors recommended
in view of the large bias on summary statistics to not exclude
outliers at all or to use conservative thresholds which exclude
only a few RTs to ensure that the proportion of excluded valid
RTs is very small (Ulrich and Miller, 1994). In view of the
competing recommendations, i.e., to exclude outliers (Ratcliff,
1993) or to not exclude / exclude a tiny proportion at most
(Ulrich and Miller, 1994; Cousineau and Chartier, 2010), the
present study aims to further examine whether applying an
outlier exclusion method introduces a larger bias compared to
retaining the outliers and whether this bias depends on the
applied outlier exclusion method. Therefore we compared several
outlier exclusion methods with the absence of outlier exclusion,
covering widely used methods (cf. Leys et al., 2013) as well as
recently suggested approaches (Cousineau and Chartier, 2010;
Leys et al., 2013). In contrast to earlier research (Ratcliff, 1993;
Ulrich and Miller, 1994), which used fixed effect magnitudes
for determining the influence of outlier exclusion on power,
we varied the effect on a continuous scale, ranging from 0 to
100 ms. Influences of outliers as well as exclusion methods can
be accordingly compared throughout a broad range of possible
effects. This allows to investigate whether the bias of outlier
exclusion as well as the bias of outliers (i.e., no exclusion of
outliers) differ across the absence of any effect up to very
large effects. The design of the present simulation study will be
introduced in the following section.

To assess the influence of outlier exclusion, sets of two RT
distributions with a given (population) difference were simulated,
valid RTs were replaced by outliers, and different outlier exclusion

methods were applied. Success of outlier exclusion was measured
in terms of bias. Bias was defined as the deviation of the
proportion of rejected Null hypotheses per exclusion method
from the respective proportion in the valid samples.

To assess how successful different methods can exclude
RT outliers, it is necessary to determine outliers. A possible
approach are simulation studies, in which one can simulate
genuine RT distributions and outliers by pre-defined parameters.
Accordingly, this simulation study rests on three lists of data:
(1) Valid RT distributions. (2) Contaminated RT distributions
including outliers. (3) RT distributions with outliers excluded
based on the different methods. Therefore, the influence of
outliers can be assessed by comparing the 1st and the 2nd
list, and the success of outlier exclusion can be assessed by
comparing the 3rd and the 1st list. For details of the simulation
process, see the section “Methods.” Instead of investigating single
RT distributions, common RT research tests RTs in different
conditions against each other. To account for such designs,
we compared the outlier exclusion methods in terms of bias,
i.e., how accurate they are in correctly rejecting or keeping
the Null hypothesis. We simulated two RT distributions per
simulation iteration, which were drawn from two populations.
The population parameters were the same except of a µ difference
between both conditions. These distributions were added to
the 1st list (valid RT distributions). Subsequently, randomly
chosen valid RTs were replaced with outliers (2nd list) and
the contaminated distributions including outliers were corrected
according to the several methods (3rd list). As every iteration
consisted of a single RT distribution per condition (drawn
from populations only differing in µ), we directly tested RT
samples and not mean RTs. One iteration can therefore be
seen as RT data from two samples representing two different
conditions. Nevertheless, as we aggregated the results per one
given population difference across a range of iterations (5000
iterations, see the section “Methods”) with randomly varying
mean, skewness, outlier proportion and variability, the results
should be generalizable to the broad range of available RT
distribution characteristics in empirical research.

METHODS

The simulations and statistical analyses were performed using
R, version 4.0.2 (R Core Team, 2020). Graphics were created
with help of the package “ggplot2” (Wickham, 2016). Data was
processed with the help of the package “data.table” (Dowle and
Srinivasan, 2021). Scripts and simulated data were uploaded
to the Open Science Framework2. Simulated data is thought
to represent RTs in two different conditions. The (population)
mean difference between both conditions was systematically
varied. Afterwards, outliers replaced valid RTs according to two
different approaches and were excluded using several methods.
The proportion of significant t-tests was compared between
the outlier exclusion methods. Figure 1 describes the design

2https://osf.io/ky8c3/
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FIGURE 1 | Flowchart of the present simulation study. In a first step (list 1),
valid response time distributions were simulated in two conditions. The
distributions in both conditions were simulated with equal parameters N, σ

and τ. In the second condition, a constant (diff ) was added to µ of the first
condition. In the second step (list 2), randomly chosen valid RTs were
replaced by outliers. In the third step (list 3), outliers were excluded according
to the different outlier exclusion methods. The figure shows three methods as
examples. Excluded response times are highlighted with black color. The
resulting distributions were compared with t-tests.

of the simulation approach used. Details are provided in the
following sections.

Simulating Response Time Distributions
We used Ex-Gaussian distributions to simulate RTs in accordance
with earlier work (Miller, 1991; Ratcliff, 1993). Trial number (N),

mean (µ), standard deviation (σ) and exponential decay rate
(τ3) were simulated from Uniform distributions (U) using the
following boundaries:

N ∼ U(20, 100)

µ ∼ U(250, 500)

σ ∼ U(20, 50)

τ ∼ U(150, 200)

The unit of the RT distributions (µ, σ, τ) was the millisecond.
The boundaries of N were chosen to represent a broad range
of available trial numbers in RT research. The boundaries of
µ, σ and τ were chosen to capture the range of the chosen
parameters in former studies simulating RT distributions (Miller,
1991; Ratcliff, 1993; Whelan, 2008). We did not vary the
parameters of the Ex-Gaussian distribution in a factorial manner
to ensure the generalizability of the results across a broad range
of parameter combinations. N, σ and τ were held constant
for each pair of simulated samples. Accordingly, each pair of
samples can be thought of representing the RTs of two conditions
drawn from the same distribution, the only parameter varying
between conditions is µ. In condition 1, µ was drawn from
the Uniform distribution described above. In condition 2, a
fixed value was added to µ of condition 1, representing the
(population) treatment effect. The fixed value (difference between
both conditions) was varied from 0 to 100 ms in 1 ms steps,
resulting in 101 possible differences. For each difference, 5000
pairs of samples were simulated, resulting into a total number of
101× 5000 = 505,000 pairs of samples.

Simulating Outliers
The simulation of outliers was adapted from a function in the
HDDM tool (Wiecki et al., 2013). The number of outliers were
simulated using a Uniform distribution:

n
(
outlier

)
∼ U (0, 0.1× N)

N denotes the trial numbers. The resulting number was rounded
to an integer. As a consequence of this approach, the samples
included between 0% and 10% outliers. We restricted the upper
boundary of outliers to 10%, as we would expect RT data with
more than 10% of outliers to not represent “performance at
maximum.” RT data with a higher amount of outliers should be
excluded as a whole from the analysis. Outliers were classified
into short and long outliers. The proportion of long outliers was
simulated using a Beta distribution:

P
(
long outlier

)
∼ B(α = 5, β = 1)

This results in an expected value of an outlier being a long
outlier of about 0.83. The larger probability for long outliers was

3As the function to simulate Exponential distributions in R takes the rate instead
of τ as input, the reciprocal of the simulated τ was taken (rate = 1 / τ).
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thought to reflect the physiologically restricted smaller range of
possible RTs for short outliers. The remaining outliers were short
outliers: P

(
short outlier

)
= 1− P(long outlier). The respective

proportions for long and short outliers were multiplied with
n(outlier) and rounded to integers, resulting in the number of
short and long outliers. We tested two different approaches to
simulate long and short outliers.

Approach 1 - Tails
Approach 1 was adopted from the HDDM tool (Wiecki et al.,
2013) and simulated outliers at the tails of the distribution.
Accordingly, long outliers were always larger than the maximum
valid RT and short outliers were always smaller than the
minimum valid RT. Such an approach is thought to represent a
definition of outliers purely based on the probability to observe
such RTs (compare question I in the Introduction). Accordingly,
the definition of outliers is based on the same mechanisms as the
outlier exclusion. The following formulas were used:

RT
(
long outlier

)
= U (0, 1)× 2000ms+max(RT)

RT
(
short outlier

)
= U (0, 1)× (min (RT)− 100ms)+ 100ms

U denotes a Uniform distribution, min(RT) and max(RT)
the minimum and maximum of the sample RT (before
introducing outliers).

Approach 2 - Overlap
Approach 2 was adopted from Ulrich and Miller (1994), who
simulated fast and slow outliers independent of the valid
RT distribution. Outliers could therefore overlap with the
distribution of valid RTs. This approach can be therefore thought
to represent an outlier definition based on different cognitive
processes independent of the genuine RT distribution (compare
question II in the Introduction). In contrast to Ulrich and
Miller (1994), who used a fixed µ for the generation of outliers,
we calculated this parameter depending on the characteristics
of the valid RT distribution. This was a consequence of valid
RTs simulated with not fixed, but varying parameters. Ex-
Gaussian distributions were used for the simulation of outliers in
accordance to the simulation of valid RTs. The following formulas
were used:

RT
(
long outlier

)
= ExGaussian(µ = mean

(
valid RTs

)
+ 700ms,

σ = U (20ms, 50ms)+ 10ms,

τ = U (150ms, 200ms))

RT
(
short outlier

)
= ExGaussian(µ = mean

(
valid RTs

)
− 200ms,

σ = 20ms,

τ = 10ms)

ExGaussian denotes an Ex-Gaussian distribution, U a
Uniform distribution. µ was calculated depending on the mean
of the distribution of valid RTs. The values of 700 ms and 200 ms
were chosen to ensure the same µ difference between valid RTs
and long and short outliers as in Ulrich and Miller (1994). σ for

long outliers was based on the possible range of σ for valid RTs+
10 ms, to ensure broader variability in the processes underlying
long outliers. σ for short outliers was set constant due to the
physiological limited variability in short outliers (“fast guesses”).
τ for long outliers was simulated in accordance with valid RTs,
while it was fixed to a small value for short outliers to achieve a
more symmetric distribution. An exponential tail is not plausible
in small outliers based on guessing. If the generation of (short)
outliers resulted in a negative RT value, it was multiplied with -1.

In both approaches, outliers were simulated separately in the
two conditions, but the number of outliers was fixed across
conditions. Randomly chosen valid RTs were replaced by outliers.
Consequently, sample size did not differ between the valid
and respective contaminated RT distributions. Throughout the
article, we will refer to approach 1 as approach “tails” and to
approach 2 as approach “overlap.”

Outlier Exclusion Methods
We used ten different methods to exclude outliers: no exclusion,
mean ±2 SD, mean ±3 SD, quantiles (excluding the outer 5
or 10% of the distribution), a priori defined cutoffs, the Tukey
outlier criterion, the MAD method (assuming normal distributed
data), an adapted MAD method, in which the constant b is
adjusted according to the Ex-Gaussian distribution and the
transformation method suggested by Cousineau and Chartier
(2010). As it is difficult to define cutoff values a priori given
the variety of possible parameters of the simulated distributions,
we did not use a fixed upper cutoff for the method using
a priori defined cutoffs. The upper cutoff was set to the
mean RT + 1000 ms. The lower cutoff was set to 200 ms
according to the assumption of necessary encoding and response
execution time (Ashby and Townsend, 1980; Luce, 1991; Whelan,
2008). Table 1 shows an overview of the outlier exclusion
methods, including the information how the thresholds for
outlier exclusion were defined.

Statistical Analyses
For each pair of samples an independent t-test was calculated
to compare the two conditions. We assumed variance equality,
as the same σ was used to simulate both conditions4. T-tests
showing a p-Value of p < 0.05 were considered significant.
The proportion of significant t-tests given an outlier exclusion
method (given the population difference) served as metric for
the performance of this method. For estimating the influence
of applying an outlier exclusion method on the likelihood to
obtain a significant difference in comparison with other factors
(effect size, sample size, sample variability), we used a linear
regression to predict the t-Values of the calculated t-tests. The
(population) difference, the outlier exclusion method (as factor
with reference level “no exclusion”) and the mean SD and trial
number averaged across both conditions served as predictors.

4We assumed the simulated data to represent RTs drawn from the same population
(only differing in µ) in two conditions. Therefore, the simulated RTs (including
outliers) in both conditions were of same size. Nevertheless, due to outlier
exclusion, the corrected samples could differ in size. As paired t-tests require equal
sample sizes in both conditions, we could not perform paired t-tests and had to
stay with the assumption of variance equality.
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TABLE 1 | Overview of the outlier exclusion methods.

Method Lower threshold Upper threshold Additional information

no - - no correction for outliers

cutoff 200 ms mean + 1000 ms

2sd mean – 2 × SD mean + 2 × SD

3sd mean – 3 × SD mean + 3 × SD

tukey1.5 q0.25 – 1.5 × IQR q0.75 + 1.5 × IQR

q10 q0.05 q0.95

q05 q0.025 q0.975

MAD median – 2.5 × MAD median + 2.5 × MAD b = 1.4826

MAD_adjusted median – 2.5 × MAD median + 2.5 × MAD b = 1.1020

transform –2 2 z-transformation of square root of uniformized RTs

Method names are abbreviations. q0.25 denotes the 0.25 sample quantile. IQR represents the interquartile range and MAD the median absolute deviation. For the MAD
method, b is calculated assuming normality of data, i.e., b = 1/z0.75, while z0.75 depicts the 0.75 quantile of a Normal distribution. For the MAD_adjusted method, b is
calculated as follows: b = (1/z0.75 + 1/qexp0.75) / 2. qexp denotes the quantile function of an Exponential distribution.

We do not report p-Values, as the number of simulated samples
/ iterations was manually set to a large value and all p-Values
consequently were smaller than the common threshold (α = 0.05).
Finally, we calculated the bias for each outlier exclusion method.
The term “bias” is used in the present work to denote a systematic
error introduced by outlier exclusion. The present meaning of
this term therefore deviates from statistics, in which it refers to
the bias of an estimator. The bias of an exclusion method m for a
given population difference diff was defined here as:

bias(m|diff ) = psign
(
m|diff

)
− psign(valid|diff )

psign denotes the proportion of significant t-tests, either after
excluding outliers according to a specific method (m) or in valid
RTs (valid) for a given population difference (diff ). A positive bias
score indicates a larger proportion of significant differences after
outlier exclusion compared to valid RTs, a negative bias score a
smaller proportion.

RESULTS

Sample Characteristics
The descriptive statistics of the simulated samples show the
impact of outliers on the RT distribution. Samples including
outliers showed a mean shifted to the right, a larger SD and
a considerable larger variability in SDs. Table 2 provides a
summary of descriptive statistics for valid RTs and contaminated
RTs separately for both outlier simulation approaches. Outliers
distorted the sample characteristics, and the influence on the
sample variability was especially strong. This distortion was
more pronounced when outliers were simulated at the tails of
the distribution, which also showed up in the skewness of the
RT distributions. The skewness for valid samples was 1.49 for
both approaches, while the skewness of contaminated samples
was 3.05 for tails and 1.98 for overlap. The influence of the
several exclusion methods on the sample characteristics including
skewness is shown in Supplementary Material A.

Comparison of Outlier Exclusion
Methods
The methods differed in the proportion of RTs they excluded
/ identified as outliers. We will report the average of both
outlier simulation approaches (tails, overlap) for the proportion
of excluded RTs, as they (mostly) differed only slightly. Methods
with more pronounced differences will be addressed separately
in the Discussion when comparing the outlier simulation
approaches. For the excluded proportions separately for both
outlier simulation approaches, tails and overlap, please see
Supplementary Material A. Naturally, “no exclusion” excluded
0% of the data. The “cutoff” method excluded on average
2.2% of the data, “2sd” excluded on average 5.4%, “3sd” 2.8%
and “tukey1.5” 7.9% of the data. “q05” identified 6.8% of
the data as outliers, while the average proportion of excluded

TABLE 2 | Statistics of the valid RTs and contaminated RTs in millisecond by the
two different approaches to simulate outliers.

Sample Statistic Mean SD Min Max

tails

valid RTs mean 600.07 90.71 360.38 873.95

SD 175.57 27.24 64.30 409.49

N 60.02 23.08 20 100

contaminated RTs mean 667.81 101.28 360.38 1060.02

SD 374.86 117.35 78.76 939.19

overlap

valid RTs mean 599.96 90.81 362.97 902.26

SD 175.64 27.26 71.81 427.38

N 60.01 23.11 20 100

contaminated RTs mean 636.28 93.67 362.97 965.34

SD 247.43 45.50 71.81 513.03

Valid RTs are the simulated samples before introducing outliers, contaminated RTs
the samples after introducing outliers. N is the same in valid and contaminated
RTs and therefore omitted for contaminated RTs. tails and overlap indicate the
respective outlier simulation approach. The distribution of the descriptive statistics
mean, SD and N is described by Mean, SD, minimum (Min) and maximum
(Max) value. The given statistics are aggregated over iterations and conditions /
pairs of samples.
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outliers was 12.0% for “q10.” For these methods, one would
naturally expect them to exclude 5% or respectively 10% of
the data. Nevertheless, especially in small samples, there can be
deviations from these expected values due to rounding issues
(e.g., 32 × 0.05 = 1.6; an amount of 1.6 RTs cannot be excluded).
The “MAD” method excluded on average 10.9% of the data,
while the “MAD_adjusted” method excluded on average 15.0%
of the data. The excluded proportion of RTs was 6.0% for the
“transformation” method.

Several factors such as effect size, sample size or sample
variability determine the likelihood to obtain significant
differences, whether they are valid (i.e., true differences) or
invalid (i.e., false positive results). In order to estimate the
influence of the several outlier exclusion methods on the
likelihood to obtain a significant result in comparison to the
influence of these other factors, we performed a regression
analysis. We predicted the t-Values of the tests comparing the
two conditions in each simulation iteration with a linear multiple
regression by the given size of the population difference, the
exclusion method (as factor with reference level “no exclusion”)
and the mean SD and sample size of both conditions. Table 3
provides the estimated values of this model. Note that the
data of both outlier simulation approaches was merged for
estimating this model for the sake of brevity. Separate models for
both approaches are shown in the Supplementary Material B.
According to the coding of the methods variable, each estimated
coefficient of a method depicts how the average t-Value of a
method exceeds the average t-Value of no outlier exclusion.
T-values decreased with increasing variability and increased with
increasing sample size. The given population difference was the
strongest predictor (coefficient with the largest t-value), while the
largest coefficient of the predictors “Outlier Exclusion Methods,”
“MAD_adjusted” (t = 791.4), indicated an influence nearly as
large as that of the predictor sample size (t = 800.1). Accordingly,
the choice of the outlier exclusion method “MAD_adjusted”

TABLE 3 | Results of the model predicting t-values.

Coefficient β t SE

Intercept –0.988 –468.0 0.002

given difference 0.033 2342.8 <0.001

Sample SD –0.002 –462.6 <0.001

Sample N 0.014 800.1 <0.001

Method (reference = no exclusion):

cutoff 0.340 186.9 0.002

3sd 0.406 223.3 0.002

q05 0.415 228.2 0.002

transform 0.679 373.6 0.002

q10 0.688 378.9 0.002

2sd 0.691 380.4 0.002

tukey1.5 0.955 525.7 0.002

MAD 1.171 644.5 0.002

MAD_adjusted 1.438 791.4 0.002

F(12, 10099987) = 606000; R2 = 0.419.
Method names are abbreviations (see Table 1). SE = Standard Error. The model
was estimated with the merged data of both outlier simulation approaches.

compared to no exclusion influenced the probability to reject the
Null hypothesis similar to a change of the sample size and more
than changing the sample SD.

In order to assess this variation among outlier exclusion
methods, we compared them with regard to their bias, i.e., how
the proportion of significant t-tests deviated from the proportion
of significant t-tests in the samples of valid RTs. A positive sign
of this bias index indicates a bias towards rejecting the Null
hypothesis, a negative sign indicates a bias towards keeping the
Null hypothesis compared to the decision based on valid RTs.

Figure 2 shows the bias of the different exclusion methods,
when outliers were simulated at the tails of the distribution.
The bias ranges from about 25% to -50%. The methods
“MAD_adjusted,” “MAD” and “Tukey1.5” show a large Type-I
error, i.e., they revealed more significant differences as there were
in fact present in the (uncontaminated) data. No outlier exclusion
showed a large Type-II error. Especially for large population
differences, the presence of outliers concealed actually present
differences. The transformation method, “2sd” and “q10” showed
the smallest bias, while “cutoff,” “3sd,” and “q05” produced Type-
II errors for large population differences. Nevertheless, similar to
no outlier exclusion, these methods never provided Type-I errors.

Changing the outlier simulation approach to simulating
outliers overlapping with the genuine RT distribution influenced
this pattern in several ways. Figure 3 shows the bias when
outliers were simulated overlapping with the RT distribution.
First, in comparison to Figure 2, the range of the bias decreased.
This was clearly a consequence of a reduction of Type-II errors
for no outlier exclusion for large population differences from
roughly 50% to 25%. For the methods with large Type-I errors,
“MAD_adjusted,” “MAD,” and “Tukey1.5,” the pattern remained
nearly the same. “2sd” performed worse compared to Figure 2,
showing an increased Type-I error rate similar to the “transform”
and “q10” methods. “q05” and “3sd” showed smaller biases
compared to Figure 2. The “cutoff” method was strongly affected
by the different outlier simulation approach with a large increase
of Type-II errors.

Table 4 shows the average bias of each exclusion method
separately for both outlier simulation approaches as well as
the mean bias of both approaches. The less positive the bias
score, the lower is the bias in terms of Type-I errors. The less
negative the bias score, the lower is the bias in terms of Type-
II errors. The lower the absolute value of the bias score, the
lower is the average bias of both types of errors. Overall, “q10”
showed the smallest absolute bias, while the absolute bias for
“2sd” and “transform” was comparable small. The absolute bias
was elevated for “3sd,” “q05,” and “cutoff.” Nevertheless, these
methods showed negative biases, i.e., only Type-II errors, but no
Type-I errors and can therefore be considered conservative. The
other exclusion methods showed substantial positive biases, i.e.,
biases towards Type-I errors. The absence of outlier exclusion
(method “no”) showed the largest absolute bias associated with a
large number of Type-II errors. Considering differences between
the two outlier simulation approaches, tails and overlap, there
were only little. Methods showing a large absolute bias (“no,” the
“MAD” methods, “Tukey1.5”), showed those large biases for both
approaches. Considering the other methods, there were some
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FIGURE 2 | Bias for the outlier simulation approach tails. The x-axis shows the population difference between the two conditions. A positive bias value indicates a
larger proportion of significant t-test after outlier exclusion compared to valid RTs, a negative value a smaller proportion. The black line serves as reference (=no bias).
Method names are abbreviations (see Table 1).

minor differences. The methods “2sd,” “cutoff,” “transform,” and
“q10” showed larger absolute biases for the simulation approach
overlap, while “3sd” and “q05” performed worse in terms of
absolute bias for the approach tails. Nevertheless, the direction
of the bias stayed the same and these methods outperformed the
absence of outlier exclusion as well as the “MAD” and “Tukey1.5”
methods consistent for both approaches.

To investigate outlier exclusion more general, we also
examined the correlations between the bias of the different
methods and the proportion of excluded outliers per method.
For equally weighting positive (Type-I error) and negative (Type-
II error) bias values, we calculated these correlations with the
absolute values of the bias. As the “no exclusion” method
clearly performed worst and therefore showed a large impact
on the magnitude of these correlations, we calculated these
correlations without the “no exclusion” method. When outliers
were simulated at the tails of the distribution (r = 0.662) the
association of the proportion of excluded outliers and bias
was more pronounced compared to the approach of simulating
outliers overlapping with the genuine RT distribution (r = 0.446).
Nevertheless, for both approaches, excluding a higher proportion
of RTs was associated with a larger bias.

DISCUSSION

The present study compared the bias of several RT outlier
exclusion methods using a simulation approach. Bias was defined

as the deviation of the proportion of significant differences a
method revealed from the proportion of significant differences
in the uncontaminated samples. A positive sign of this bias
index indicates a bias towards rejecting the Null hypothesis, a
negative sign indicates a bias towards keeping the Null hypothesis
compared to the decision based on valid RTs. Two different
approaches to simulate outliers were used. In the first approach,
tails, outliers were simulated at the tails of the RT distribution
and were consequently always faster or slower than genuine
RTs. In contrast, outliers in the second approach, overlap, were
simulated independent of the genuine RT distribution and could
therefore overlap with valid RTs. To briefly summarize the results
of the present simulation study, excluding no outliers showed
the largest absolute bias, while the exclusion method based on
the outer 10% quantiles of the distribution showed the smallest
absolute bias averaged across both outlier simulation approaches.
Nevertheless, beyond the absolute size of the bias, further points
should be considered before recommending a specific outlier
exclusion method. These are the type of the resulting error
and differences between the two chosen approaches to simulate
outliers. The points will be addressed in the following sections
before comparing the exclusion methods in more detail.

Type of Errors Associated With Outlier
Exclusion
The bias of the several tested exclusion methods (see Table 4) was
negative or positive. While the absolute value of the bias indicates
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FIGURE 3 | Bias for the outlier simulation approach overlap. The x-axis shows the population difference between the two conditions. A positive bias value indicates
a larger proportion of significant t-test after outlier exclusion compared to valid RTs, a negative value a smaller proportion. The black line serves as reference (=no
bias). Method names are abbreviations (see Table 1).

the size of bias, the sign of the bias reflects the type of error
a method is associated with. A positive bias indicates a Type-
I error, i.e., the method revealed more significant differences
than there were in fact present (in the valid samples). Such a
method is therefore biased towards erroneously rejecting the Null
hypothesis, i.e., indicating an effect in the absence of a population
difference. A negative bias in contrast indicates a Type-II error.
These methods tend to keep the Null hypothesis, even when
significant differences are present in the population. In view of
the problem concerning false-positive results in psychology (cf.
Simmons et al., 2011), a Type-I error has to be considered more
critical compared to a Type-II error. Several methods tended to
overestimate the proportion of significant differences, leading to
a critical number of Type-I errors. For “Tukey1.5,” “MAD,” and
especially “MAD_adjusted,” the errors range from 10% up to
about 25% of false-positive results (see Figures 2, 3). Accordingly,
these methods cannot be recommended.

Commonalities and Differences Between
the Outlier Simulation Approaches
The chosen outlier simulation approach, i.e., simulating outliers
at the tails of the distribution or simulating outliers overlapping
with the valid RT distribution, clearly influenced the shape
of the contaminated samples compared to valid samples (see
Table 2). Nevertheless, the bias showed a similar pattern for

both approaches with some more pronounced differences for
particular methods, which can be explained by the differential
way outliers affect the RT distributions in these simulation

TABLE 4 | Average bias of outlier exclusion methods according to the different
approaches to simulate outliers.

Bias

Method mean tails overlap

no –0.212 –0.265 -0.160

MAD_adjusted 0.202 0.202 0.202

MAD 0.156 0.155 0.157

tukey1.5 0.110 0.108 0.113

cutoff –0.087 -0.050 –0.124

q05 –0.059 –0.080 –0.038

3sd –0.049 –0.068 –0.030

transform 0.033 0.012 0.053

2sd 0.031 –0.001 0.062

q10 0.030 0.023 0.036

Methods are sorted according to the absolute value of the column mean. The less
positive the bias score, the lower is the bias in terms of Type-I errors. The less
negative the bias score, the lower is the bias in terms of Type-II errors. The largest
and smallest absolute values of the bias per column are depicted in bold. Tails and
overlap indicate the respective outlier simulation approach, mean depicts the mean
of the columns tails and overlap. Method names are abbreviations (see Table 1).
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approaches. Considering the global differences, the contaminated
samples for the approach tails were considerably more skewed
compared to the approach overlap. The skewness for valid
samples was 1.49 for both approaches, while the skewness
of contaminated samples was 3.05 for tails and 1.98 for
overlap. Consequently, samples were more strongly distorted
when outliers were simulated at the tails of the distribution.
This could be the reason for the especially large (negative)
bias of no outlier exclusion for the approach tails. As outlier
influences in the tails simulations were stronger than in the
overlap simulations, retaining outliers was associated with a
large likelihood of Type-II errors. The more extreme values for
long outliers following the approach tails may have been the
reason for the smaller bias of the “cutoff” method compared
to the overlap outlier simulation approach. For the “cutoff”
method, we defined the upper exclusion threshold as the mean
+ 1000 ms. Considering the outlier simulation approach overlap,
a fixed constant of 1000 ms to exclude outliers may have
been too large to detect the outliers at the right tail, resulting
in a lower proportion of excluded RTs. Furthermore, “2sd”
committed more Type-I errors when outliers were simulated
overlapping with the genuine RT distribution. As sample
variation was smaller for the approach overlap compared to
tails, the exclusion thresholds based on SDs accordingly had
to be attenuated following this simulation approach, resulting
in a higher proportion of excluded RTs (for the proportion of
excluded RTs separately for the outlier simulation approaches
see Supplementary Material A). Methods excluding higher
proportion of RTs as outliers tended to be biased towards
Type-I errors. Overall, the comparison between these simulation
approaches suggest that the distribution of the outliers (tail
or overlap) partially determines the bias of the exclusion
methods. Despite subtle differences, MAD and Tukey methods
consistently showed in both simulation approaches a large
positive bias, i.e., a high likelihood of Type-I errors, whereas
“2sd,” “3sd,” “q10,” and “transform” methods had consistently
lower absolute biases.

Comparison of Outlier Exclusion
Methods
First, and in line with earlier studies (Ulrich and Miller, 1994;
Cousineau and Chartier, 2010), one should never use methods,
which exclude a large proportion of RTs as outliers. The
proportion of excluded outliers correlated positively with the
magnitude of bias and the methods excluding a large proportion
of outliers (“Tukey1.5,” “MAD,” and “MAD_adjusted”) showed
a high rate of Type-I errors (except for “q10,” see below). The
effect (the population difference) being simulated in the Gaussian
part of the Ex-Gaussian distributions could explain why methods
excluding a large proportion at the right tails show large Type-
I errors. Methods like “MAD” excluded a large part of the right
exponential tail, “normalizing” the distribution, and therefore
pronouncing the differences simulated in the Gaussian part of
the RT distribution. Note that these methods should not be used
nevertheless, as they already show a large bias when there is no
difference present (population difference = 0 in Figures 2, 3).

On the other hand, low-biased methods like “2sd,” “q10,” or
“transform” more precisely excluded only the simulated outliers
exceeding the right tail of the Ex-Gaussian distribution. As
empirical RT distributions are not normal distributed (Ratcliff,
1979; Whelan, 2008; Cousineau and Chartier, 2010), they could
preserve the empirical (or in this study: simulated) shape of
the RT distribution and the impact of this shape on differences
between (experimental) conditions revealed by the t-tests.
Overall, these methods associated with a low absolute bias (“2sd,”
“transform,” and “3sd”), excluded a considerable lower number
of outliers. This is a consequence of exclusion methods based on
standard deviations (/ z-scores), which are strongly influenced by
outliers (Miller, 1991), resulting in elevated exclusion thresholds.

Besides the mere proportion of excluded RTs, it has to be
considered, at which tail of the distribution methods exclude
outliers. The method “q10” excluded a large proportion of
RTs as outliers (12%, more than “Tukey1.5” and “MAD”),
but showed the smallest average bias of all methods across
simulation approaches. Due to its symmetrical implementation,
this method excluded the same proportion of outliers at the
left and right tail of the distribution. Excluding outliers at the
right tail accordingly had more adverse effects than excluding
outliers at the left tail of the distribution. (“Tukey1.55” and
the “MAD” methods had a large impact on the skewness
in terms of “normalizing” the distribution by cutting a large
part of the right tail. Compare Supplementary Material A).
Note at this point that despite the small influence on bias,
excluding a large proportion of RTs as outliers (at the left
tail) could reduce power due to shrinking the sample size
(see Ulrich and Miller, 1994). Although it was associated with
the lowest absolute bias, we would not recommend to use
the “q10” method. Methods excluding fixed proportions show
no flexibility considering the amount of outliers present in
the data. Accordingly, there is no chance to not exclude RTs
if there are no outliers present in the data. For example,
imagine a situation where all RTs are valid, i.e., no outliers
are present in the data. The “q10” method would still exclude
a high proportion of RTs, and all of them would be valid
RTs (Ulrich and Miller, 1994; Cousineau and Chartier, 2010).
The same naturally applies to the “q05” method, although
to lesser extent.

Furthermore, we would recommend to exclude outliers. The
absence of outlier exclusion produced a large proportion of
Type-II errors and was therefore associated with a large absolute
bias. Even if Type-I errors are more critical, Type-II errors
should be minimized as well if possible. Some outlier exclusion
methods could reduce the Type-II error rate without introducing
Type-I errors. We are aware that there was no method clearly
outperforming the other ones, but several methods showing
a small bias (“q10,” “2sd,” “transform,” and “3sd”). Given the
inflexibility of methods excluding fixed proportions (“q10”), the
methods excluding RTs as outliers based on z-scores (“2sd,”
“3sd,” and “transform”) were associated with a low (absolute)

5A possible adjustment of the Tukey’s method for skewed data was for example
given by Hubert and Vandervieren (2008). Following their suggested adjustment,
they showed the Tukey’s method to exclude a much smaller proportion of the data
as outliers for skewed distributions.
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bias and clearly outperformed the absence of outlier exclusion
in terms of absolute bias. Although several exclusion methods
based on SDs / z-scores similarly induced only small biases,
following Simmons et al. (2011), we emphasize to select
the outlier exclusion method in advance of the study in an
a-priori fashion. Trying different outlier exclusion methods
inflates the researcher’s degree of freedoms, therefore increasing
the probability of a false-positive finding (Simmons et al.,
2011). Furthermore, we would also emphasize researchers in
agreement with the conclusions of Ulrich and Miller (1994)
to report the proportion of excluded RTs separately for each
condition and which proportion were excluded at the left
and right tail of the distribution. This should enable the
possibility to roughly estimate the influence of the outlier
exclusion process.

Limitations
The validity of the results we report partially depended on
the simulation approach we used including the assumptions
we made. We sampled RT distributions using an Ex-Gaussian
distribution with specific ranges for the parameters N, µ, SD
and τ. Nevertheless, it is necessary for a simulation study to
specify given properties in advance and the parameter ranges
we used were based on former simulation studies (Miller,
1991; Ratcliff, 1993; Whelan, 2008). Furthermore, outliers were
simulated by randomly varying the percentage of outliers to
generalize the results across different percentages of outliers after
aggregation. Former studies used fixed percentages of outliers
and varied them in a factorial way (Ratcliff, 1993; Ulrich and
Miller, 1994). To the best of our knowledge, evidence about the
precise outlier distribution is lacking. We therefore considered
all possible proportions being equally likely (therefore we used
a Uniform distribution). Of course, other outlier simulation
approaches based on more specific distribution assumptions
would have also been possible. The usage of t-tests to detect the
significant differences between simulated RT distributions can
be criticized as well. The simulated RT distributions were Ex-
Gaussian and consequently skewed. Normality as requirement of
a t-test therefore was violated. Due to possible different sample
sizes in the two conditions (after outlier exclusion), paired t-test
could not be performed, which would have been the optimal
test considering the design used, that is two conditions sampled
from two populations only differing in µ. Nevertheless, if the
implementation of the t-tests had influenced the results, such an
influence should be comparable for the different outlier exclusion
methods, therefore rendering a bias concerning the comparison
of the different methods implausible. The results were based
on the direct comparison of single RT distributions and not
means in different conditions. The reported outcome accordingly
represented statistical comparisons on this single sample level.
An implementation of a design comparing outlier exclusion
methods on the level of multiple samples and their respective
means (multiple RT distributions per conditions) would be more
complex. It is questionable how strong the impact of such a
more complex design on the results would be. How conservative
methods exclude outliers should not be affected by the design of
the simulation study. The aggregated means per sample should

be influenced in a comparable fashion as for the results reported
in the present study. Finally, it remains unclear how accurate
the chosen approach to simulate outliers was. The approach was
adopted from the outlier simulation approach of the HDDM
tool (Wiecki et al., 2013) and the approach used by Ulrich and
Miller (1994). The assumption of a higher probability of outliers
at the right tail of the RT distribution (compared to the left tail)
is plausible due to a physiologically caused minimum of RTs at
the left tail of the RT distribution (Ashby and Townsend, 1980).
Nevertheless, the precise probabilities of short and long outliers
as well as the formulas to calculate the outlier values certainly
influenced the results of the present simulation study. However,
we compared two different approaches to determine outliers,
which showed comparable results.

CONCLUSION

To summarize, following the results of the present simulation
study we would suggest to exclude outliers based on z-scores /
SDs. The absence of outlier exclusion showed the largest negative
bias, i.e., an increased likelihood of Type-II errors, and should
therefore not be recommended. Some methods should not be
used as well (“Tukey1.5,” “MAD,” and “MAD_adjusted”), as they
produced a large number of Type-I errors. The methods based on
SDs / z-scores showed considerable small (absolute) biases, few
Type-I errors and excluded only small proportions of RTs. We
would further highly recommend to define the outlier exclusion
method a-priori.
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