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The coronavirus disease 2019 (COVID-19) comprises more than just severe acute

respiratory syndrome. It also interacts with the cardiovascular, nervous, renal,

and immune systems at multiple levels, increasing morbidity in patients with

underlying cardiometabolic conditions and inducing myocardial injury or dysfunction.

Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from

auricular acupuncture, has become a popular therapy that is increasingly accessible

to the general public in modern China. Here, we begin by outlining the historical

background of taVNS, and then describe important links between dysfunction

in proinflammatory cytokine release and related multiorgan damage in COVID-19.

Furthermore, we emphasize the important relationships between proinflammatory

cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune

function via the cholinergic anti-inflammatory pathway and modulates brain circuits

via the hypothalamic–pituitary–adrenal axis, making taVNS an important treatment for

depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link

between anti-inflammatory processes and brain circuits could be a potential target

for treating COVID-19-related multiorgan damage, as well as depressive symptoms

using taVNS.

Keywords: transcutaneous auricular vagus nerve stimulation, COVID-19, brain circuits, depression, epidemic

BACKGROUND

In December 2019, a novel coronavirus disease (COVID-19) outbreak emerged from Wuhan,
Hubei Province, China, initiating a global health threat and posing a challenge to the psychological
resilience of populations worldwide (1). Clinically, presentation of COVID-19 varies from
being asymptomatic, to including mild symptoms such as fever, sore throat, headache, fatigue,
to manifesting as severe acute respiratory distress syndrome (ARDS) (2). Moreover, it also
interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels (3).
An extreme immune reaction resulting in elevated levels of inflammatory cytokines, often
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referred to as a cytokine storm, has been linked to an increased
number of deaths from COVID-19 (4, 5). However, even worse
than this, the COVID-19 pandemic has also led to an increased
prevalence of mental health problems, such as difficulty sleeping,
depression and anxiety, and hypomania (6). Although a number
of vaccines have been proved to be effective (7, 8), evidence-based
evaluations and interventions targeting mental health disorders
are relatively scarce (9). Transcutaneous auricular vagus nerve
stimulation (taVNS) is being explored as an adjuvant therapy to
the depressive symptoms of COVID-19 during the pandemic to
deal with these disorders.

The concept of taVNS as a therapy has emerged relatively
recently. The technique makes use of the analgesic effects of the
neuronal network that innervates the vagus nerve (10), which
targets the cutaneous receptive field of the auricular branch
of the vagus nerve at the outer ear (11). Promising results
indicate that, following taVNS treatment, the symptoms of mood
disorders can be alleviated painlessly and without the need for
surgery (12). Ventureyra was the first to propose applying vagus
nerve stimulation (VNS) using surgically implanted electrodes
wrapped around the vagus nerve in the neck (10). In 2005, VNS
was approved as a long-term adjunctive treatment for patients
with refractory depression of more than 18 years of age (13,
14). From a neuroanatomical point of view, vagus nerve fibers
project to the nucleus tractus solitarius (NTS) and the locus
coeruleus (LC), where they form direct and indirect ascending
projections to many brain regions, including the midbrain,
hypothalamus, amygdala, hippocampus, and frontal lobe (15).
The vagus nerve, which is the longest nerve in the body, connects
the central nervous system to the body by innervating major
visceral organs such as the liver, spleen, and gastrointestinal
tract (16). Once an inflammatory response has been detected,
taVNS may help to attenuate inflammatory responses via the
cholinergic anti-inflammatory pathway and by modulating brain
circuits via the hypothalamic–pituitary–adrenal (HPA) axis (3,
17). Acute respiratory distress syndrome (ARDS) or fulminant
pneumonia can lead to widespread inflammation and very
high concentrations of cytokines in the lungs, accompanied by
activation of the anti-inflammatory pathways mentioned above
(18). To date, clinical and laboratory research demonstrated that
taVNS can improve lung function (19, 20). In addition, taVNS is
commonly used to treat encephalopathy, encephalitis, ischemic
infarcts, cerebral venous thrombosis, as well as peripheral
nervous system pathologies [i.e., muscle injuries, and peripheral
neuropathies; (21–26)].

Abbreviations: ACh, acetylcholine; AMY, amygdala; ARDS, acute respiratory

distress syndrome; BA, Brodmann areas; CCL-2, C-C motif chemokine

ligand; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; EN,

epinephrine; fMRI, functional magnetic resonance imaging; GC, glucocorticoid;

HIP, hippocampus; HPA, hypothalamic pituitary adrenal; IL, interleukin; IL-1ra,

interleukin-1 receptor antagonist; LC, locus coeruleus; MDD, major depressive

disorder; MH, medial hypothalamus; mPFC, medial prefrontal cortex; MRS,

magnetic resonance spectroscopy; NAc, nucleus accumbens; NE, noradrenaline;

NTS, nucleus tractus solitarius; PFC, prefrontal cortex; PTSD, post-traumatic

stress disorder; rACC, rostral anterior cingulate cortex; taVNS, transcutaneous

auricular vagus nerve stimulation; TCM, Traditional Chinese Medicine; TNF,

tumor necrosis factor; vmPFC, ventromedial prefrontal cortex; VNS, vagus

nerve stimulation.

In order to better understand the mechanisms underlying
taVNS, we review the literature on proinflammatory cytokines
and the brain imaging correlates of taVNS. To date, there have
not been any reviews that considered in detail how taVNS might
treat depressive symptoms, which develops from COVID-19, or
its associated co-morbidities. We provide an integrated account
of how the dysregulation of inflammatory and immunological
responses affect brain circuits in COVID-19.

HISTORICAL BACKGROUND OF taVNS

Auricular acupuncture originated in China during the Chou
period (first millennium BCE) and has recently attracted
scientific and public attention as it becomes increasingly
accessible to the general public in modern China (Figure 1A)
(28). The practice of auricular acupuncture is referenced in the
Huangdi Neijing (The Yellow Emperor’s Classics of Internal
Medicine), which describes how the ear is not isolated but
rather is directly or indirectly connected with 12 meridians
(six yang and six yin) (29). In the 1950s, Dr. Paul Nogier, a
French neurologist, proposed that the outer ear represents “an
inverted fetus map” (Figure 1B) (30)]. In 1990, theWorld Health
Organization (WHO) recognized auricular acupuncture as a self-
contained microacupuncture system that maps all portions of
the ear to specific parts of the body and to the internal organs
(31). Having considered the anatomy of the neural pathways
in the external auricle, Usichenko et al. proposed that the
analgesic effects of auricular acupuncture could be explained by
stimulation of the auricular branch of the vagus nerve (32). The
vagus is known to be a mixed nerve, with about 80% of its fibers
carrying sensory afferent information to the brain and about
20% carrying efferent motor information to the liver, spleen,
and gastrointestinal tract (33). Thus, it is very likely that taVNS
functions based on the Chinese system of energy circulation
along the meridians, which connect “diseased” body organs with
the external auricle. In addition to Asian countries, in which this
technique is widely available and easy to apply, it may be possible
to use taVNS to effectively respond to the COVID-19 pandemic-
related depressive symptoms as well as multiorgan damage in
environments where medical resources are limited.

THE IMPORTANT LINK BETWEEN
PROINFLAMMATORY CYTOKINES AND
COVID-19 PANDEMIC-RELATED
MULTIORGAN DAMAGE

Several studies have suggested that the pathogenesis of COVID-
19 involves an inability to resolve the inflammatory response
along with the activation of immune cells and inflammatory
cytokines (18, 34). In COVID-19 patients, an unregulated
inflammatory response to the infection can result in the
dysregulation of T cells with associated lymphopenia, high
levels of the proinflammatory cytokines interleukin (IL)-6 and
tumor necrosis factor (TNF)-α, and high levels of inflammatory
chemokines, including C-C motif chemokine ligand (CCL-
2) (35). In a study by Staats et al., 49-year-old man with
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FIGURE 1 | (A) Auricular acupuncture practice has recently been attracting the attention of the public in China and is commonly carried out within the Chinese

medical hospital system. (B) TF4 and CO10-12 are used to stimulate the auricular branch of the vagus nerve, with the outer ear corresponding to an “inverted fetus

map” [according to King and Hickey, 2013 (27)].

excessive fatigue, mental cloudiness and body aches, and mental
cloudiness had ceased after 5 days non-invasive VNS therapy
(19). Furthermore, the authors also summarized five studies
that used taVNS to treat COVID-19 and reported that the
majority of patients obtain relief from respiratory distress
after taVNS therapy. Three review papers have hypothesized
that the cytokine storm and the worsening of patient health
can be ameliorated or even prevented by taVNS (3, 18, 36).

Therefore, targeting the inflammatory response and immune

cells using taVNS might be a promising line of research in the

fight against COVID-19-related inflammatory cytokine-induced
multiorgan damage.

Current research indicates that COVID-19 might involve

multiple organs including those in the central and peripheral
nervous systems, rather than being restricted to the respiratory

system (37). Recently, it has been noted that COVID-19 patients
experience a number of different neurological symptoms, such
as headache, dizziness, hyposmia, and hypogeusia during the

course of the illness (38). Psychiatric symptoms, including

post-traumatic stress disorder (PTSD), anxiety, and depressive

symptoms, have also been reported in patients with COVID-
19 (39, 40). Even worse than this, Kremer et al. found signal
abnormalities in the medial temporal lobe and non-confluent
multifocal white matter hyperintense lesions (41). Post-mortem
brain imaging has demonstrated subcortical hemorrhagic and
cortico-subcortical edematous changes, as well as olfactory
impairment in patients who died of COVID-19 (42). Based on the
results of published studies, COVID-19 encephalopathy appears
to be more common in cases comorbid for encephalopathy,
encephalitis, acute disseminated encephalomyelitis, myelitis,
meningitis, ischemic infarcts, or cerebral venous thrombosis
(43). In the peripheral nervous system, COVID-19 has been
associated with dysfunction in the sense of smell and taste,
and with muscle injury (41). Of note, the etiology of the
encephalopathy in COVID-19 mentioned above is mostly linked
to injury of the central and peripheral nervous systems by
a cytokine storm, blood clots, or direct damage to specific
receptors (41, 44). The pathogen that causes COVID-19, severe
acute respiratory syndrome coronavirus 2, can invade the brain

via vascular, peripheral nervous, lymphatic, cerebrospinal fluid
pathways (45).

THE IMPORTANT LINK BETWEEN
PROINFLAMMATORY CYTOKINES AND
DEPRESSIVE SYMPTOMS

Several studies have suggested that inflammation or immune
dysregulation are implicated in the pathophysiology of
depression (46–51). It is now well-established that both the
innate and adaptive immune systems become dysregulated in
depressed patients and that controlling inflammation might be
of therapeutic benefit (52). Two meta-analyses showed reliably
higher levels of inflammatory markers in depression, namely
IL-1β, IL-6, C-reactive protein (CRP), and TNF-α (53, 54).
Plasma CRP in depression was not only positively associated
with plasma levels of inflammatory cytokines (e.g., IL-6, TNF-α,
sTNFR2, and IL-1ra), but also correlated with the level of CRP
in cerebrospinal fluid (55). Both Alexopoulos et al. and Galecki
et al. reported continual interactions between changes in the
peripheral immune response and central immune activation [e.g.,
macrophage accumulation and microglial activation; (56, 57)].
These central and peripheral immune changes lead to increased
production of proinflammatory cytokines (58, 59), which in
turn lead to abnormalities in brain circuits. To some extent, this
permits the relationship between abnormalities in brain circuits
and inflammatory states in depression to be inferred. Hao et al.
demonstrated that psychiatric patients were significantly higher
in their levels of worry, anger, impulsivity, and intense suicidal
ideation than healthy controls during the peak of the COVID-19
epidemic (60). Based on the psychological impact of the COVID-
19 pandemic on psychiatric patients, targeting the cholinergic
anti-inflammatory pathway and modulating brain circuits using
taVNS is a rational approach to treating COVID-19 and its
associated cytokine storm. Controlling inflammation might
provide an overall therapeutic benefit, regardless of whether it
is secondary to early life trauma, a more acute stress response,
microbiome alterations, a genetic diathesis, or a combination of
these and other factors.
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DYSFUNCTION OF
CORTICO-LIMBIC-STRIATAL CIRCUITS IN
DEPRESSION

Dysfunction of the cortico-limbic-striatal neural system,
including cortical (anterior cingulate and prefrontal cortex)
and limbic (amygdala, hippocampus, parahippocampal gyrus,
cingulate gyrus, nucleus accumbens, and striatum) areas
has been implicated in depression (61–63). Mayberg found
dorsal and lateral cortical hypoactivity and ventral limbic
hyperactivity in depression using positron emission tomography
(64). Taylor and Liberzon also proposed a hypo-dorsal and
-lateral cortical model of cognitive processes and a hyper-limbic
model of emotional expression to account for the experience
of depression (65). Using tasks requiring executive control
and emotional information processing, Siegle et al. identified
sustained increased amygdala activity in response to emotional
information processing and decreased dorsal prefrontal cortex
activity in response to executive cognitive tasks (66). Using a
meta-analytic technique, Fitzgerald et al. identified two neural
systems implicated in emotional regulation in depression,
including reduced activity in dorsolateral prefrontal cortex
and more dorsal regions of the anterior cingulate cortex (67).
Furthermore, they found increased activity in medial prefrontal
cortex and in subcortical regions related to emotional processing
in the depressed state. All of these changes returned to normal
after antidepressant treatment. Together, these studies imply
that patients with depression may exhibit impairments in their
cognitive control network, as evidenced by their inability to
disengage from negative stimuli (68). In addition, they show
impairments in their affective control network, as evidenced by
the hyperactivity of their amygdala and hippocampus to negative
stimuli and recall.

THE STIMULATION LOCATION OF taVNS

Discrepancies in stimulation locations exist among studies that
stimulated the auricular branch of the vagus nerve (69). The
location is often dictated by the geometry of an electrode, with
clip electrodes typically attached to the tragus or cymba concha
(70–73). The outer auditory canal is also reported as a stimulation
site, without further clarification for the electrode location (74–
76). Based on Peuker and Filler’s anatomical studies, the auricular
branch of the vagus nerve innervates the tragus, concha, and
cymba concha (77). However, it is difficult to select an optimal
stimulation site for any particular disorder. The taVNS devices
are relatively inexpensive, small, and mobile, which will be
performed at patient’s home after training (78).

STIMULATION PARAMETERS FOR taVNS

As taVNS is a novel treatment, there is currently no consensus
on the appropriate stimulation parameters for its therapeutic
use. According to the latest published International Consensus
on taVNS (79), the points stimulated by taVNS are located in
the auricular concha region, which contains a rich distribution

of vagus nerve branches. Stimulation parameters used in taVNS
studies have included: (1) a 20-Hz continuous sinusoidal wave
(wave width, 0.2ms) (80, 81); a 10-Hz continuous sinusoidal
wave (73); a 20–30Hz continuous sinusoidal wave (82, 83); a
4/20Hz dense wave (between 0.8 and 1.5mA) (84); a 20Hz dense
wave (between 4 and 6mA) (72, 85); 1.5Hz unipolar rectangular
waves (0–600mA) (69); a 120Hz pulse wave (12mA) (86); a
25Hz monophasic rectangular waves (87); and (2) a gradually
increasing stimulation intensity, starting from zero up to the
highest point that the patients could tolerate (typically between
4 and 6mA) (12). In terms of the safety of taVNS, a systematic
review by Redgrave et al. reported the side effects of taVNS as
local skin irritation, headache, nasopharyngitis, and a number
of potentially serious adverse events [e.g., palpitations; (88)].
Indeed, the vagus nerve projects to the parabrachial nucleus,
which can regulate heart rate, with one study showing that taVNS
can cause side effects on heart rate when specific stimulation
parameters (pulse width, 500 µs; frequency, 25Hz) are used
(89). However, in most cases, side effects were not apparent or
disappeared after follow up (86, 90, 91).

GENDER AND AGE-DEPENDENT
DIFFERENCES FOR taVNS

VNS has greater effects in females in animal studies, probably
because of the effect of estrogens on muscarinic acetylcholine
receptors in the central nervous system (92). Similar effects
would be expected in females human subjects due to both
hormonal levels and the gender-dependent differences in the
functions of the autonomic nervous system (93, 94). Age is
associated with marked changes at the hormonal level, which in
turn affect acetylcholine-mediated parasympathetic autonomic
activity (95, 96). Fallgatter et al. reported that the vagus sensory-
evoked potentials showed a trend toward reduction in the
elderly, associated with age-related demyelination of neuronal
structures or degenerative processes (97). In addition, sensitivity
to electrical transcutaneous stimulation was found to be lower in
the elderly (98).

THE RELATIONSHIP BETWEEN
PROINFLAMMATORY CYTOKINES AND
BRAIN CIRCUITS IN DEPRESSION

There is now accumulating evidence that different forms
of proinflammatory cytokine-mediated communication
between the immune system and brain circuits modulate
the inflammatory pathway in the brain (99–101). Rodent and
human neuroimaging studies combined with experimental
inflammatory challenges have been successful in clarifying the
sensitivity of the insula and striatum to changes in peripheral
inflammation in depression (102). Of note, neuroinflammation
is associated with structural and functional anomalies in
depression (103). A negative correlation was found between CRP
levels and the cortical thickness of the right medial prefrontal
cortex (mPFC) in depression (104). In a recent resting-state
functional magnetic resonance imaging (fMRI) study, CRP
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level was negatively correlated with amygdala–ventromedial
prefrontal cortex (vmPFC) connectivity in depressed patients
with high levels of inflammation and symptoms of anxiety
(105). Haroon et al. demonstrated that plasma CRP levels
are significantly associated with glutamate levels in the left
basal ganglia using magnetic resonance spectroscopy (MRS)
(106), and increased glutamate in the left basal ganglia in
turn correlated with anhedonia and psychomotor slowing.
Haroon et al. further pointed out that patients with high levels
of both inflammation and basal ganglia glutamate showed
decreased local homogeneity in vmPFC, and in dorsal and
ventral striatal regions (107). In their study of medically
stable patients with depression, Felger et al. reported that
levels of CRP, as well as those of IL-6, IL-1beta, and IL-1ra,
were negatively associated with connectivity between ventral
striatum and vmPFC, and that this decreased connectivity in
turn correlated with increased anhedonia (108). Moreover,
the level of CRP was negatively correlated with connectivity
between dorsal striatum, vmPFC, and presupplementary motor
area. Decreased connectivity between dorsal striatum, vmPFC,
and presupplementary motor area were further correlated
with motor speed and psychomotor slowing. More recently
developed methods, such as large-scale network-based analyses,
were used by Yin et al. to show that the increased level of CRP
is associated with reduced connectivity in ventral striatum,
amygdala, orbitofrontal and insular cortices, and posterior
cingulate cortex (109). Using surface-based morphometry,
Kakeda et al. demonstrated that cortical thicknesses, such as
those of the superior frontal and medial orbitofrontal cortex,
showed a significant inverse correlation with the level of IL-6
(110). Using automated cortical parcellation within the mPFC
including Brodmann areas (BA) 9, 10, 11, 24, 25, and 32, Meier et
al. found an inverse relationship between plasma CRP level and
the thickness of BA32, with recurrent MDD patients having a
thinner cortex in BA32 (104). Using voxel-based morphometry,
Chen et al. found that orbitofrontal cortex, lingual gyrus,
inferior frontal cortex, middle frontal cortex, and planum
polare were negatively correlated with levels of IL-6 (111).
Moreover, Frodl et al. reported an inverse relationship of IL-6
concentration and hippocampal volume inMDD (112). Doolin et
al. provided additional evidence to support a negative association
between CRP levels and hippocampal subfield volumes (113).
Importantly, the striatum, vmPFC, and presupplementary motor
area are part of the classical reward and motor circuitry that
receives neurotransmitters such as glutamate, in addition to
dopaminergic innervation (114–116). Furthermore, Nusslock
et al. found that higher levels of inflammatory biomarkers
(e.g., CRP, IL-6, IL-10, and TNF-α) were associated with lower
connectivities within both the emotional network and the
central executive network in urban African American youths,
suggesting that inflammation or neuroimmunology may be
involved in the pathogenesis of emotional and physical health
problems (117). More importantly, Cosgrove et al. reported
that higher levels of CRP were related to greater coupling of
orbitofrontal cortical and anterior insular activity with increased
appetite in depressed patients (118). Together, these studies
imply that systemic low-grade inflammation is associated with

the coupling of activity in striatum with that in reward- and
interoceptive-related neural circuitry, and provide evidence for
physiological subtypes within depression.

EFFECTS OF taVNS ON THE
LIMBIC-CORTICO-STRIATAL-THALAMO-
CORTICAL CIRCUITS TO ADDRESS THE
DEPRESSIVE SYMPTOMS OF COVID-19

Macrophages, proinflammatory cytokines (such as interleukin
(IL)-1β, IL-6, and tumor necrosis factor (TNF)-α) and
chemokines released by respiratory epithelial and dendritic cells,
are all known to play a role in the pathogenesis of critical patients
with COVID-19 (119). Consequently, Bonaz et al. hypothesized
that targeting the cholinergic anti-inflammatory pathway by
vagus nerve stimulation could be a useful therapeutic option
for patients with COVID-19. In support of this hypothesis,
Staats et al. recently reported two patients with respiratory
symptoms that were similar to those associated with COVID-19
who showed marked clinical benefit following the application of
transcutaneous cervical vagus nerve stimulation (19). Research
has also shown that the levels of proinflammatory cytokines,
including IL-6, IL-10, IL-12, IL-13, and TNF-α, are elevated
in MDD when compared to those of healthy controls (120).
However, there is still a clear shortage of evidence supporting
the neuroimaging findings of taVNS in the treatment of
depressive symptoms in patients with COVID-19. Our previous
review has validated taVNS may inhibit both peripheral
and central inflammation and modulate multiple neural
systems (121). Studies have demonstrated that taVNS increases
connectivity of the nucleus accumbens (NAc) with bilateral
mPFC/rostral anterior cingulate cortex (rACC); NAc with
insula, occipital gyrus, and lingual/fusiform gyrus; amygdala
with dorsolateral prefrontal cortex; and the default mode
network (DMN) with precuneus and orbital prefrontal cortex.
In addition, studies have reported decreased connectivity of
medial hypothalamus (MH) with rACC, and DMN with anterior
insula and parahippocampus (72, 85, 122, 123). Therefore, we
argued that it was advantageous for treating the inflammatory
processes associated with COVID-19 andmodulate brain activity
in the NAc, hypothalamus, DMN, amygdala, and rACC via the
auricular branch of the vagus nerve (78). Further, it has been
suggested that taVNS can attenuate inflammation by targeting
the HPA axis (16).

Finally, since the beginning of the COVID-19 pandemic,
various manifold neuroimaging features have been described for
patients with COVID-19 and a range of interesting and helpful
findings have been described across the globe (124). For example,
Jain et al. found that acute stroke was the most common finding
on neuroimaging; 92.5% of patients with positive neuroimaging
studies also showed evidence of acute stroke on neuroimaging.
Acute stroke is therefore a strong prognostic marker for a poor
outcome (125). In another study, Mao et al. reported that 36.4%
of patients had headache, dizziness, impaired consciousness,
acute cerebrovascular disease, ataxia, and seizures, and that 8.9%
of patients experienced specific manifestations in their senses,
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FIGURE 2 | Hypothesized mechanisms of transcutaneous auricular vagus nerve stimulation in the treatment of post-COVID-19 sequelae: 1) improvement in immune

function via the cholinergic anti-inflammatory pathway; and 2) modulation of brain circuits via the HPA axis [according to Bonaz and Sinniger, 2016 (134)].

including taste, smell, vision impairment, and nerve pain (126).
Furthermore, Brouwer et al. reported that acute cerebrovascular
events were also detected in ∼3% of patients and that 6% of
patients with severe manifestations had cerebrovascular events
(127). Similarly, Tsai et al. reported a wide range of neurological
manifestations, including olfactory taste disorders, headache,
acute cerebral vascular disease, dizziness, altered mental status,
seizure, encephalitis, neuralgia, ataxia, Guillain-Barre syndrome,
Miller Fisher syndrome, intracerebral hemorrhage, polyneuritis,
and dystonic posture (128). In addition, Al-Olama et al. reported
that COVID-19 infection can cause meningoencephalitis
in right frontal intracerebral hematomas, subarachnoid
hemorrhage, and in frontal and temporal lobe thin subdural
hematomas (129). Therefore, obtaining detailed neurological
examinations and neuroimaging for the early and accurate
diagnosis of these often fatal neurological complications could
significantly improve our understanding of COVID-19 and its
neurological manifestations.

EFFECTS OF taVNS ON THE
CHOLINERGIC ANTI-INFLAMMATORY
PATHWAY AND HPA AXIS

The cholinergic anti-inflammatory pathway via the vagus nerve
has been proposed to be a key mediator of cross-communication
between the peripheral immune system and the brain (130).
Indeed, an increase of TNF-α in the liver and blood induced by
an extreme immune reaction or cytokine storm was successfully

dampened by stimulation of the vagus nerve, inducing an anti-
inflammatory effect involving the release of acetylcholine (ACh)
(131). Promisingly, Staats et al. reported clinically meaningful
benefits of VNS in two COVID-19 patients with severe acute
respiratory syndrome (19). The vagus nerve has a dual anti-
inflammatory role, with 80% of the afferents targeting the
cholinergic anti-inflammatory pathway and 20% of efferent
fibers targeting the HPA axis (132). The efferent fibers of
the vagus nerve activate the HPA axis, causing glucocorticoid
release from the adrenal glands (133). Efferent fibers also run
through the neck, connecting the brainstem to many organs,
including the spleen, where they inhibit the release of TNF-α
(16). Targeting the vagus nerve non-invasivelymay open up novel
adjuvant approaches to treating COVID-19 patients. The various
mechanisms by which taVNSmay treat inflammation and related
organ dysfunction in COVID-19 are illustrated in Figure 2.

TRADITIONAL CHINESE MEDICINE (TCM)
ON COVID-19

TCM has a history of more than 2,000 years in the prevention
and treatment of epidemics and plagues and the national health
commission of China has recommended some patent Chinese
medicine, such as Jinhua Qinggan granules, Lianhua Qingwen
capsules, Xuebijing injections, a Qingfei Paidu decoction, a
Huashi Baidu decoction, and a Xuanfei Baidu decoction (135).
Patients with COVID-19 who took Jinhua Qinggan granules
recovered faster than those who did not take the granules
(136). Therapeutic efficacy was significantly higher in patients
with COVID-19 taking Lianhua Qingwen capsules and Arbidol
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(umifenovir) than that in those taking Arbidol alone; moreover,
the conversion rate to severe disease in patients taking these
capsules was significantly lower than that in patients taking
Arbidol alone (137). Furthermore, chest computed tomography
images of patients with COVID-19 showed improvement after
6 days of treatment with Qingfei Paidu decoction (138). In
addition, other therapies such as acupuncture might also play
a beneficial role in treating breathlessness after COVID-19 (4).
Thus, TCM could play an important role in fighting COVID-19
in China.

CONCLUSIONS

This review has provided a comprehensive evaluation of
targets for taVNS that can be used to treat inflammation
and related organ dysfunction in COVID-19. It is clear that
COVID-19 involves interrelationships between proinflammatory
cytokines and brain circuits. The research findings detailed
here suggest that taVNS could be used as an adjuvant therapy
for depressive symptoms during the COVID-19 pandemic.
We present a rationale for targeting the anti-inflammatory
process and modulating brain circuits to treat COVID-19
and its associated cytokine storm. The evidence we present
suggests that in theory, in response to the respiratory symptoms
and immune system damage caused by COVID-19, taVNS
can be used to improve immune function and may be an
important treatment for depressive symptoms on post-COVID-
19 sequelae. We describe the multi-level mechanisms linking

taVNS and regulation of systemic anti-inflammatory responses
and prevention of neuroinflammation present so as to treat
depressive symptoms during the COVID-19 pandemic. When
pro-inflammatory cytokines are present due to an infection,
taVNS can activate afferent vagal neurons through impacting the
immune response (139, 140) and also efferent vagal neurons can
release acetylcholine through the cholinergic anti-inflammatory
pathway and HPA axis (132, 141). Then, we summarize how
applying taVNS and targeting cognitive and mental distress
through influencing the connectivity of neural networks (121).
taVNS has been shown to be associated with improved the
default mode network functioning, which has been implicated
in cognitive as well as emotional functioning (72, 142). Further
studies are needed to understand the relationship between the
immune system and the brain, as well as the role of taVNS.
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