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Abstract

Background: Acidithiobacillus ferrooxidans is chemolithoautotrophic g-proteobacterium that thrives at extremely
low pH (pH 1-2). Although a substantial amount of information is available regarding CO2 uptake and fixation in a
variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in
extremely acidic conditions, prompting the present study.

Results: Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and
structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle including form I of
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2-concentrating carboxysomes.
RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon.
Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR
that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35
promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of
the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the
upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are
functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP,
encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for
binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode
anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate.
This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a
form II RubisCO could promote the ability of A. ferrooxidans to fix CO2 at different concentrations of CO2.

Conclusions: A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are
characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most
conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may
provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation.

Background
Acidithiobacillus ferrooxidans is a mesophilic, obligately
chemolithoautotrophic, g-proteobacterium that gains
energy and reducing power from the oxidation of

ferrous iron and reduced inorganic sulfur compounds
(RISCs) [1]. It grows optimally at pH 2, although growth
as low as pH 1 has been reported [2]. The microorgan-
ism is a key player in the solubilization of copper in
industrial bioleaching operations and makes an impor-
tant contribution to the biogeochemical cycling of nutri-
ents and metals in pristine and manmade acidic
environments. In such environments, CO2 would be
expected to exist preferentially as a dissolved gas in
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equilibrium with the atmosphere and not in the bicarbo-
nate form typically found at circum-neutral pHs [3].
A. ferrooxidans has previously been shown [4,5] to

have candidate genes (cbbL and cbbS) for the large and
small subunits of ribulose-1,5-bisphosphate carboxylase/
oxygenase (RubisCO, EC 4.1.1.39) that catalyses CO2

fixation by the Calvin-Benson-Bassham (CBB) cycle in
many organisms [6]. cbbL and cbbS are linked to genes
predicted to encode carboxysome shell proteins [7] and
a divergently transcribed gene encoding the LysR-type
transcription regulator CbbR [4]. The intergenic region
between cbbR and cbbL is predicted to harbor binding
sites for CbbR [4]. In addition, microarray transcript
profiling experiments have detected differential expres-
sion of several genes in A. ferrooxidans potentially
involved in the CBB cycle depending on the growth sub-
strate used [8].
These observations taken together, suggest that, in

A. ferrooxidans, CbbR can regulate the expression of
RubisCO and the carboxysome genes and therefore is
likely to be involved in the regulation of carbon fixation
as has been observed in other autotrophic bacteria
including: Xanthobacter flavus [9], Ralstonia eutropha
H16 [10], Chromatium vinosum [11], Nitrobacter vul-
garis [12], Halothiobacillus neapolitanus [13], Thiobacil-
lus denitrificans [14], Rhodobacter sphaeroides [15],
Rhodobacter capsulatus [16], Rhodospirillum rubrum
[17], Hydrogenovibrio marinus [18], Nitrosomonas euro-
paea [19] and Thiomicrospira crunogena XCL-2 [20].
However, no coherent model has been developed for
A. ferrooxidans to explain all the data and little experi-
mental evidence has been provided to support several of
the aforementioned observations, prompting the current
investigation.

Methods
Bacterial strains and culture conditions
Information regarding bacterial strains and plasmids
used in this study is provided in Table 1. A. ferrooxidans
was cultured in 9 K medium (adjusted to pH 3.5 with

H2SO4) containing 5 g/l elemental sulfur at 30°C under
aerobic conditions on a rotary shaker at 150 rpm as
described previously [21]. Escherichia coli harboring
plasmids was grown at 37°C in LB broth with ampicillin
(Amp: 100 μg/ml).

General DNA techniques and sequencing of DNA
A. ferrooxidans cultures were centrifuged at 800 × g to
remove solid sulfur precipitates prior to cell harvest.
Unattached cells were pelleted at 8000 × g for 10 min.
The cell pellet was resuspended in 9 K salt solution for
washing and washed cells were collected by centrifuga-
tion at 8000 × g for 10 min as described previously [21].
Standard procedures [22] were employed to isolate
genomic and plasmid DNA from bacteria, to transform
plasmid DNA into E. coli, and for general DNA hand-
ling. Restriction endonucleases and DNA-modifying
enzymes were used as recommended by the manufac-
turers. Plasmid DNA was prepared by means of the
QIAprep Spin Mini Kit (Qiagen). Polymerase chain
reaction (PCR) products were amplified with Taq DNA
polymerase (Fermentas) and purified from agarose gels
using the QiaEx DNA Purification Kit (Qiagen). Each
PCR reaction contained in a volume of 25 μl 1 ng of
template DNA, 0.5 μM of required primers and 0.2 mM
of each deoxyribonucleotide in 1× PCR buffer contain-
ing 1.5 mM MgCl2 (Fermentas). PCR conditions were as
follows: initial denaturing step at 95°C for 5 min fol-
lowed by 30 amplification cycles (denaturation at 95°C
for 30 s, annealing at the appropriate temperature
depending on the specific primer pairs for 20 s, elonga-
tion at 72°C) and a final elongation step at 72°C for 10
min. DNA sequencing of pBAD-cbbR was carried out by
the Göttingen Genomics Laboratory (Göttingen,
Germany).

Isolation of RNA and RT-PCR
Total RNA was isolated from cells of A. ferrooxidans
grown to mid-log phase in 9 K medium supplemented
with sulfur, as described previously [23]. The RNA

Table 1 List of bacterial strains and plasmids used in this study

Strain or
plasmid

Relevant characteristic Source or
reference

Bacterial strains

Acidithiobacillus
ferrooxidans

Type strain ATCC 23270

E. coli TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) j80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR)
endA1 nupG

Invitrogen

Plasmids

pBAD-TOPO® AmpR promoter araBAD (PBAD) C-terminal: V5 epitope tag-polyhistidine (6 × His) Invitrogen

pBAD-cbbR pBAD-TOPO::927-bp fragment containing cbbR from A. ferrooxidans ATCC 23270 expressed from PBAD
promoter

This study

Abbreviations used: ATCC, American Type Culture Collection. AmpR, ampicillin resistance; StrR, streptomycin resistance.
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preparation was treated with DNase I (Fermentas)
before proceeding with the cDNA synthesis step. One
microgram of total cellular RNA was used for each reac-
tion. Reverse transcription-PCR (RT-PCR) was per-
formed on purified RNA using the One-Step RT-PCR
kit (Qiagen). The sequences of the RT and PCR primers
used are provided in Table 2. As controls, reactions
were carried out that included RNA but lacked reverse
transcriptase to assess genomic DNA contamination and
that lacked RNA but contained 1 ng of genomic DNA.

Cloning and expression of cbbR
A DNA fragment corresponding to the coding region of
cbbR of A. ferrooxidans was amplified by PCR using pri-
mers (Integrated DNA Technologies) cbbRfw and
cbbRrev (Table 2). The amplified product was cloned
into the expression vector pBAD-TOPO (Invitrogen)
according to the manufacturer’s instruction. The result-
ing plasmid pBAD-cbbR was introduced by electropora-
tion into E. coli TOP10 (Invitrogen) competent cells
[22]. E. coli was grown at 37°C in 10 ml LB containing
100 μg/ml ampicillin to an OD600 of 0.8. Overproduc-
tion of the recombinant His6-tagged CbbR protein was
initiated by adding arabinose to a final concentration of
0.1% (w/v) with continued shaking at 200 rpm for 12 h.

Purification of CbbR
Cells from 1.5 l of induced culture were harvested by
centrifugation (8,000 × g for 10 min at 4°C) and at
-20°C. After thawing the cell pellet was resuspended in
40 ml denaturing buffer containing 6 M guanidine-HCl,
100 mM NaH2PO4 and 10 mM Tris-HCl, pH 8.0, and
incubated at room temperature with continuous stirring
for about 30 min until inclusion body proteins were
solubilized. Any remaining insoluble material was
removed by centrifugation at 18,000 × g and 7°C for
20 min. The resulting supernatant was filtered through
a 0.45-μm membrane and the recombinant protein sub-
sequently purified by affinity chromatography on a 2.5-
ml Ni-nitrilotriacetic acid column under amalgam con-
ditions (denaturing conditions-native conditions). Initi-
ally the protein was adsorbed to the matrix under
denaturing conditions at room temperature after equili-
bration with binding denaturing buffer (BDB) containing
8 M urea, 100 mM NaH2PO4 and 10 mM Tris-HCl, pH
8.0. The column was first washed with BDB and then
with washing denaturing buffer (WDB) containing 8 M
urea, 100 mM NaH2PO4, 10 mM Tris-HCl, pH 6.0. The
elution of CbbR was carried out under native conditions
at 4°C after equilibrating the column with native buffer
(20 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4,
pH 8.0). His6-CbbR was eluted at a flow rate of 1 ml/
min with eluting native buffer (250 mM imidazole,
300 mM NaCl, 50 mM NaH2PO4, pH 8.0). The eluted

fractions were monitored at 280 nm. Fractions with the
highest protein content were pooled, dialysed twice
against 50 mM HEPES-NaOH, pH 7.8 containing
200 mM KCl, 10 m MgCl2, 1 mM dithiothreitol, 0.05
mM phenylmethylsulfonyl fluoride and 50% (w/v)
glycerol. The final protein concentration was 4 mg/ml.
Protein preparations were analyzed by SDS-polyacryla-
mide gel electrophoresis in 12% (w/v) polyacrylamide
slab gels under reducing conditions in the presence of
100 mM b-mercaptoethanol. Gels were stained with Coo-
massie Brilliant Blue R-250. Protein contents were deter-
mined using the method of Bradford [24], with bovine
serum albumin as a standard. CbbR was stored at -20°C.

Production of antisera to CbbR
Multiple intradermal injections were applied to immu-
nize a female Californian giant rabbit (3.0 kg) as
described by [25]. A fresh CbbR preparation (0.5 ml; 1
mg/ml) was emulsified in one volume of complete
Freund adjuvant (Commonwealth Serum Laboratories,
Melbourne, Australia). The emulsion was prepared
under aseptic conditions and 1.0 ml was initially injected
into four sites on the back of the animal. Booster injec-
tions were given in the same way 75 days after the pri-
mary immunization, except that incomplete Freund
adjuvant was used. The immune response was moni-
tored by Western Blotting assays with serum separated
from test blood samples (1.0 to 2.0 ml) that were
obtained from an ear vein every 15 to 20 days after each
immunization.

Electrophoretic mobility shift assays (EMSA)
DNA fragments containing the four potential cbb
operon promoter regions were amplified by PCR and
simultaneously biotinylated using the biotin 5’-labelled
primers (Table 2). DNA-binding assays were performed
at 30°C in a final volume of 17 μl containing 12 mM
HEPES-NaOH, pH 7.9, 4 mM Tris-HCl, pH 7.9, 1 mM
EDTA, 60 mM KCl, 1 mM dithiothreitol, 10% (w/v) gly-
cerol, 5 μg/μl of bovine serum albumin and 2 μg/μl of
poly(dI-dC). The indicated amount of CbbR protein
(~290 μM) was incubated with the biotin end-labeled
target DNA (20 pmol) for 15 min. A 50-fold excess of
unlabeled DNA probe was used to challenge the labeled
probe. In supershift experiments, a 1:500 dilution of
CbbR-specific antiserum was added to the reaction after
DNA binding of CbbR and incubated for an additional
15 min. After the binding reactions, samples were
loaded onto a low-ionic strength nondenaturing polya-
crylamide gel (4.8% [w/v], which had been prerun at a
constant current of 200 mA for more than 90 min, and
electrophoresed at 150 mA for about 60 min in 0.5×
TBE buffer (89 mM Tris base, 89 mM boric acid and 2
mM EDTA). The separated CbbR-DNA complexes were
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Table 2 Sequences of primers used in co-transcription RT-PCR assays, cloning experiments and EMSA assays

Primers used in RT-PCR assays

cbb1 operon

Numbera Gene Forward primer (5′-3′) Numbera Gene Reverse primer (5′-3′)

1 cbbR CAACGCCGTGTTGCTCGAA 2 cbbL1 CTAGACTTTTTTACGGCCATGCTT

3 cbbL1 CTGCCAATCGTGTCGCGC 4 csoS2 CGCACGGGAAAGCGACTT

5 csoS2 CCTATGGTGCCGTGCCAAC 6 csoS3 GTGCATGACGCACGCCC

7 csoS3 GTCAGCGGGTCAAAGCCG 8 csoS1A GCCGCCTTGGTCATCG

9 csoS1B GGAGCAGATGCGTGTGAGCG 11 parA AGTAGAACCCCGCCGAGCCAA

10 bfrA CGCGCAGAAGAGTTACAAGCCTTG 12 parA CTGATCGAACCCTGAGGATCGG

13 parA GTGCTGCGGTTGAAGGGGT 14 hyp2 GTGGAGTTCGATAATGGCGGAG

15 hyp2 CGAGAAGCCTCCGCCATTATC 16 cbbQ1 GCCTGTGGGTCCTTTCAGCAT

18 cbbO1 TGACGCCAGGAAAGCGGTG 17 cbbO1 CAGGGATTTCAGGCTGGTCG

19 cbbO1 GCAGAGGCTGCCAGAAAAGCT 20 cbbA AAGCACCTACCGCGTATCCGT

21 bioDa CAGTGCCACCGCCACCC

cbb2 operon

Forward primer (5′-3′)′ Reverse primer (5′-3′)

1 tatCa ACGACGGCGTCTAGAACCGCC 2 cbbL2 CCGGTAATCCTCTAGACCCGCGTT

3 cbbL2 CATCGAGAAGGAAGGCAAGGC 4 cbbS2 CGCAACCTGTTGACGGATCTG

5 cbbS2 ACCGGAAAACGCCTTCGGC 6 cbbQ2 GGTCAATGGGCCATCCTGCC

7 cbbQ2 AGGGTGTTGAGGCGAAGGCC 8 cbbO2 GTACGATGGGCGTGTGCGC

9 cbbO2 GCCTACAGCGAGGAGGCCATG 10 yfeAa GCGGAGCCTTGTCCCTCGG

cbb3 operon

Forward primer (5′-3′)′ Reverse primer (5′-3′)

1 hyp4a TACGAAGGCGGCTCCCCG 2 hyp3 CGACGGCAATCGGAGTCTTT

3 hyp3 CGGGTGATCGCGCTGGAT 4 cbbT CAGAATGCCGTCGTGACCA

5 cbbT ATCGGCATCGACCACTTT 6 cbbK TCCATCATACGCAGGACA

7 cbbK CCTACATCAGTACGGGTG 9 cbbA CACCTGCTCCAGGTTGTT

8 pykA TTGATCCTCATCACCATCGG 11 cbbE GATATGGATATAGTCGGCACCC

10 cbbA GCAGGCCAGCAAGATCAA 14 trpE GCCGACAAGGGAGTATCGA

12 cbbE CTATCGAACTGGAAGTGGATGG 16 trpG CGATAGCCGCCACGTCG

13 cbbZ TCGGCGATTCACGTAACG 17 trpCa AGGGCCACTGCCGCCTGC

15 trpE GAAACCATGAACAAACGCCG

cbb4 operon

Forward primer (5′-3′)′ Reverse primer (5′-3′)

1 ompAa GGTATTTCCTATTTTTGGGGTGGC 3 sahA CGGCAATGCGGACTTCCTTAC

2 metK TTGGGAGCGGACCGACAAG 5 metF AAGCATACTCGGGACCCAAGG

4 sahA CTTCGCGGGGGTGCTGA 7 cbbP GACGGGATGTTTTTTGGACATGG

6 metF CACCGAGCCTGCATTTTTACACC 9 ynbD GGCTACAGCCACCACGGGAT

8 cbbP ATGTTGCCGGGCAGTTTTATGTC 10 fbnAa GCGAGGTGGACTGGACGGA

Primers used in EMSA assays and cloning experiments

Letter designation Forward primer (5′-3′) Reverse primer (5′-3′)

(a) Pcbb1 CGGCAGCGAAGATCTTGAGTTGGTGC (b) Pcbb1 CTCCGGCCTCATACTTTTTTACGG

(c) cbbRfw TCTATCCGTCATGCAACCTTG (d) cbbRrev GCGCCATTCCTTTTCACCATG

(e) Pcbb2 ACGACGGCGGCAAGCACCGCC (f) Pcbb2 CCGGTAATCCTTCACACCCGCGTT

(g) Pcbb3 CATTGAACAGGGTCAGCTCCTGG (h) Pcbb3 ATCGGAGTCTTTGATCATGCGCC

(i) Pcbb4 TTTGGGGTGGCAGCAAGAAGT (j) Pcbb4 GGAAACGGATTCAGAGGTGAAAAG

aGenes lie outside the operons and are not shown in Figure 2.
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electrophoretically transferred from the gel onto a nylon
membrane in semi-dry blotting apparatus (Biometra,
Göttingen). CbbR-DNA binding was detected using a
streptavidin-horseradish peroxidase conjugate and a
chemiluminescent substrate (Pierce) followed by
autoradiography.

Bioinformatic analyses
Metabolic pathways involved in CO2 assimilation were
retrieved from KEGG http://www.genome.ad.jp/kegg/.
Protein sequences derived from known genes involved
in CO2 assimilation were used as query sequences to
search the genome sequence of A. ferrooxidans ATCC
23270, using TBlastN and BlastP, respectively, with
default parameters. When a prospective candidate gene
was identified, its predicted protein sequence was then
used to formulate a BlastP http://www.ncbi.nlm.nih.gov
search of the nonredundant database at NCBI. Only
bidirectional best hits were accepted as evidence for
putative orthologs. Candidate genes and their trans-
lated proteins were further characterized employing
the following bioinformatic tools: ClustalW [26] for
primary structure similarity relations, PSI-PRED [27]
for secondary structure predictions, Prosite [28] for
motif predictions, ProDom [29] and Pfam [30] for
domain predictions. Information regarding the organi-
zation of genes in A. ferrooxidans was obtained from
[2]. Logos were generated using the web-based applica-
tion available at http://weblogo.berkeley.edu/logo.cgi.
The height of each letter in bits corresponds to its
relative abundance at each position. Promoters of the
s70-type and rho-independent transcriptional stops
were predicted for operons cbb1-4 using the programs
BPROM http://www.softberry.com and Transterm [31],
respectively.
The organization of gene clusters in facultative and

obligate autotrophs involved in the CBB cycle was
derived from information available in IMG-JGI http://
www.jgi.doe.gov/ and MicrobesOnline http://www.
microbesonline.org/, with additional information added
for H. marinus [18] and A. ferrooxidans, Acidithiobacillus
caldus and Acidithiobacillus thiooxidans (this study). The
phylogenetic cladogram of these bacteria was constructed
from 16 S rRNA sequences obtained from KEGG Orthol-
ogy K01977 http://www.genome.jp/kegg/ko.html and
from GenBank http://www.ncbi.nlm.nih.gov/ for A. cal-
dus (GI454888), A. thiooxidans (GI454888) and H. mari-
nus (GI3882094). 16 S rRNA alignments were carried out
using ClustalW and the cladogram was constructed by
the NJ method using the program MEGA 4.0 [32]. The
robustness of the tree was evaluated by bootstrapping
using 1000 replicas. The tree was rooted using the 16 S
rRNA of the ε-proteobacterium Helicobacter pylori.

Results, Discussion and Conclusions
The genome of A. ferrooxidans ATCC 23270 encodes
CbbR, a LysR-type transcription factor
A gene cbbR was predicted in the genome of A. ferrooxi-
dans ATCC 23270 (type strain) that potentially encodes
a protein with significant amino acid sequence similarity
and domain structure to other well-documented CbbRs
of the LysR family of transcription factors (Additional
file 1). cbbR is divergently transcribed from cbbL1, a
gene predicted to encode the large subunit of form I
RubisCO. The genetic linkage between cbbR and cbbL1
is known to be conserved in a number of autotrophic
bacteria that fix CO2 via the CBB cycle such as Acid-
ithiobacillus ferrooxidans Fe1 [4], Hydrogenophilus ther-
moluteolus [33], Nitrosomonas europaea [19],
Rhodobacter sphaeroides [34], Rhodobacter capsulatus
[35], R. eutropha H16 [36], Rhodospirillum rubrum [17],
Thiobacillus denitrificans [14] and Xanthobacter flavus
[9]. We here extend this list to include: Alkalilimnicola
ehrlichii, Halorhodospira halophila, Methylibium petro-
leiphilum, Nitrobacter winogradskyi, Nitrosococcus
oceani, Nitrosospira multiformis, Thiomicrospira cruno-
gena and Xanthobacter autotrophicus (Additional file 2).
The cbbR-cbbL1 intergenic region of A. ferrooxidans

strain Fe1 has been shown to contain divergent s70-type
promoters and to exhibit two CbbR binding sites that
partially overlap these promoters ([4], Figure 1A). The
binding sites conform to the pseudo-palindromic motif
TNA-N7-TNA [13] that is a subset of the consensus
LysR-type transcription factor binding site T-N11-A [37].
Logos were derived from a multigenome comparison of
the cbbR-cbbL1 intergenic region of a number of bac-
teria (Additional file 3) and were aligned with the CbbR
sites of A. ferrooxidans strain Fe1, allowing the predic-
tion of the CbbR binding sites of A. ferrooxidans ATCC
27230 (Figure 1B and 1C).

Organization and expression of gene clusters predicted
to be involved in CO2 fixation and associated pathways
of central carbon metabolism
A cluster of 16 genes, termed cbb1, was predicted to be
involved CO2 fixation. RT-PCR experiments showed
that cbb1 is transcribed as a single unit and thus can be
considered to be an operon (Figure 2A). Operon cbb1
consists of cbbL1 and cbbS1, potentially encoding the
large and small subunits of form IAc RubisCO, seven
cso genes predicted to be involved in a-carboxysome
formation, two genes (cbbQ1 and cbbO1) presumed to
be involved in RubisCO activation and cbbA, potentially
encoding a fructose-1,6-bisphosphate aldolase. Gene
descriptions are provided in Table 3.
Three additional gene clusters termed cbb2 (four

genes), cbb3 (twelve genes) and cbb4 (five genes) were
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identified that are predicted to encode functions related
to CO2 fixation and central carbon metabolism (Table
3). RT-PCR experiments revealed that gene clusters
cbb2, cbb3 and cbb4 are transcribed as single units,
respectively, and thus constitute operons (Figure 2B-D).
cbb2 contains genes (cbbL2 and cbbS2) encoding addi-
tional copies of the large and small subunit of form IAq
RubisCO and associated RubisCO activation genes
(cbbQ2 and cbbO2) (Figure 2B). The deduced amino
acid sequences of these genes are similar but not identi-
cal to the corresponding proteins encoded in the cbb1
operon; CbbL1 and CbbL2 exhibit 84% amino acid
sequence identity, whereas CbbS1 and CbbS2 share 56%
identity and CbbQ1 and CbbO1 have 84% and 59%
identity with CbbQ2 and CbbO2, respectively.
Genes predicted to be encoded by operons cbb3 and

cbb4 are listed in Table 3 and their organization within
these operons is shown in Figure 2.
The two enzymes that are unique to the CBB cycle are

RubisCO (encoded by operons cbb1 and cbb2) and
phosphoribulokinase (encoded by operon cbb4).
RuBisCO catalyzes the first step of the cycle, the carbox-
ylation of ribulose-1,5-bisphosphate (RuBP) with CO2.
Phosphoribulokinase catalyzes the last step of the cycle
which is the regeneration of the CO2 acceptor molecule,
RuBP, by phosphorylation of ribulose 5-phosphate with
ATP. Other steps of the cycle, encoded in operon cbb3,
are catalyzed by enzymes common to glycolytic and glu-
coneogenic pathways in central carbon metabolism
[8,36].
Promoters of the s70-type and rho-independent tran-

scriptional stops were predicted for operons cbb1-4

(Figure 2). In addition, potential CbbR-binding sites
were identified in the four operons based on the detec-
tion of conserved TNA-N7-TNA and T-N11-A motifs
described above for operon cbb1 (Figure 2).

CbbR binds in vitro to the predicted s70-like promoter
regions of operons cbb1-4
Binding of CbbR to DNA fragments containing the pre-
dicted promoters of the four operons cbb1-4 was evalu-
ated in vitro by electrophoretic mobility shift assays
(EMSAs). For this purpose the cbbR gene was cloned
and expressed in E. coli. Purified CbbR was used to pre-
pare antisera (anti-CbbR antibodies) whose activity was
checked by Western blotting against purified CbbR
(data not shown). Biotin-labeled promoter DNA for the
EMSA assays was prepared by PCR using primers speci-
fied in Table 2 and whose locations within the four
operons are shown in Figure. 2.
Results show that CbbR was able to retard the promo-

ter regions of the cbb1, cbb2 and cbb3 operons but not
the cbb4 operon (Figure 3). When a 50-fold molar
excess of unlabelled fragment was included in the bind-
ing assay retardation of the labelled fragments was abol-
ished. Furthermore, the addition of anti-CbbR
antibodies to the reaction produced a supershift in
migration, indicating that the shift was caused specifi-
cally by the binding of CbbR.
Binding of CbbR to the predicted promoter regions of

operons cbb1-3 suggests that it is involved in their regu-
lation. The reason for the failure of CbbR to retard the
DNA fragment containing the predicted promoter of the
cbb4 operon is not known. Perhaps this fragment

Figure 1 The cbbR-cbbL1 intergenic regions of A. ferrooxidans strains Fe1 and ATCC 23270. (A) DNA sequence of cbbR-cbbL1 intergenic
region of A. ferrooxidans Fe1 showing two TNA-N7-TNA CbbR-binding regions (boxed sequences) and experimentally verified nucleotides
protected by CbbR binding (*) and s70 promoter regions (-10 and -35 sites) (Modified from [5], with permission of the publisher). (B) Logos
derived from multiple sequence alignments of the cbbR-cbbL1 intergenic region of eight bacteria showing conservation of the CbbR-binding
sites (more information in additional file 3). (C) Prediction of CbbR-binding sites and s70 promoter regions in the cbbR-cbbL1 intergenic region of
A. ferrooxidans ATCC 23270 by comparison with experimentally verified regions of A. ferrooxidans Fe1 and using the information derived from
Logos.
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requires the presence of additional factors for CbbR
binding that are not present in the in vitro cocktail used
for the EMSA analysis. Alternatively, the predicted
CbbR binding site is not functional.

Gene organization of the cbb operons
The cbb3 operon includes not only genes involved in
carbon assimilation but also harbors genes with similar-
ity to trpE and trpG that are predicted to encode the
components I and II of anthranilate synthase, the first
enzyme of the tryptophan biosynthesis pathway. Anthra-
nilate synthase catalyzes the conversion of chorismate to

anthranilate with the concomitant release of pyruvate
[38,39]. In some cases, this conversion can be accom-
plished by TrpE alone [40].
In order to determine if the association between trpEG

and the cbb genes is restricted to A. ferrooxidans, an
examination of gene organization was carried out in all
sequenced genomes of facultative and obligate auto-
trophic proteobacteria. Twenty-six proteobacterial
organisms (11 a-, 7 b- and 8 g-) were analyzed, includ-
ing 10 obligate autotrophs. Linkage between trpE/G
and cbbE and/or cbbZ was found in all sequenced obli-
gate autotrophs, all of which belong to the b- or

Figure 2 Organization and co-transcription of four cbb gene clusters in A. ferrooxidans ATCC 23270. (A) cbb1 (B) cbb2 (C) cbb3 and (D)
cbb4. The following are represented in each of the panels A-E: (a) nucleotide sequences of the predicted s70-like promoter region (-10 and -35
sites in italics) and potential CbbR-binding sites in grey boxes with the LysR-type TNA-N7-TNA and T-N11-A consensus binding sites in bold
letters, (b) gene organization of the respective operons with predicted rho-independent transcriptional stop sites indicated as stem-loop
symbols, (c) locations of PCR primers used for RT-PCR experiments (indicated by numbers) or EMSA assays (indicated by letters) and (d) gel
electrophoresis of fragments amplified by RT-PCR using purified cellular RNA as template. A 1-kb scale bar is shown. One of the T-N11-A
consensus binding sites in the cbb4 operon is part of a larger pseudo-palindrome indicated by inverted arrows. Predicted gene functions are
provided in Table 3.
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Table 3 Predicted genes of cbb operons

*Accession aGene
name

bPredicted function cBest BlastP hit d%
Similarity

eScore fE-
value

gDomains and motifs

Operon
cbb1

ACK78724.1 cbbR LysR family transcriptional regulatory
protein CbbR

Nitrococcus
mobilis

76 363 7e-99 PD462572, PD756396, Pfam03466,
Pfam00126, COG0583

ACK79627.1 cbbL1 Ribulose bisphosphate carboxylase large
subunit 1 [4.1.1.39]

Halothiobacillus
neapolitanus

94 882 0 PD417314, PD000044, Pfam00016,
Pfam02788, COG1850

ACK77836.1 cbbS1 Ribulose bisphosphate carboxylase small
subunit 1 [4.1.1.39]

Methylococcus
capsulatus

80 161 8e-39 PD000290, Pfam00101, COG4451

ACK78689.1 csoS2 Carboxysome structural peptide Thiobacillus
denitrificans

59 325 9e-87 PD579361, tat signal peptide

ACK80925.1 csoS3 Carboxysome structural peptide Thiobacillus
denitrificans

65 537 5e-
151

PD191834, Pfam08936

ACK80352.1 csoS4A Carboxysome peptide A Thiobacillus
denitrificans

93 139 6e-32 PD012510, Pfam03319, COG4576, tat
signal peptide

ACK79436.1 csoS4B Carboxysome peptide B Thiobacillus
denitrificans

82 119 7e-26 PD012510, Pfam03319, COG4576

ACK78722.1 csoS1C Microcompartments protein Nitrosomonas
eutropha

97 142 6e-33 PD003442, Pfam00936, COG4577

ACK79154.1 csoS1A Microcompartments protein Nitrosomonas
eutropha

97 144 1e-33 PD003442, Pfam00936, COG4577

ACK79584.1 csoS1B Microcompartments protein Nitrosomonas
eutropha

95 146 3e-34 PD003442, Pfam00936, COG4577

ACK79096.1 bfrA Bacterioferritin Thiobacillus
denitrificans

70 135 6e-31 PDA00179, Pfam00210, COG1633

ACK77923.1 hyp1 Hypothetical protein Thiobacillus
denitrificans

81 68 2e-10 PDA1E0I5

ACK80576.1 parA Partition protein A Thiobacillus
denitrificans

72 196 6e-49 PD194671, Pfam01656, COG1192

ACK78664.1 hyp2 Hypothetical protein Acidithiobacillus
ferrooxidans

100 156 1e-09

ACK80060.1 cbbQ1 Rubisco activation protein Nitrosomonas
europaea

92 489 5e-
137

PD490543, Pfam08406, Pfam07728,
COG0714, COG5271

ACK80817.1 cbbO1 Rubisco activation protein Thiobacillus
denitrificans

74 940 0 PD140693, PD679436, Pfam00092,
COG4867, COG4548

ACK80290.1 cbbA Fructose-bisphosphate aldolase [4.1.2.13] Bradyrhizobium
sp.

61 295 3e-78 PD002376, PD030418, Pfam01116,
Pfam07876, COG191

Operon
cbb2

ACK80366.1 cbbL2 Ribulose bisphosphate carboxylase/
oxygenase large subunit 2 [4.1.1.39]

Thiobacillus
denitrificans

97 920 0 PD417314, PD000044, Pfam00016,
Pfam02788, COG1850

ACK79774.1 cbbS2 Ribulose bisphosphate carboxylase/
oxygenase small subunit 2 [4.1.1.39]

Thiobacillus
denitrificans

88 203 3e-51 PD000290, Pfam00101, COG4451

ACK80953.1 cbbQ2 Rubisco activation protein Nitrosomonas
europaea

92 483 6e-
135

PD490543, PD372819; Pfam08406,
Pfam07728, COG0714

ACK78928.1 cbbO2 Rubisco activation protein Thiobacillus
denitrificans

76 965 0 PD140693, PD025507, COG4548

Operon
cbb3

ACK80740.1 hyp3 Hypothetical protein Thiobacillus
denitrificans

49 149 8e-9 PD796582

ACK78212.1 suhB Inositol-phosphate phosphatase
[3.1.3.25]

Methylococcus
capsulatus

66 646 8e-66 PD001491, PD013702, pfam00459,
pfam00316, COG0483, COG1218

ACK80404.1 cbbF Fructose-1,6-bisphosphatase [3.1.3.11] Mariprofundus
ferrooxydans

71 823 3e-86 PD007014, PD863173, pfam03320,
COG1494

ACK79091.1 cbbT Transketolase [2.2.1.1] Methylococcus
capsulatus

75 2264 0.0 PD308336, pfam00456, pfam02779,
COG3959, COG0021

ACK78716.1 cbbG Glyceraldehyde-3-phosphate
dehydrogenase type I [1.2.1.-]

Burkholderia
thailandensis

82 1189 1e-
128

PD959395, PD859695, pfam02800,
pfam00044, COG0057
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Figure 3 Binding of CbbR to the promoter regions of the operons cbb1-4 using the EMSA assay in the presence (+) or absence (-) of
competing 50× excess of unlabelled probe DNA (P[50x]) or antibodies to CbbR (anti-CbbR). Abbreviations: P*, probe DNA; S, shift; SS,
supershift.

Table 3 Predicted genes of cbb operons (Continued)

ACK79414.1 cbbK Phosphoglycerate kinase [2.7.2.3] Alcanivorax
borkumensis

80 1296 6e-
141

PD000619, PDA014E1, pfam00162,
COG0126

ACK78522.1 pykA Pyruvate kinase II [2.7.1.40] Thiobacillus
denitrificans

79 1491 2e-
163

PD983049, PD745602, pfam00224,
pfam02887, COG0469

ACK79923.1 cbbA Fructose-bisphosphate aldolase [4.1.2.13] Nitrosococcus
oceani

90 1474 1e-
161

PD875785, PD002376, pfam01116,
COG0191

ACK80630.1 cbbE Ribulose-5-phosphate 3-epimerase
[5.1.3.1]

Herminiimonas
arsenicoxydans

80 753 2e-78 PD003683, PD591639, pfam00834,
COG0036

ACK80633.1 cbbZ Phosphoglycolate phosphatase [3.1.3.18] Thiobacillus
denitrificans

64 484 4e-47 PD946755, PDA11895, pfam00702,
COG0546, COG0637

ACK78314.1 trpE Anthranilate synthase component I
[4.1.3.27]

Methylococcus
capsulatus

77 1569 2e-
172

PD005777, PD105823, pfam00425,
pfam04715, COG0147, COG1169

ACK78895.1 trpG Anthranilate synthase component II
[4.1.3.27]

Nitrosomonas
europaea

86 770 2e-80 PD806135, PD976090, pfam00117,
pfam07722, COG0512, COG0518

Operon
cbb4

ACK79981.1 metK S-adenosylmethionine synthetase
[2.5.1.6]

Ralstonia
eutropha

86 591 2e-
167

PD499406, PD606972, pfam02773,
pfam02772, COG0192

ACK78713.1 sahA S-adenosyl-L-homocysteine hydrolase
[3.3.1.1]

Pseudomonas
stutzeri

88 748 0 PD730548, PD551162, pfam05221,
pfam00670, COG0499

ACK78001.1 metF 5,10-methylenetetrahydrofolate
reductase [1.7.99.5]

Methylococcus
capsulatus

69 306 1e-81 PD756524, PD763008, pfam02219,
COG0685

ACK78673.1 cbbP Phosphoribulokinase [2.7.1.19] Nitrosococcus
oceani

78 402 2e-
110

PD739884, PD015803, pfam00485,
COG3954

ACK79243.1 ynbD Phosphosterase, PA-phosphatase Polaromonas
naphthalenivorans

81 759 1e-81 PD589889, pfam 01569, COG0474,
CD03386, CD00127

* The sequence and annotation of the complete A. ferrooxidans strain ATCC 23270 genome is available at the Comprehensive Microbial Resource (CMR) (J. Craig
Venter Institute, http://www.jcvi.org) and in GenBank/EMBL/DDBJ accession number CP001219.
a Proposed gene name.
b Proposed enzyme activity with EC number if available
c Organism with the best BlastP hit to the candidate gene.
d Percentage of similarity (% Sim) of candidate gene to that found in the organism listed in row (c).
e Score of BlastP match.
f E value of BlastP match.
g Motif and domains identified in the candidate proteins: CD, Conserved Domains; COG, Clusters of Orthologous Groups of Proteins; Pfam, protein families; PD,
Prodom (protein domains); PS, Prosite tat signal peptide
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g-proteobacteria divisions (Figure 4, Table 4), whereas
only 4 out of 14 facultative heterotrophs were detected
with this clustering. These four exceptions are found
only in the b- or g-proteobacteria and none in the a-
proteobacterial division (Figure 4, Table 4). This sug-
gests a previously unreported linkage between genes
encoding CBB cycle associated enzymes and trpEG or
trpE that is most conserved in obligate autotrophs of
the b- and g-proteobacteria.
We hypothesize that in A. ferrooxidans production of

pyruvate via anthranilate synthase activity provides a
novel network connection between the CBB cycle on
the one hand and general central carbon metabolism
including the incomplete ("horseshoe"-like) TCA [2] on
the other hand. Consistent with this idea is the presence
of a predicted pykA upstream of trpEG in the cbb3
operon. PykA is predicted to encode pyruvate kinase
that catalyzes the conversion of phosphoenol pyruvate
(PEP) to pyruvate. In addition to supplying pyruvate,
PykA could also reduce the level of intracellular PEP.
PEP has been shown to be a ligand of CbbR in Ralstonia
eutropha H16, promoting its binding to target DNA
sites and consequently effecting the regulation of cbb
genes [40]. If PEP carries out a similar function in A.
ferrooxidans, the depletion of PEP via PykA activity
could provide a means for feedback control of operons
that are regulated by CbbR, including the auto-regula-
tion of operon cbb3.
The organization of cbb genes in A. ferrooxidans

exhibits similarities with obligate autotrophs that dis-
tinguish this group from facultative autotrophs. For
example, A. ferrooxidans, contains three or more gene
clusters dedicated to carbon assimilation. This is simi-
lar to other obligate autotrophic g-proteobacteria
including A. caldus, A. thiooxidans, Hydrogenovibrio
marinus, Nitrosococcus oceani and Thiomicrospira cru-
nogena, and obligate autotrophic b-proteobacteria such
as Nitrosomonas europaea, Nitrosomonas eutropha,
and Nitrosospira multiformis and Thiobacillus denitri-
ficans. This contrasts with facultative autotrophs that
contain only one or two cbb clusters (Figure 4, Table
4), with some exceptions, e.g. the a-proteobacteria
Bradyrhizobium sp., N. hamburgensis, N. winogradski.
R. sphaeroides and R. palustris and the b-proteobacter-
ium R. eutropha, which contain unique, but duplicated,
cbb clusters). Multiple cbb clusters could provide obli-
gate autotrophs with a greater flexibility in regulating
CO2 fixation compared to facultative autotrophs. For
example, this flexibility may be necessary to adjust car-
bon assimilation in response to changing environmen-
tal concentrations of CO2 [18], whereas facultative
autotrophs might be able to circumvent this need by
exploiting organic carbon sources in times of low CO2

concentrations.

Another characteristic of cbb gene organization in
A. ferrooxidans is the lack of linkage of the phosphori-
bulokinsae gene, cbbP, with other cbb genes (Figure 4,
Table 4) as has previously been reported for the deep-
sea vent obligate chemolithoautotroph T. crunogena
XCL-2 and for several other obligate autotrophs [20,41];
we now extend this list to include A. ferrooxidans
ATCC 23270 and ATCC 53993, A. caldus, A. thiooxi-
dans H. marinus, N. europaea and Thiomicrospira cru-
nogena (Figure 4, Table 4). In contrast, in all sequenced
facultative autotrophs cbbP is associated with other cbb
genes (Figure 4, Table 4).
In obligate autotrophs, the contextual disconnection of

cbbP from cbbLS could provide greater flexibility for
CO2 fixation by allowing RubisCO to be differentially
expressed according to environmental and/or metabolic
requirements without simultaneously expressing the
remaining CBB cycle genes, many of which carry out
functions in addition to carbon fixation. This is in sharp
contrast to the organization found in most facultative
autotrophs, where cbbP is usually juxtaposed to cbbLS
and other genes of the CBB cycle facilitating their coor-
dinate repression during heterotrophic growth
[13,20,34,36,41].

Model for predicted enzymes and pathways involved in
CO2 fixation
A model is proposed for Ci fixation in A. ferrooxidans
based on the predicted roles of the genes encoded in
the cbb operons (Figure 5). In contrast to most faculta-
tive autotrophs, the main focus of regulation of the CBB
cycle in A. ferrooxidans may be the CO2 fixation reac-
tion itself catalyzed by RubisCO, rather than at the level
of the other CBB cycle enzymes. This hypothesis is sup-
ported by the observation that the genes encoding
RubisCO and RubisCo accessory proteins, are clustered
in operons that do not contain cbbP nor cbb that
encode the main CBB enzymes. cbbP is also separated
from the rest of the cbb genes in the cbb4 operon, with
an apparent absence of CbbR binding to its promoter.
We suggest that the promoters for the cbb1, cbb2 and
cbb3 operons have different affinities for CbbR and may
thus exhibit different regulation patterns, possibly asso-
ciated with the environmental availability of CO2. The
cbb1 operon, containing cbbLS-cso, is predicted to serve
at low CO2 concentrations because carboxysomes have
been shown to improve RubisCO catalytic efficiency by
concentrating CO2 [6,13]. In contrast, the cbb2 operon,
containing cbbLSQO, is predicted to be used when
higher concentrations of CO2 are available since car-
boxysome synthesis is energetically and materially
expensive [18].
The cbb3 operon, containing genes for most CBB

cycle enzymes and pyruvate kinase, is proposed to be

Esparza et al. BMC Microbiology 2010, 10:229
http://www.biomedcentral.com/1471-2180/10/229

Page 10 of 15



Figure 4 Organization of gene clusters involved in the CBB cycle of facultative and obligate autotrophic a-, b- and g-proteobacteria
presented as a phylogenetic cladogram based on 16 S RNA. Numbers refer to bootstrapping results from 1000 trees. Organism names are
provided in the text. The asterisk indicates that the respective organism is an obligate autotroph.
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responsible for connecting CO2 fixation with the rest of
central carbon metabolism. Except for cbbG and cbbK
encoding glyceraldehyde-3-phosphate dehydrogenase,
type I and phosphoglycerate kinase respectively, genes
of the cbb3 operon have duplicated copies in the gen-
ome (data not shown), potentially allowing regulation of
the CBB cycle independently of the remaining pathways
of central carbon metabolism. For example, some CBB
cycle intermediates also form part of gluconeogenesis
and glycolysis resulting in the production of pyruvate
that is channeled, via the pyruvate dehydrogenase com-
plex, into the incomplete TCA “horseshoe” where the
flux of intermediates serves for amino acid biosynthesis
(e.g. glutamate). The pyruvate dehydrogenase also

provides acetyl-CoA used in fatty acid biosynthesis. In
addition, the presence of cbbZ in the cbb3 operon is
associated with phosphoglycolate phosphatase activity,
responsible for removal of phosphoglycolate, an undesir-
able product of the oxygenase activity of RubisCO, that
must be detoxified preferentially by rechanneling to
3-phosphoglycerate [13,36].
The co-transcriptional connection between the cbb,

pykA and trpEG genes in the cbb3 operon may reflect
the substrate requirement of anthranilate phosphoribo-
syltransferase for an activated pentose (5-phosphoribosyl
1-pyrophosphate) in order to proceed to the next step
of tryptophan biosynthesis [42]. The production of the
activated pentose would be stimulated by the activity of

Table 4 Characteristics of cbb gene clusters in facultative and obligate, autotrophic bacteria

Organism Autotrophy
status

Phyogenetic
classification
-proteo-
bacteria

No.
copies
cbbR

Presence
of cso
genes?

trpE/G
associated
with cbb?

cbb gene cluster
associated with cbbP?

No. cbb
gene
clusters

Acidithiobacillus ferrooxidans ATCC
23270 and ATCC 53993

obligate Gamma- 2 Yes Yes No 5*

Acidithiobacillus thiooxidans ATCC
19377

obligate Gamma- 2 Yes Yes No 5

Acidithiobacillus caldus ATCC 51756 obligate Gamma- 2 Yes Yes No 5

Nitrosomonas europaea ATCC 19718 obligate Beta- 1 No Yes No 4

Nitrosomonas eutropha C71 obligate Beta- 1 Yes Yes No 4

Nitrosococcus oceani ATCC 19707 obligate Beta- 1 No Yes No 4

Thiomicrospira crunogena XCL-2 obligate Gamma- 3 Yes Yes No 5
5Hydrogenovibrio marinus MH-110 obligate Gamma- 2 Yes N/D N/D 3

Thiobacillus denitrificans ATCC 25259 obligate Beta- 2 Yes Yes No 5

Nitrosospira multiformis ATCC 25196 obligate Beta- 1 No Yes No 4

Methylococcus capsulatus Bath obligate
methanotroph

Gamma- 1 No Yes Yes 3

1Nitrobacter hamburgensis X14 facultative Alpha- 3 Yes No Yes 3

Nitrobacter winogradskyi Nb-255 facultative Alpha- 3 Yes No Yes 3

Halorhodospira halophila SL1 facultative Gamma- 1 No Yes3 Yes 2

Alkalilimnicola ehrlichii MLHE-1 facultative Gamma- 1 No Yes3 Yes 2

Bradyrhizobium sp. BTAi1 facultative Alpha- 2 Yes No Yes 3

Bradyrhizobium japonicum USDA 110 facultative Alpha- 1 No No Yes 1

Ralstonia eutropha H16 facultative Beta- 1 No No Yes 24

Dechloromonas aromatica RCB facultative Alpha- 1 No No Yes 2
2Magnetospirillum magneticum AMB-1 facultative Alpha- ? No No Yes 2

Paracoccus denitrificans PD1222 facultative Alpha- 1 No No Yes 1

Rhodobacter sphaeroides 2.4.1 facultative Alpha- 1 No No Yes 2

Rhodoferax ferrireducens T118 facultative Beta- 1 No No Yes 1

Rhodopseudomonas palustris CGA009 facultative Alpha- 2 No No Yes 3

Rhodospirillum rubrum ATCC 11170 facultative Alpha- 1 No No Yes 1

Sinorhizobium meliloti 1021 facultative Alpha- 1 No No Yes 1

*in addition to the four cbb operons described in this paper, a fifth gene cluster containing cbb genes (including a form II RubisCO gene) has recently been
detected in A. ferrooxidans (43). 1Two copies of cbbR and two cbb gene clusters are present on two plasmids; 2two highly similar operons present in the genome;
3in these organisms, trpE gene is neighbor to cbbP but not cbbE. 4 R. eutropha H16 posesses a duplicated cbb operon, with similar copies in the chromosome and
in a megaplasmid. 5Data derived from cloned sequences (18). N/D = no data.
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Figure 5 Proposed roles of the (A) predicted enzymes and pathways involved in CO2 fixation in A. ferrooxidans linked to (B) gene
evidence. Genes are color-coded to match the predicted function of their products. RPI, ribose phosphate isomerase; G-3-P, glyceraldehyde-3-
phosphate; DHAP, dihydroxyacetone phosphate; 3-PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate.
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the operon. An alternate hypothesis is that the co-tran-
scriptional connection represents a means for pyruvate
regeneration since both pykA and trpE/G produce
pyruvate.
In addition to the four cbb operons described herein, a

fifth gene cluster has recently been detected in A. fer-
rooxidans that includes genes cbbM, cbbQ3 and cbbO3
predicted to encode form II of RubisCO and its asso-
ciated chaperons, respectively [43]. The cluster also con-
tains another putative cbbR divergently transcribed from
cbbMQO. Future work will evaluate the role of this clus-
ter in CO2 fixation.

Additional material

Additional file 1: Prediction of secondary structure elements in
CbbR of Acidithiobaillus ferrooxidans. Above: secondary structure
predictions of alpha-helix, beta-sheet, HTH DNA binding domain,
oligomerization domain and LysR-substrate like domain. Below:
alignment of amino acid sequences from the HTH domain from several
bacteria (abbreviations used can be found in Additional File 2) with the
pfam domain00126.

Additional file 2: Alignment and conservation of DNA sequences in
the intergenic regions between cbbR and cbbL1 in autotrophic
bacteria. The DNA sequences contain the cbb control elements
including the operator, the operon promoter (pcbbL) and the promoter
cbbR (pcbbR). The CbbR regulator bind to region R (recognition site) and
the region A (activation site) of the cbb operator. The nucleotides
conserved (TNA-N7/8-TNA, T-N11-A) for to bind CbbR are located in
intergenic regions RI-1, RI-2 and RI-3. The prediction of the promoter and
the sites for to bind s70 are in the columns (sequences -35 and -10).
The names of bacterias are: Acidithiobacillus ferrooxidans (Af),
Hydrogenophilus thermoluteolus (Ht), Xanthobacter flavus (Xf),
Nitrosomonas europea (Ne), Rhodobacter capsulatus (Rc), Rhodobacter
sphaeroides (Rs), Ralstonia eutropha H16 (Ral), Ralstonia metallidurans
CH34 (Rm), Rhodospirillum rubrum (Rr), Nitrococcus oceani (No), Nitrobacter
winogradskyi (Nw), Halorhodospira halophila (Hh), Xanthobacter
autotrophicus (Xa), Thiomicrospira crunogena (Tc), Methylibium
petroleiphilum (Mp), Thiobacillus denitrificans (Td), Nitrosospira multiformes
(Nm), Alkalilimnicola ehrlichii (Ae). I and II indicated cbbI and cbbII
operons. Af23270 type strain from A. ferrooxidans. Af Fe1 strain from
Kusano and Sugawara (1993)[4].

Additional file 3: Sequences used to generate LOGOS of the
intergenic region between cbbR and cbbL1.
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