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Abstract

Background Carboxylated osteocalcin (Gla‐OC) participates in bone remodeling, whereas the

undercarboxylated form (Glu‐OC) takes part in energy metabolism. This study was undertaken to

compare the blood levels of Glu‐OC and Gla‐OC in nonobese, healthy obese, and prediabetic

volunteers and correlate it with the metabolic markers of insulin resistance and early markers

of inflammation.

Methods Nonobese (body mass index [BMI] <30 kg/m2; n = 34) and obese subjects (30 <BMI

<40 kg/m2; n = 98), both sexes, aged 25 to 65 years, were divided into healthy control, normal

weight subjects, healthy obese, and obese with biochemical markers of prediabetes. The sub-

groups with obesity and low or high Gla‐OC or Glu‐OC were also considered for statistical

analysis. After 2 weeks of diet standardization, venous blood was sampled for the determination

of Gla‐OC, Glu‐OC, lipid profile, parameters of inflammation (hsCRP, interleukin 6, sE‐selectin,

sPECAM‐1, and monocyte chemoattractant protein 1), and adipokines (leptin, adiponectin,

visfatin, and resistin).

Results Gla‐OC in obese patients was significantly lower compared to nonobese ones

(11.36 ± 0.39 vs 12.69 ± 0.90 ng/mL, P = .048) and weakly correlated with hsCRP (r = −0.18,

P = .042), visfatin concentration (r = −0.19, P = .033), and BMI (r = −0.17, P = .047). Glu‐OC

was negatively associated with fasting insulin levels (r = −0.18, P = .049) and reduced in predia-

betic individuals compared with healthy obese volunteers (3.04 ± 0.28 vs 4.48 ± 0.57, P = .025).

Conclusions Decreased blood concentration of Glu‐OC may be a selective early symptom of

insulin resistance in obesity, whereas the decreased level of Gla‐OC seems to be associated with

the appearance of early markers of low grade inflammation accompanying obesity.
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1 | INTRODUCTION

Osteocalcin (OC or bone Gla protein, BGP) and matrix Gla

protein (MGP) were the first members of the growing family of vitamin

K‐dependent carboxylated proteins synthesized outside the liver and

found not to be involved in coagulation.1 Osteocalcin is released into
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the circulation when new bone is formed and is considered a marker

of bone turnover.2 It was later identified as being secreted under nor-

mal, nonpathological conditions. The mature OC protein is small (49

amino acids in humans) and contains 3 glutamate residues, which once

γ‐carboxylated are responsible for its binding to calcium and hydroxy-

apatite. In turn 2 conserved cysteine residues of this protein form the
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intramolecular disulfide bond, which contributes to stabilizing its

three‐dimensional structure upon binding of its γ‐carboxylated gluta-

mate (Gla) residues to calcium.3 The undercarboxylated OC (Glu‐OC)

does not appear to bind calcium but could be involved in interactions

with its recently identified G protein‐coupled receptor family C group

6 member A (GPRC6A).4 It has been demonstrated that it is expressed

in many tissues including: liver, skeletal muscle, brain, testis, bone and

pancreatic β‐cells.5–7 Gprc6a−/− mice have more white fat compared

with wild‐type (WT) animals. They are glucose intolerant, insulin resis-

tant, develop hepatic steatosis and have reduced testosterone levels.8

All these observations suggested that GPRC6A mediates metabolic

function of osteocalcin. Recent studies have shown that carboxylated

osteocalcin (Gla‐OC) interacts with hydroxyapatite crystals and

modulates its growth, whereas the Glu‐OC has a hormone‐like

function in energy metabolism, fertility and brain development.4,9–11

The administration of exogenous Glu‐OC into WT mice decreased

their fat mass and serum triglyceride (TG) levels. In white adipose

tissue, Glu‐OC inhibited the expression of lipolysis mediating genes:

triglyceride lipase (Tgl) and perilipin, but activated the expression of

adiponectin and its target genes.12 Osteocalcin affected the expres-

sion of Pgc1a, Nrf1, and Mcad ‐ genes implicated in energy consump-

tion and mitochondrial biogenesis in muscles,13 whereas in the brown

adipose tissue expression of genes involved in thermogenesis: Ucp1

and Pgc1a was increased.12 Osteocalcin was demonstrated to affect

glucose uptake in skeletal and vascular muscle cells.14 It has also

been reported that osteocalcin can directly modulate glucose trans-

port in adipocytes, suppress the secretion of proinflammatory cyto-

kines and induce the secretion of anti‐inflammatory cytokines as

adiponectin.15 Oury et al10 have recently demonstrated that

disrupting osteocalcin signaling leads to glucose intolerance in both

humans and mice, providing evidence that there is some similarity

between mouse and human OC in mediated pathways. Several

available papers present osteocalcin studies in humans.16–19 Patients

with type 2 diabetes have been reported to have a lower concentra-

tion of serum osteocalcin compared to healthy counterparts.17

Semenkovich and Teitelbaum18 suggested existing a cycle in which

the metabolic events of diabetes downregulate osteoblast function,

which in turn leads to less secretion of osteocalcin and a greater

aggravation of insulin resistance. However, results from human

studies have been inconsistent and often have implicated total

osteocalcin association with insulin sensitivity adipokines and inflam-

matory markers.19

This study was undertaken to compare the blood level of Glu‐OC

and Gla‐OC in nonobese, obese (prediabetic) and healthy obese (with-

out biochemical parameters' pathology) volunteers and correlate them

with the metabolic markers of insulin resistance and early markers of

inflammation.
2 | MATERIALS AND METHODS

2.1 | Subjects and anthropometry

The study protocol and the entire study were approved by the Bioeth-

ics Committee of the Jagiellonian University in Cracow (written
consent, opinion no. KBET/82/B/2009) functioning according to the

third edition of the Guidelines on the Practice of Ethical Committees in

Medical Research issued by the Royal College of Physicians of London.

All participants gave written informed consent prior to participation in

the study. Consent was obtained from each subject after full explana-

tion of the purpose and nature of all used procedures. The study was

conducted in accordance with the Code of Ethics of theWorld Medical

Association (Declaration of Helsinki).

Obese (30 <body mass index [BMI] <40 kg/m2, n = 98) and

nonobese (BMI <30 kg/m2, n = 34) women and men, aged 25 to

65 years were included into the study. The exclusion criteria were con-

ditions that might affect the metabolic parameters and response to

diet such as: chronic diseases (cardiovascular diseases, cancer, chronic

inflammation), diabetes mellitus and other metabolic disorders, severe

kidney or liver failure, dietary restrictions or supplementation with:

vitamins, β‐carotene or n‐3 polyunsaturated fatty acids, therapy with:

hormones, anti‐inflammatory drugs or other drugs known to affect

lipid or glucose metabolism, smoking or excessive use of alcohol, preg-

nancy or lactation. All patients enrolled into this study were asked to

follow an isocaloric diet with a low amount of antioxidative vitamins,

polyunsaturated fatty acids and alcohol for 2 weeks before and during

the study. The diet instructions were presented to each patient and

diet compliance was controlled every 2 weeks by a dietitian.

Body weight was measured to the nearest 0.1 kg with a digital

scale, and height was measured to the nearest 0.5 cm using a wall‐

monitored stadiometer. Waist and hip circumferences were obtained

with a tape measure. Body composition was estimated with the

bioelectrical impedance method using Segmental Body Composition

Analyser TANITA BC 418 MA (Tanita, Japan). Blood pressure was

measured in the supine position after 10 minutes of rest with an

automatically inflating cuff.
2.2 | Sample collection and analysis

After 2 weeks of diet standardization, venous blood samples were

drawn after 12 hours overnight fasting for measurements of basal

plasma Gla‐OC, Glu‐OC, total cholesterol, low‐density lipoprotein

(LDL) cholesterol, high‐density lipoprotein (HDL) cholesterol, TGs,

hsCRP, interleukin 6 (IL‐6) and soluble adhesion molecules: E‐selectin

(sE‐selectin), monocyte chemoattractant protein 1 (MCP‐1), soluble

platelet/endothelial cell adhesion molecule 1 (sPECAM‐1/CD31),

vascular cell adhesion protein 1 (sVCAM‐1) and adipokines (leptin,

adiponectin, visfatin, and resistin). To control kidney function,

estimated glomerular filtration rate (eGFR) was calculated using the

MDRD equation.

On 2 other different days, subjects underwent a 2‐hour oral

glucose tolerance test (OGTT) and an 8‐hour oral lipid tolerance test

(OLTT). Fasting and postprandial blood samples were drawn for OGTT

and OLTT and analyzed for concentrations of glucose, insulin, free

fatty acids (FFAs), TGs and glucose‐dependent insulinotropic polypep-

tide (GIP). Blood was sampled without stasis through an indwelling

catheter into syringes. Within 30 minutes, blood samples for all esti-

mated parameters (except FFAs) were centrifuged at 1000x g for

10 minutes at 4°C, and the supernatants were immediately stored at

−80°C until analysis.
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OGTT was conducted according to the World Health Organization

(WHO) and International Diabetes Federation (IDF) guidelines. Tests

were performed during morning hours (8:00–11:00 AM) after a 10‐

hour overnight fasting. Blood samples were collected at the following

5 time points: baseline (fasting), and then 30, 60, 90 and 120 minutes

after the ingestion of 75 g glucose dissolved in 250 mL water.

OLTTwas performed as described before.20 All patients were asked

not to drink alcohol or drinks containing caffeine for 3 days before the

test. The day before the OLTT, a last low‐fat meal was eaten by the

participants before 6 PM (2 slices of bread without any fatty products

and unsweetened tea). Only water was allowed to drink thereafter. Test

breakfasts were given at 7:30 AM, and postprandial studies were

performed from 7:30 AM to 5:30 PM. Test breakfast meal (caloric content

1018 kcal, consisting of: 73% of fat, 16% of protein and 11% of

carbohydrates) contained: light bread − 50 g, butter − 20 g, cream

cheese − 60 g, pork loin roast − 100 g and mayonnaise − 40 g. Venous

blood samples were taken 5 times before the meal (fasting sample,

0 hours) and postprandial at time points: 2, 4, 6 and 8 hours after

breakfast.
2.3 | Blood analyses

Plasma Gla‐OC and Glu‐OC were determined by ELISA (Takara, Japan).

Intra‐ and interassay coefficients of variation were: <4.8% and <2.4%

(Gla‐OC), <6.66%, and <9.87% (Glu‐OC), respectively. Total

osteocalcin level was calculated as the sum of Gla‐OC and Glu‐OC.

Plasma glucose, total cholesterol, HDL cholesterol, and TGs were

assayed by automated, enzymatic colorimetric methods (Allmed,

Poland) using the MaxMat Analyzer. The intra‐ and interassay variabil-

ity coefficients were as follows: 2.3% and 3.5% (glucose), 1.4% and

3.4% (TGs), 1.4% and 3.8% (total cholesterol), 2.1% and 2.8% (HDL

cholesterol), respectively. LDL cholesterol was calculated from mea-

sured values of total cholesterol, TGs, and HDL cholesterol according

to the Friedewald formula.

FFAs concentration was measured immediately in non frozen

plasma by enzymatic quantitative colorimetric method (Roche

Diagnostics GmbH, Germany).

The determination of serum insulin was performed by

immunoradiometric method (DIAsource, ImmunoAssays, Belgium)

and read using the gamma counter (LKB Instruments). Within‐ and

between‐run imprecision CVs were 2.1% and 6.5%, respectively. Basal

insulin resistance was estimated using homeostasis model of assess-

ment (HOMA‐IR).21 Insulin sensitivity post oral glucose load was deter-

mined using an oral glucose insulin sensitivity index (OGIS) proposed

by Mari et al,22 which can be downloaded as a calculator for Excel

spread sheets from the web page http://webmet.pd.cnr.it/ogis.

To measure plasma concentrations of incretin—glucose dependent

insulinotropic polypeptide (GIP), human GIP ELISA (Human Total GIP;

EMD Millipore, St Charles, MO) was used. The inter‐ and intra‐assay

coefficients of variation were: 1.8% to 6.1% and 3.0% to 8.8%,

respectively.

Plasma leptin, adiponectin (adipocyte complement‐related protein

of 30 kDa, Acrp 30), resistin, IL‐6, sE‐Selectin, MCP‐1, and sVCAM‐1

were determined using ELISA (R&D Systems Europe, Ltd, Abingdon,

United Kingdom). Within‐ and between‐run imprecision CVs were
3% and 4% (leptin), 4% and 6% (adiponectin), 5.3% and 8.2% (resistin),

6% and 7% (IL‐6), 6% and 8% (sE‐Selectin), 5% and 6% (MCP‐1), and

3.5% and 7.7% (sVCAM‐1), respectively. Visfatin (Nampt/PBEF) and

sPECAM‐1/CD31 were measured by ELISA (BioVendor, Czech

Republic). The inter‐ and intra‐assay CVs were 6% and 7% (visfatin),

1.7% and 7.4% (sPECAM‐1), respectively. CRP was determined by

the highly sensitive immunoturbidimetric method (APTEC Diagnostics

nv, Belgium). Within‐ and between‐run imprecision CVs were 1.66%

and 2.08%, respectively.
2.4 | Statistical analyses

The Shapiro‐Wilk test was used to test data for a Gaussian distribution.

Normally distributed data are presented as mean ± SEM otherwise as

median and interquartile range (IQR). Differences between the main

studied groups (obese vs nonobese) and the formed subgroups were

analyzed by unpaired t test, the Mann‐Whitney U test, or the

Kruskal‐Wallis test and the Dunn test (comparison of results between

multiple groups) for nonnormally distributed data. Continuous vari-

ables were log transformed if required. The Spearman rank correlation

was used to find association between variables. All analyses were

performed with Statistica software (StatSoft). The P < .05 was consid-

ered statistically significant. Areas under curves (AUC) during OGTT or

OLTT were calculated by the trapezoidal method.23
3 | RESULTS

The characteristics of the study population of nonobese and obese

participants is presented in Tables 1 and 2. Obese volunteers (n = 98)

differ from nonobese ones (n = 34) in regard to anthropometric mea-

surements: BMI (34.0 vs 28.4 kg/m2, P < .001), adipose tissue mass

(40.8% vs 35.0%, P < .001), and blood pressure (Table 1). Patients with

higher BMI also showed increased plasma leptin levels and fasting

insulin. Area under the OGTT and OLTT insulin concentration‐time

curve and basal insulin resistance index HOMA‐IR were also increased

in obese patients (Table 2). Subjects in both groups participating in the

study did not differ in: plasma fasting and postprandial lipid levels (total

cholesterol, LDL cholesterol, HDL cholesterol, TGs, and FFAs) as well

as GIP levels.

Serum hsCRP and IL‐6 were higher in obese subjects. Plasma

levels of ALT, AST, urea, and uric acid were also elevated in this group

of patients (Tables 1 and 2). In the whole group of obese patients in

comparison to nonobese subjects, the level of Gla‐OCwas significantly

lower, whereas there were no significant differences in total

osteocalcin as well as Glu‐OC content (Table 2). For further analysis,

the whole group of study participants (n = 132) was divided into 2

groups (Table 3) or 4 groups (Table 4) in accordance to the higher

Gla‐OC (>11.2 ng/mL) and the lower Gla‐OC (<11.2 ng/mL) level

based on the median value. We observed that the group with

lower Gla‐OC level (n = 66) demonstrated a lower amount of Glu‐

OC, and Gla/Glu ratio, which was accompanied by higher blood

concentrations of inflammatory cytokines: hsCRP and visfatin. In

this group of patients, lower levels of total and LDL cholesterol,

sPECAM‐1, urea, creatinine and higher eGFR were observed in

http://webmet.pd.cnr.it/ogis


TABLE 1 Characteristics of subjects participating in the study (anthropometric, biochemical, and lipid measurements)

Nonobese (n = 34) Obese (n = 98) P*

Age, y 48.05 ± 1.94 46.74 ± 1.15 n.s.

Sex, female (n) 27 72,00 n.s.

BMI, kg/m2 28.4 (2.2)† 34 (12.8) .000

WHR 0.87 (0.53) 0.89 (0.26) .537

Adipose tissue mass, % 35.0 (6.4) 40.8 (11.3) .000

Systolic BP, mm Hg 120 (24) 130 (52) .020

Diastolic BP, mm Hg) 80 (28) 85 (23) .010

APTT, s 29 (6.4) 29.0 (15.3) .908

Urea, mmol/L 4.4 (4.1) 5.0 (3.2) .030

Uric acid, mmol/L 240 (227.5) 302 (191.9) .020

ALT, U/L 17 (39) 24 (60) .001

AST, U/L 18 (12) 20 (45) .030

Total bilirubin, mmol/L 9.80 (21.5) 8.6 (12.4) .195

Creatinine, mmol/L 61.4 (36.5) 65.3 (31.1) .235

MDRD 91.8 (26.5) 91.4 (43.8) .621

Total cholesterol, mmol/L 5.38 ± 0.15‡ 5.54 ± 0.11 .986

HDL cholesterol, mmol/L 1.30 ± 0.03 1.31 ± 0.02 .997

LDL cholesterol, mmol/L 3.49 ± 0.14 3.55 ± 0.09 .765

Fasting NEFA, mmol/L 0.69 ± 0.03 0.76 ± 0.02 .141

AUC OGTT NEFA, mmol·L−1·min−1 155.24 ± 10.03 174.76 ± 8.56 .152

AUC OLTT NEFA, mmol·L−1·min−1 1546.02 ± 88.92 1554.73 ± 50.68 .429

Fasting triglycerides, mmol/L 1.31 ± 0.11 1.51 ± 0.07 .201

AUC OGTT triglycerides, mmol·L−1·min−1 615.98 ± 61.81 682.58 ± 33.11 .508

AUC OLTT triglycerides, mmol·L−1·min−1 3597.52 ± 374.66 3924.56 ± 193.02 .424

Selection of 2 subgroups: nonobese and obese participants. ALT indicates alanine transaminase; APTT, activated partial thromboplastin time; ASP, aspartate
transaminase; AUC, area under the curve; BMI, body mass index; BP, blood pressure; HDL, high‐density lipoprotein; LDL, low‐density lipoprotein; MDRD, an
estimated Glomerular Filtration Rate (eGFR) calculated from serum creatinine using the Modification of Diet in Renal Disease; NEFA, nonesterified fatty
acids; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test; WHR, waist‐to‐hip ratio.

*Significant difference between nonobese and obese group (unpaired t test or Mann‐Whitney U test for nonnormally distributed variables), P < .05.
†Median (interquartile range); all such values.
‡Mean ± SEM; all such values.
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comparison with subjects presenting Gla‐OC higher than 11.2 ng/mL

(Table 3). A weak negative correlation of Gla‐OC with: hsCRP

(r = −0.18, P = .042), visfatin concentration (r = −0.19, P = .033),

BMI (r = −0.17, P = .047) and eGFR (r = −0.31, P = .000) was found

(Table 5). No correlation of Gla‐OC with insulin resistance parameters

(fasting Insulin, HOMA‐IR or glucose levels) was found (Table 5). On

the contrary, Glu‐OC inversely correlated with fasting insulin level

and HOMA IR index (Table 5). Comparison of nonobese and obese

subjects regarding Gla‐OC levels (Table 4) showed that obese

patients with Gla‐OC >11.2 ng/mL presented higher Glu‐OC, total

and LDL cholesterol as well as sPECAM‐1 level than obese ones with

Gla‐OC <11.2 ng/mL. Such results were not observed in the group of

nonobese subjects (Table 4). Obese subjects with a Gla‐OC level less

than 11.2 ng/mL demonstrated higher plasma hsCRP level than

nonobese ones. Therefore, for further analysis, the group of obese

subjects was divided in accordance to metabolic disturbances. We

selected healthy obese subjects (without any metabolic disturbances)

(n = 29) and obese patients presenting symptoms of prediabetes with

or without atherogenic dyslipidemia (n = 32). The group with predia-

betes included subjects whose fasting plasma glucose was ≥5.6 and

<7.0 mmol/L or the level of glucose at the 2 hours of OGTT was
between 7.8 and 11 mmol/L. Lipid disturbances were considered when

serum fasting TG level was ≥1.7 mmol/L or the HDL cholesterol concen-

tration in men was <1.03 mmol/L and in women <1.29 mmol/L (Table 6).

Healthy obese volunteers presented higher Glu‐OC level than

those from the obese group with prediabetic disturbances (Table 6).

Insulin resistance symptoms (glucose, insulin, and HOMA‐IR) as well

as GIP levels were significantly higher in volunteers with prediabetes

(Table 6). The segregation of all obese subjects (n = 98) into 2 subgroups

based on Glu‐OC level (Glu‐OC<2.97 ng/mL and Glu‐OC>2.97 ng/mL)

revealed that subjects with lower levels of undercarboxylated

osteocalcin (n = 49) demonstrated increased fasting insulin levels and

insulin resistance indexHOMAIR (Table7), pointing todecreased insulin

sensitivity. On the contrary, no elevation of the investigated biochemi-

cal markers of inflammation was found in this group (Table 7).

Thus, the lower level of Glu‐OC in obese subjects characterized

the subjects with insulin resistance expressed by the increased fasting

plasma insulin and HOMA‐IR values, whereas the Gla‐OC level corre-

lated with the markers of inflammatory status indicated in our study

by the elevation of blood hsCRP and visfatin level.

Gla‐OC/Glu‐OC ratio had a tendency to distinguish obese healthy

individuals from prediabetic subjects (Table 6). The Gla‐OC/Glu‐OC

http://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0CFkQFjAH&url=http%3A%2F%2Fnkdep.nih.gov%2Flab-evaluation%2Fgfr%2Festimating.shtml&ei=ROPLVPuwJ4T5ULejgKgJ&usg=AFQjCNH0thshzRi8Gao4Beer6weY1_JXPQ


TABLE 2 Characteristics of subjects participating in the study (insulin sensitivity, inflammatory, and osteocalcin measurements)

Nonobese (n = 34) Obese (n = 98) P*

AUC OGTT Glucose, mmol·L−1·min−1 3378 (2564.5)† 3456 (1957) .250

AUC OLTT Glucose, mmol·L−1·min−1 9252 (2265) 9660 (2341.2) .140

AUC OGTT Insulin, mIU·mL−1·min−1 36609.93 ± 6199.96‡ 48561.10 ± 2745.49 .004

AUC OLTT Insulin, mIU·mL−1·min−1 31008 (122556) 42528 (110166) .001

Fasting GIP, pg/mL 23.3 (43.4) 26.1 (106.3) .199

AUC OGTT GIP, pg·mL−1·min−1 70796.84 ± 6411.65 71573.00 ± 2859.29 .480

AUC OLTT GIP, pg·mL−1·min−1 394982.14 ± 34515.85 365472.83 ± 14362.21 .350

Fasting glucose, mmol/L 5.22 ± 0.08 5.24 ± 0.05 .488

Fasting insulin, mIU/mL 12.49 ± 1.48 16.72 ± 0.78 .000

HOMA‐IR 2.06 (8.06) 3.45 (7.28) .000

OGIS, mL·min−1·m−2 387.11 ± 15.12 370.79 ± 7.65 .056

sE‐Selectin, pg/mL 32.95 (46.23) 37.23 (47.45) .073

MCP‐1, pg/mL 357.31 ± 16.85 366.58 ± 11.61 .310

sVCAM‐1, ng/mL 588.56 ± 22.37 590.81 ± 16.54 .548

sPECAM‐1, ng/mL 67.46 ± 2.91 72.43 ± 1.69 .634

hs CRP, mg/L 0.80 (5.75) 2.22 (8.41) .001

IL‐6, pg/mL 1.07 ± 0.12 1.63 ± 0.10 .001

IL‐8, pg/mL 2.13 (15.67) 2.21 (11.32) .767

TNF‐α, pg/mL 4.8 (11.4) 5.94 (9.22) .096

Leptin, pg/mL 27797.14 ± 1742.16 40657.72 ± 2438.83 .000

Adiponectin, ng/mL 6719 (8912) 6138 (12982) .441

Resistin, ng/mL 9.78 ± 0.52 10.11 ± 0.40 .730

Visfatin, ng/mL 1.09 ± 0.16 1.17 ± 0.08 .237

Total OC, ng/mL 15.92 ± 0.96 15.17 ± 0.47 .100

Gla‐OC, ng/mL 12.68 ± 0.90 11.36 ± 0.39 .048

Glu‐OC, ng/mL 3.23 ± 0.34 3.80 ± 0.24 .955

Gla‐OC/Glu‐OC, ng/mL 5.68 ± 0.81 3.83 ± 0.22 .281

Selection of 2 subgroups: nonobese and obese participants. AUC indicates area under the curve; GIP, glucose‐dependent insulinotropic peptide; Gla‐OC,
carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin; HOMA‐IR, homeostatic model assessment; hsCRP, high‐sensitivity C‐reactive protein;
IL‐6, interleukin 6; IL‐8, interleukin 8; MCP‐1, monocyte chemoattractant protein 1; OC, osteocalcin; OGIS, oral glucose insulin sensitivity index; OGTT, oral
glucose tolerance test; OLTT, oral lipid tolerance test; sPECAM‐1, soluble platelet/endothelial cell adhesion molecule 1; sVCAM‐1, vascular cell adhesion
protein 1, TNF‐α, tumor necrosis factor α.

*Significant difference between nonobese and obese group (unpaired t test or Mann‐Whitney U test for nonnormally distributed variables), P < .05.
†Median (interquartile range); all such values.
‡Mean ± SEM; all such values.
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ratio correlated: positively with fasting insulin and HOMA‐IR index in

obese subjects, negatively with inflammatory markers (hsCRP and

sVCAM) in obese prediabetic participants, and inversely with sE‐

selectin in nonobese patients (Table 8).

4 | DISCUSSION

Our study, performed on a healthy nonobese control group and obese

patients, demonstrated that despite a similar total osteocalcin level in

blood, a significantly lower concentration of Gla‐OC was found in

obese patients compared with nonobese subjects. The decreased con-

centration of Glu‐OC measured in the serum of obese patients charac-

terized subjects with insulin resistance expressed by the increased:

fasting insulin and glucose levels, postprandial (OLTT and OGTT

AUC) glucose concentration, higher HOMA‐IR value and with the

decrease in the osteocalcin. The Gla‐OC concentration was decreased
in patients with obesity and was associated with greater levels of the

inflammatory markers: hsCRP and visfatin24 as well as the E‐selectin

and s‐VCAM, which are markers of endothelial injury. Of note, no cor-

relation of osteocalcin forms with leptin, adiponectin or resistin was

observed in our group of obese volunteers.

Our findings confirmed that osteocalcin is an osteoblast‐specific

secreted protein, which participates not only in bone remodeling but

also in metabolism regulation. Bone remodeling is highly dependent

on the energetic status of the organism. For example, anorexia nervosa

and insulin‐dependent diabetes mellitus are associated with osteopo-

rosis, while a higher BMI is associated with increased bone mass.25

The hormones implicated in the regulation of food intake and energy

metabolism (ie, leptin, adiponectin and incretins) also regulate bone

mass.26–28

High‐fat diet (HFD) induces insulin resistance in osteoblasts and

leads to a decrease in circulating levels of the active form of



TABLE 3 Comparisons of 2 subgroups with a higher and lower than median value of Gla‐OC levels selected from the whole group of participating
subjects

Gla‐OC >11.2 ng/mL (n = 66) Gla‐OC <11.2 ng/mL (n = 66) P*

Gla‐OC, ng/mL 14.99 ± 0.45† 8.46 ± 0.2 .000

Glu‐OC, ng/mL 4.05 ± 0.24 3.3 ± 0.31 .008

Gla‐OC/Glu‐OC 5.02 ± 0.48 3.52 ± 0.23 .004

Total Osteocalcin, ng/mL 19.04 ± 0.47 11.78 ± 0.37 .000

Total Cholesterol, mmol/L 5.71 ± 0.12 5.28 ± 0.13 .014

LDL Cholesterol, mmol/L 3.78 ± 0.11 3.27 ± 0.10 .001

sPECAM‐1, ng/mL 74.45 ± 2.03 67.4 ± 2.05 .012

Visfatin, ng/mL 0.95 ± 0.09 1.34 ± 0.12 .038

hsCRP, mg/L 1.14 (9.18)‡ 2.61 (6.93) .046

Urea, mmol/L 5.1 (3.3) 4.6 (2.7) .024

Creatinine, mmol/L 66.3 (27.9) 63.3 (40.0) .02

MDRD 88.9 (38.8) 94.5 (51.1) .036

The calculated median was considered. Gla‐OC, indicates carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin; hsCRP, high‐ sensitivity
C reactive protein; MDRD, an estimated Glomerular Filtration Rate (eGFR) calculated from serum creatinine using the Modification of Diet in Renal Disease;
sPECAM‐1, soluble platelet/ endothelial cell adhesion molecule 1; LDL, low‐ density lipoprotein.

*Significant difference between Gla‐OC groups (unpaired t test or Mann‐Whitney U test for nonnormally distributed variables), P <0.05.
†Mean ± SEM; all such values.
‡Median (interquartile range); all such values.

TABLE 4 Comparisons of subgroups with a higher and lower than median value of Gla‐OC levels selected from nonobese and obese subjects

Nonobese (n = 34) Obese (n = 98)
P* P†

Gla‐OC <11.2 ng/mL
(n = 13)

Gla‐OC >11.2 ng/mL
(n = 21)

Gla‐OC <11.2 ng/mL
(n = 53)

Gla‐OC >11.2 ng/mL
(n = 45) Pa

Gla‐OC, ng/mL 8.32 (2.17) 15.14 (4.55)a 8.68 (2.30) 13.52 (2.96)b .000 P = .000a,
P = .000b

Glu‐OC, ng/mL 2.57 (0.48) 3.81 (2.88) 2.46 (1.74) 3.78 (2.89)b .0179 P = .0126b

Gla‐OC/Glu‐OC 3.37 (1.28) 3.98 (4.15) 3.43 (3.05) 3.60 (3.02) .0866 N/A

Total Osteocalcin,
ng/mL

11.85 (2.60) 19.59 (5.01)a 11.60 (3.06) 18.01 (3.39)b .000 P = .000a,
P = .000b

Total Cholesterol,
mmol/L

4.89 (1.02) 5.68 (1.28) 5.10 (0.98) 5.52 (1.46)b .0623 N/A

LDL Cholesterol,
mmol/L

3.20 (0.45) 4.07 (1.65) 3.25 (1.22) 3.78 (1.13)b .0108 P = .0226b

sPECAM‐1, ng/mL 68.25 (18.70) 72.78 (20.49) 64.68 (19.29) 81.01 (22.67)b .0215 P = .0292b

Visfatin, ng/mL 0.86 (0.85) 0.64 (0.49) 1.11 (0.99)c 0.80 (0.63) .0332 P = .0433c

hsCRP, mg/L 0.68 (0.84) 0.84 (1.06) 2.96 (3.54)d 1.48 (2.36) .0016 P = .0215d

Urea, mmol/L 3.90 (0.93) 4.80 (1.80) 4.85 (1.68) 5.40 (1.40)e .0104 P = .0049e

Creatinine, mmol/L 60.95 (6.55) 62.80 (9.90) 64.10 (10.15) 67.30 (8.25) .1039 N/A

MDRD 93.97 (8.15) 88.89 (18.38) 94.59 (19.61) 88.86 (19.41) .1326 N/A

The calculated median was considered. Gla‐OC indicates carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin; hsCRP, high‐sensitivity
C‐reactive protein; MDRD, an estimated Glomerular Filtration Rate (eGFR) calculated from serum creatinine using the Modification of Diet in Renal
Disease; sPECAM‐1, soluble platelet/endothelial cell adhesion molecule 1; LDL, low‐density lipoprotein; N/A, not applicable.

All values presented as median (interquartile range).

*P value for Kruskal‐Wallis ANOVA by ranks test.
†Significant difference between groups (Dunn test), P < .05.
aSignificant difference between nonobese Gla‐OC subgroups.
bSignificant difference between obese Gla‐OC subgroups.
cSignificant difference between nonobese Gla‐OC >11.2 ng/mL and obese Gla‐OC <11.2 ng/mL subgroups.
dSignificant difference between nonobese and obese groups with Gla‐OC <11.2 ng/mL.
eSignificant difference between nonobese with Gla‐OC <11.2 ng/mL and obese with Gla‐OC >11.2 ng/mL subgroups.
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osteocalcin (thereby decreasing insulin sensitivity in skeletal muscle

and WAT).29 Insulin resistance developed in osteoblasts is suggested

to be the result of increased levels of free saturated fatty acids, which
promote SMURF1‐mediated insulin receptor (INSR) ubiquitination and

its subsequent degradation in osteoblasts.7 These experiments support

the notion that insulin resistance in bone contributes to the deleterious



TABLE 5 Spearman rank correlation between Gla‐OC, Glu‐OC, and
metabolic variables in the entire group of subjects participating in the
study (n = 132)

r P

Gla‐OC and BMI −0.17 .047

Gla‐OC and hsCRP −0.18 .042

Gla‐OC and visfatin −0.19 .033

Gla‐OC and total cholesterol 0.22 .011

Gla‐OC and LDL cholesterol 0.3 .000

Gla‐OC and urea 0.25 .004

Gla‐OC and creatinine 0.28 .002

Gla‐OC and MDRD −0.31 .000

Glu‐OC and fasting insulin −0.18 .049

Glu‐OC and HOMA‐IR −0.17 .058

Statistically significant correlations: P < .05. BMI indicates body mass index;
Gla‐OC, carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin;
HOMA‐IR, homeostatic model assessment; hsCRP, high‐sensitivity C‐
reactive protein; MDRD, an estimated Glomerular Filtration Rate (eGFR)
calculated from serum creatinine using the Modification of Diet in Renal
Disease; LDL, low‐density lipoprotein.
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consequences of a long‐term HFD on whole‐body glucose homeosta-

sis, in part because it decreases the activity of osteocalcin.7

Osteocalcin is γ‐carboxylated on the glutamic acids (GLU) 13, 17,

and 20 of protein in mouse, and on GLU 17, 21, and 24 in humans.30

The carboxylation of osteocalcin and other Gla proteins occurs in

the lumen of the endoplasmic reticulum and involves 2 enzymes

γ‐glutamyl carboxylase and vitamin K epoxide reductase (VKORC1),
TABLE 6 Comparison between the subgroup of obese patients without bi
patients with biochemical markers of metabolic syndrome (prediabetic pati

Obese healthy (n = 29)

WHR 0.84 (0.23)†

Fasting glucose, mmol/L 4.98 ± 0.06‡

Glucose OLTT AUC, mmol/L·min−1 3282 (1173)

Glucose OGTT AUC, mmol/L·min−1 9240 (2168)

Fasting Insulin, μIU/mL 13.11 ± 1.02

Fasting GIP, pg/mL 23.73 (73.50)

OGIS, mL·min−1·m−2 381.59 ± 12.83

HOMA‐IR 2.73 (4.69)

Fasting TG, mmol/L 0.98 ± 0.05

TG OLTT AUC, mmol·L−1·min−1 2676.09 ± 180.80

TG OGTT AUC, mmol·L−1·min−1 434.50 ± 25.16

HDL Cholesterol, mmol·L−1 1.47 ± 0.04

Total osteocalcin, ng/mL 15.94 ± 1.10

Gla‐OC, ng/mL 11.46 ± 0.86

Glu‐OC, ng/mL 4.48 ± 0.57

Gla‐OC/Glu‐OC ratio 3.60 ± 0.47

AUC indicates area under the curve; GIP, glucose‐dependent insulinotropic
osteocalcin; HDL, high‐density lipoprotein; HOMA‐IR, homeostatic model ass
tolerance test; OLTT, oral lipid tolerance test; TG, triglycerides; WHR, waist‐to‐

*Significant difference between obese healthy and obese prediabetic group (unp
P < .05.

†Median (interquartile range); all such values.
‡Mean ± SEM; all such values.
which together constitute the vitamin K‐dependent cycle. This

posttranslational modification increases the affinity of osteocalcin

for Ca2+ and therefore for hydroxyapatite, the mineral component

of bone extracellular matrix (ECM). The vast majority of osteocalcin

secreted by osteoblasts gets trapped in bone ECM.30 In the serum,

both the carboxylated and the undercarboxylated forms of osteocalcin

are detected. The mechanism responsible for the differences in con-

centration and carboxylation status of osteocalcin has not yet been

precisely elucidated. Possible mechanisms include certain hormones

as well as both nutritional and non–nutritional‐related factors such

as: vitamin D, vitamin K or calcium.16 Complex carbohydrate meals

containing high amounts of fruits, vegetables and vitamins failed to sig-

nificantly affect circulating concentrations of postprandial osteocalcin.

Low as well as high carbohydrate meals resulted in decreased concen-

trations of osteocalcin over time. Henriksen et al31 showed that oral

ingestion of long chain triacylglycerides had no effect on osteocalcin

concentration.

In our studies, a decreased level of Gla‐OC in obese patients was

observed. The Gla‐OC concentration in serum inversely correlated

with markers associated with low‐grade inflammation in obesity:

hsCRP and visfatin. Our results are in agreement with in vitro studies,

which revealed anti‐inflammatory properties of osteocalcin. In experi-

ments conducted on primary‐cultured adipocytes, Hill et al15 showed

that both forms of osteocalcin suppressed the secretion of tumor

necrosis factor alpha into the media. However, only carboxylated

osteocalcin suppressed IL‐6 release. Both carboxylated and

uncarboxylated osteocalcin increased the secretion of adiponectin
ochemical markers of metabolic syndrome (“healthy obese”) and obese
ents)

Obese with metabolic disturbances
in prediabetes (n = 32) P*

0.92 (0.17) .044

5.69 ± 0.09 .000

4218 (1390) .000

10176 (1620) .000

19.11 ± 1.59 .001

32.80 (103.70) .044

327.94 ± 12.83 .005

4.48 (7.51) .000

1.53 ± 0.12 .000

4015.65 ± 305.51 .000

673.07 ± 51.75 .000

1.29 ± 0.06 .005

14.41 ± 0.72 .432

11.37 ± 0.59 .834

3.04 ± 0.28 .025

4.35 ± 0.32 .040

peptide; Gla‐OC, carboxylated osteocalcin; Glu‐OC, undercarboxylated
essment; OGIS, oral glucose insulin sensitivity index; OGTT, oral glucose
hip ratio.

aired t test or Mann‐Whitney U test for nonnormally distributed variables),



TABLE 7 Comparisons of 2 subgroups with a higher and lower than median value of Glu‐OC level selected from the obese group of participating
subjects

Obese (n = 98)

Glu‐OC >2.97 ng/mL (n = 49) Glu‐OC <2.97 ng/mL (n = 49) P*

Glu‐OC, ng/mL 5.35 ± 0.34† 2.08 ± 0.07 .000

Gla‐OC, ng/mL 11.55 ± 0.50 10.92 ± 0.60 .297

Total osteocalcin, ng/mL 16.91 ± 0.60 13.01 ± 0.63 .000

Fasting insulin, mIU/mL 15.46 ± 1.16 17.81 ± 1.02 .030

HOMA‐IR 2.96 (8.10)‡ 3.96 (5.21) .015

sE‐Selectin, pg/mL 38.34 (35.92) 33.61 (84.39) .260

hsCRP, mg/L 2.2 (8.10) 2.49 (7.90) .734

Visfatin, ng/mL 1.12 ± 0.11 1.25 ± 0.12 .054

IL‐6, pg/mL 1.50 ± 0.10 1.74 ± 0.18 .836

MCP‐1, pg/mL 371.47 ± 15.97 362.93 ± 17.09 .610

sVCAM‐1, ng/mL 624.90 ± 26.56 632.35 ± 24.48 .772

sPECAM‐1, ng/mL 72.83 ± 2.39 71.63 ± 2.40 .521

The calculated median was considered. Gla‐OC indicates carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin; HOMA‐IR, homeostatic model
assessment; hsCRP, high‐sensitivity C‐reactive protein; IL‐6, interleukin 6; MCP‐1, monocyte chemoattractant protein 1; sPECAM‐1, soluble platelet/
endothelial cell adhesion molecule 1; sVCAM‐1, vascular cell adhesion protein 1.

*Significant difference between Glu‐OC groups (unpaired t test or Mann‐Whitney U test for nonnormally distributed variables), P < .05.
†Mean ± SEM; all such values.
‡Median (interquartile range); all such values.

TABLE 8 Spearman rank correlation between Gla‐OC/Glu‐OC ratio values and biochemical variables in nonobese controls, obese, and obese with
biochemical markers of prediabetes

Spearman rank correlation Gla‐OC/Glu‐OC ratio

Nonobese (n = 34) Obese (n = 98) Obese with metabolic disturbances in prediabetes (n = 32)

r P* r P* r P*

Fasting insulin 0.09 .63 0.26 .01 0.09 .63

Fasting glucose −0.12 .51 0.11 .29 −0.05 .77

HOMA‐IR 0.09 .61 0.26 .01 0.02 .92

OGIS 0.33 .09 −0.06 .60 −0.12 .54

Total cholesterol 0.07 .68 0.05 .64 0.02 .89

HDL cholesterol 0.05 .80 −0.13 .21 −0.24 .19

LDL cholesterol 0.07 .67 0.12 .26 0.01 .97

TG 0.18 .32 −0.09 .38 −0.16 .37

sE‐Selectin −0.38 .03 −0.09 .39 −0.09 .63

hsCRP 0.20 .27 −0.12 .23 −0.38 .03

Visfatin −0.15 .39 0.03 .75 −0.24 .18

IL‐6 0.10 .56 −0.13 .21 −0.30 .10

MCP‐1 0.00 .99 0.04 .68 0.17 .38

sVCAM‐1 0.00 1.00 −0.07 .51 −0.41 .03

sPECAM‐1 0.18 .32 −0.02 .86 −0.09 .65

TNF‐α 0.02 .90 −0.02 .84 −0.07 .75

Gla‐OC indicates carboxylated osteocalcin; Glu‐OC, undercarboxylated osteocalcin; HDL, high‐density lipoprotein; HOMA‐IR, homeostatic model assess-
ment; hsCRP, high‐sensitivity C‐reactive protein; IL‐6, interleukin 6; LDL, low‐density lipoprotein; MCP‐1, monocyte chemoattractant protein 1;
sPECAM‐1, soluble platelet/endothelial cell adhesion molecule 1; sVCAM‐1, vascular cell adhesion protein 1, TG, triglycerides; TNF‐α, tumor necrosis
factor α.

*Significant Spearman rank correlation, P < .05.

8 of 11 RAZNY ET AL.
and the anti‐inflammatory cytokine IL‐10. So far, human studies of the

association between osteocalcin and inflammatory factors are still

lacking. Although several human studies reported the inverse

association between serum osteocalcin (without distinguishing
between Gla‐OC and Glu‐OC) and hsCRP,32–34 we are the first to

show this association for the carboxylated osteocalcin form.

However, the mechanism linking hsCRP and bone metabolism is

not well understood. The anti‐inflammatory effect of Gla‐OC could
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be explained as a result of vitamin K action. It is well known that vita-

min K has anti‐inflammatory properties that could be mediated by car-

boxylated osteocalcin. On the other hand, an increase in systemic

inflammatory response could be connected with osteocalcin carboxyl-

ation defect as a result of lowered serum vitamin K level. However, a

recent study indicates anti‐inflammatory action of vitamin K indepen-

dently of osteocalcin carboxylation.35 As regards association between

visfatin and osteocalcin, Kacso et al36 reported a negative correlation

of Glu‐OCwith visfatin in type 2 diabetes patients with diabetic kidney

disease. In our studies, we observed an association of Gla‐OC but not

Glu‐OC with visfatin. However, subjects enrolled in our experiments

were obese but did not develop diabetes.

Most of the in vitro and in vivo studies conducted so far indicate

that osteocalcin endocrine function is regulated by its

undercarboxylated form.37,38 In contrast to Gla‐OC, Glu‐OC does not

bind Ca2+ and, more importantly, does not require elevated Ca2+ con-

centration to fold into a helical structure. These observations suggest

that at Ca2+ concentrations at approximately 1 mM, as normally found

in cell culture media or in vivo in serum, only Glu osteocalcin will

exhibit a helical conformation and presumably be able to activate its

receptor(s) (ie, GPRC6A), providing a structural explanation for the lack

of biological activity of Gla osteocalcin on glucose metabolism.39,40 It

acts on pancreatic β cells to increase insulin secretion, on muscle and

WAT to promote glucose uptake and homeostasis, and on Leydig cells

of the testis to favor testosterone biosynthesis after its binding to a

GPRC6A receptor.4,6,8,10,13,37 In animal models and in in vitro studies,

it has been demonstrated that recombinant osteocalcin regulates

insulin biosynthesis, by stimulation Ins1 and Ins2 gene expression in

pancreatic islets, and is also a potent insulin secretagogue because of

its ability to increase cytosolic Ca2+ levels.12,13,40,41 This mechanism

may contribute to the observed selected symptoms of insulin

resistance in obese patients in our human study.

Using an animal model of HFD‐fed mice, Wei et al7 determined

that the severity of glucose intolerance and insulin resistance is in part

a consequence of osteoblast‐dependent insulin resistance. In obese

individuals, total OC has been described to be associated with skeletal

muscle but not hepatic insulin sensitivity, whereas undercarboxylated

OC is uniquely associated with β‐cell function only in individuals with

impaired fasting glucose.42

Insulin resistance in osteoblasts led to a decrease in circulating

levels of the Glu‐OC observed in our human study, thereby decreasing

insulin sensitivity in skeletal muscle. The underlying mechanism is not

yet established, but besides promotion of insulin receptor

ubiquitination (observed increased activity of SMURF1) and subse-

quent degradation in the proteasome, other mechanisms are possible.

For example, the content in tissues of total diacylglycerols (DAGs), a

group of lipid intermediate metabolites thought to account for

lipotoxicity and insulin resistance, is significantly elevated under

obesity. DAGs activate several serine kinases, such as c‐Jun amino‐

terminal kinase, protein kinase C, and IκB kinase β (IKKβ), which

phosphorylates inhibitory serine residues of the insulin receptor and

insulin receptor substrates and thereby blocking insulin action.43 IKKβ

phosphorylation leads to the activation of nuclear factor‐κB–mediated

pathways, including the inflammatory one. These results underscore

the involvement of bone (among other tissues) in the disruption of
glucose homeostasis resulting from lipotoxicity and involvement of

insulin and osteocalcin cross talk in glucose intolerance.4,6–8,10,13,44

Along with this, is the recent demonstration that disrupting

osteocalcin signaling in humans leads to glucose intolerance. Using

mouse models, Oury et al found that osteocalcin and LH act in 2 parallel

pathways and that osteocalcin‐stimulated testosterone synthesis is pos-

itively regulated by bone resorption and insulin signaling in osteoblasts.10

In humans, they analyzed a cohort of patients with primary testicular

failure and identified 2 individuals harboring the same heterozygous

missense variant in one of the transmembrane domains of GPRC6A,

which prevented the receptor from localizing to the cell membrane. It

was a point mutation in exon 4 of GPRC6A, resulting in F464Y amino

acid substitution. This missense mutation affects a highly conserved

residue, occurring in one of the transmembrane regions of the molecule

and preventing its localization to the cell membrane, therefore resulting

in a loss of function of GPRC6A. Patients harboring this substitution‐

mutation demonstrated higher fasting insulin and glucose levels as well

as pathological OGTT parameters. Thus, insulin resistance in bone might

contribute to whole‐body insulin resistance in patients with type 2

diabetes.10 Interestingly, it has recently been determined that the known

detrimental effect of glucocorticoids on glucose metabolism could be in

part explained by its negative action on osteocalcin production.45 Recent

publications in mouse models suggest that the protective effect of

osteocalcin on obesity and insulin resistance might be, at least in part,

due to its capacity to increase adiponectin release and energy expendi-

ture in brown adipose tissue and skeletal muscle.12,13,15 As mentioned

previously, we did not observe any correlation between osteocalcin

forms and adiponectin. Similar to our results, Wang et al46 reported that

total osteocalcin inversely correlated with HbA1c, and Glu‐OC inversely

correlatedwith fasting blood glucose. However, no significant correlation

was found between osteocalcin and HOMA‐IR.

The implementation of the Gla/Glu or Glu‐OC/total OC ratio was

suggested for finding an association between Glu‐OC and metabolic

syndrome parameters in children.47 In our study, the presence of

biochemical markers of prediabetes resulted in an increase in the

Gla‐OC/Glu‐OC ratio value in comparison with healthy obese subjects.

Of note, the Gla/Glu ratio value correlated positively with insulin

resistance markers in obese patients and negatively with markers of

inflammation in nonobese controls and in obese patients with

metabolic disturbances.

However, the study has potential limitations, namely, an unequal

number of both sexes and the small number of subjects in the study.

Another limitation of the study is the small number of control group

participants in comparison to obese subjects. So far, osteocalcin

findings have shown that Glu‐OC and Gla‐OC are bystander markers

rather than mechanistic ones. Data from human studies concerning

these 2 markers are rather inconsistent, and their mechanism of

action is not fully understood. Therefore, we postulate that the results

of our study could be a base for further studies explaining the mecha-

nism of osteocalcin action in larger groups of subjects. Our results

argue for the suggestion that the decreased blood concentration of

Glu‐OC may be an early symptom of insulin resistance development

in obesity, whereas the decreased level of Gla‐OC seems to be

connected with early symptoms of obesity associated inflammation

in humans.
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