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Abstract:  
 
Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies 
have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and 
spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type 
heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene 
program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse 
tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery 
of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a 
neurovascular progenitor (NVP). Following in situ validation and molecular characterization of NVP cells in 
GBM patient samples, we characterized their function in vivo. Genetic depletion of NVP cells resulted in altered 
tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. 
Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that 
the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a 
small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total 
number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a 
paradigm by which cell type-specific interrogation of tumor populations can be used to study functional 
heterogeneity and therapeutically targetable vulnerabilities of GBM. 
      

Glioblastoma (GBM) is the most common and aggressive form of adult brain cancer, with a dismal 
prognosis of about 21 months of survival post diagnosis1. Standard of care therapy largely employs pan-cancer 
treatments including radiation and temozolomide chemotherapy2,3 that inevitably result in tumor recurrence. 
Numerous other therapeutic approaches are in development, including immunotherapies4,5, drugs targeting 
oncogenic driver mutations6,7, and therapies to disrupt synaptic signaling between the tumor and its 
microenvironment8-11. While there is optimism about the efficacy of these approaches, foundational 
understanding of tumor composition and function is essential to expand our ability to develop personalized 
therapeutic approaches. Extensive molecular and spatial characterization has shown that GBM displays 
immense inter- and intra-tumoral heterogeneity12-26. Understanding the landscape of progenitor subtypes within 
GBM patient tumors offers a window to understand the ability for GBM to evolve and adapt. Characterizing 
how these subpopulations proliferate and contribute to tumor diversity would provide potential targets for cell 
type-based therapy that could be paired with additional treatments to extend patient lifespan more effectively.  

Before the field can effectively design these cell type-based therapies, open questions remain 
regarding the functional role of GBM tumor heterogeneity, including granular descriptions of what progenitor 
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populations exist and their unique roles within the tumor. To characterize the landscape of progenitor cell types 
in human primary GBM, we compiled a meta-atlas of single-cell transcriptomes from seven published 
studies12,14-16,18,24,25. Using a new bioinformatic method for gene program analysis27, we derived GBM gene 
expression meta-modules represented across multiple patient tumors. Our analyses validated previously 
described GBM gene programs and revealed novel tumor progenitor subtypes. Among these subtypes, we 
discovered a tumor-derived stem cell population exhibiting a mixed vascular identity and transcriptional 
programs reminiscent of neural stem cells, which we identified as a putative neurovascular progenitor (NVP). 
To our knowledge, this population has not been previously described in GBM nor in the human brain. Here, we 
validate the existence of NVP cells across tumors, describe their morphological and molecular features, and 
use both in vivo and direct-from-patient systems to characterize their function. We demonstrate that NVP cells 
have dual-fate capabilities in clonally generating neuron-like and vascular-like tumor populations, and that they 
generate a defined fraction of the overall tumor. Despite their low abundance in patient tumors, they 
disproportionately generate cycling cells and are competent to give rise to the majority, but not all, total tumor 
subtypes; elimination of NVP from an in vivo tumor model results in extended survival, highlighting the 
functional relevance of this clonal role within the tumor.   
 
Results 
Generation of meta-modules describes universal and specific GBM progenitor programs 

Previous efforts have profiled GBM, and we reasoned that compiling these datasets could allow us to 
uncover nuanced gene programs essential to drive the tumor. We specifically focused on a gene module-
centric approach that would enable the derivation of modules that underly these cell types and may enable the 
elucidation of rare but functionally significant populations within the tumor. Recently applied to datasets from 
the developing human brain, this gene module derivation strategy has the capability to identify cell type-
specific and biologically dynamic transcriptional networks27. Thus, to highlight functional gene programs of 
GBM, we generated a meta-atlas of existing datasets12,14-16,18,24,25. While many of these datasets have been 
previously analyzed and aggregated, our approach of including only the IDH1 wild-type (IDH1WT), adult, direct-
from-patient samples accounts for the unique nature of GBM compared to other gliomas and removes any 
contribution of in vitro culture methods, cell type selection, or distinct pathologies that may interfere with gene 
module identification. We first performed uniform quality control on each individual tumor from every dataset, 
filtering for primary IDH1WT adult tumors and only neoplastic cells (Fig 1A - B, STable1) (Methods). We then 
performed tumor-specific unsupervised clustering using calculated cluster markers for each individual tumor. 
To focus on markers that were specific and enriched in each cluster, we leveraged our previously developed 
genescore metric that integrates the degree of cluster marker enrichment with marker specificity12,28 to rank 
order these cluster markers across tumors (Methods). The genescores from each dataset were filtered based 
on dataset-specific thresholds and then aggregated for meta-module generation. The top genescores in this 
unified analysis represented the common sources of variation across datasets; additional analysis validated 
that each dataset contributed approximately equally to these top genescores (SFig 1A - B). Top genescores 
were further correlated to derive our meta-modules which represented groups of genes that are co-expressed 
across multiple tumors and datasets (Fig 1C). Gene meta-modules were defined by a correlation threshold and 
modules larger than 10 genes were retained for further analysis with no upper limit on module size. The 
resulting 152 modules ranged from 10 to 323 with median size of 56 genes (Fig 1D). The number of genes per 
module did not affect the likelihood of expression across cells (SFig 1C).  

For the purpose of visualization, we generated an integrated UMAP on which module activity scores 
are represented. We identify that our modules correspond to previously described tumor cell states (Fig 1E, 
SFig 2) and that these integrated clusters can be annotated by adult and neurodevelopmental-like cell types, 
including those related to human cortical development such as radial glia (RG) and outer radial glia (oRG). 
Module activity scores show that modules associated with cell type or state identities such as oligodendrocyte, 
immune reactive, neuronal and cycling programs are expressed in the expected populations (Fig 1E-F). 
Amongst the 152 modules, however, biological programs not captured by these cell type designations were 
further identified. Examples of these program-specific meta-modules include cilia function, BMP signaling, and 
HIF1A signaling (STable2 - 3). Amongst these modules, numerous modules were widely expressed across all 
tumors, while others differentiated distinct groups of tumors (SFig 1D). Previous studies have published sets of 
gene modules for GBM, incorporating different aspects of the microenvironment and immune 
compartments18,29-31. Our gene module approach elicited modules that incorporate aspects of these published 
modules, while increasing granularity of the gene sets, which enables the study of programs that transcend cell 
type boundaries (SFig 2A-D).  
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Among the modules with cell type-specific expression but broad tumor representation, we noticed 
multiple modules resembling progenitor gene programs (Fig 2A). For example, module 6 which contains NES, 
was localized amongst radial glia and mesenchymal cell populations, whereas the canonical glioma stem cell 
marker module 24 containing PROM1 (encoding for CD13332) was diffusely active in neural stem cell and 
oligodendrocyte precursor cell populations. Module 80 containing SOX2 was broadly represented in the 
majority of cell types in our atlas, consistent with previous descriptions of SOX2 in GBM33. Other modules 
including Module 41 (containing YAP1), module 43 (containing SOX6), and module 51 (containing neural 
progenitor marker PAX6) were expressed in a subset of tumor cells restricted to one or two annotated cell 
types. In each of these cases, the represented gene was expressed in expected cell type populations, whereas 
the module activity was more restricted, suggesting a specificity driven by the co-expression network and 
highlighting the value of examining the broader biological program. Scoring scRNA-seq datasets of the normal 
developing brain confirmed expression of our stemness meta-modules in a diverse array of human neural 
progenitor cell populations27,34 (SFig 3). 

 
Identification of a mixed-vascular population expressing stemness modules 

We were particularly intrigued that multiple progenitor programs overlapped with a subclass of vascular 
cells that also uniquely expressed module 11 (Fig 2B). Module 11 is comprised of genes representing a mixed 
vascular identity including that of mural and endothelial cells (Fig 2B, STable2). Notably, a recently published 
vascular atlas orthogonally observed many module 11 genes were upregulated in glioma-associated 
vasculature compared to normal brain35, though no module analysis nor function was interrogated in this study.  
Because all of our data were filtered to only include tumor populations, we determined this is a tumor-derived 
cell type. Intriguingly, this population also exhibited expression of markers reminiscent of neural progenitors 
(Fig 2B-C). Among these progenitor genes, markers of oRG identity including HOPX were expressed in cells 
with high module 11 activity (Fig 2B). oRGs are subsets of radial glia progenitors that are highly expanded in 
the developing human cortex compared to rodents, and although they are thought to disappear from the 
developing human cortex by birth, were identified by us and others to be reactivated in GBM, with functional 
roles in tumor migration12,22. Co-expression of oRG markers with mixed vascular identity was surprising as this 
has not been well described in the developing human brain, the adult human brain, nor GBM.  

Previous work has convincingly shown that tumor associated vasculature plays a pivotal role in tumor 
progression. For example, pericytes derived from glioma stem cells in vitro and in vivo contribute to increased 
tumor proliferation36. Similarly, a recent study showed that cancer-associated fibroblasts in GBM promote 
glioma stem cell growth37. Additionally, introducing tumorigenic alterations in naïve human brain perivascular 
cells results in brain tumors38. Moreover, extensive work characterizing pericytes and PDGFRβ has been 
performed in GBM and has demonstrated a critical role for this signaling pathway in maintaining glioma stem 
cell renewal39, increasing tumor cell proliferation40,41, and contributing to treatment resistance42. We sought to 
build upon this literature and explore how our tumor-derived mixed vascular population differs from these 
previously described cell types by co-expressing features of progenitor identity as well. Additionally, we aimed 
to investigate whether the rare nature of this signature indicated a technical or dataset driven bias in our 
analysis. Arguing against this possibility, we observed that cells with high module 11 score were ubiquitous 
across tumors and datasets (Fig 2D). Sensitive to the fact that these tumors were dissociated without 
enrichment for this population in mind and that vascular cells typically require specialized isolation protocols43, 
we next performed in situ immunofluorescence analysis to validate the presence of this hybrid cell type. 
 
In situ validation of mixed vascular identity with canonical stemness markers 

The majority of our module 11 genes are mural cell markers so we first stained for canonical pericyte 
markers and observed morphologies similar to those described in the literature, including large and small 
vessel associated mural cells44 (Fig 2E). We also observed parenchymal co-localization of pericyte markers 
(and meta-module 11 members) PDGFRβ and NOTCH3 (Fig 2E, SFig 4B).  

To examine the in situ co-localization of pericyte markers and neural progenitor markers, we performed 
immunostaining for PDGFRβ, NOTCH3, with NES (common glioma stem cell marker45) and HOPX (marker for 
oRG46). We hypothesized that these cells might be spatially arranged near canonical pericyte populations, and 
to explore this we performed tile scans to enable visualization of diverse niches within the tumor. PDGFRβ and 
NES double-positive cells have been previously described in the context of tissue regeneration after injury47,48  
and have been identified to be a characteristic of pericytes that can be reprogrammed into a neural lineage49, 
however this identity has not been described in the context of GBM. Across these tumor sections, we found 
that a subset of pericyte markers co-localized with NES and HOPX, with parallel morphologies observed in 
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both co-stains, leading us to tentatively refer to these populations as “neurovascular progenitor” (NVP) cells 
(Fig 2E, SFig 4-5). Indeed, we observed that putative pericytes and NVP cells were seen in anatomical clusters 
or apart from other putative pericytes and in vessel-associated and parenchymal regions (Fig 2E). To validate 
that this was not a tumor-specific phenomenon, we repeated this staining across 3 patient tumor samples and 
noted similar morphologies in samples from each patient (SFig 4-5). These data gave us confidence that NVP 
cells exist across multiple tumors.  
 
FACS enrichment from primary tumors allows for molecular characterization of NVP  

Given the presence of putative NVP cells as a small fraction of the tumor population in the single-cell 
meta-atlas, but with validation in situ, we sought to more extensively characterize this population. To do so, we 
employed a sorting strategy that would allow us to enrich for tumor vasculature populations, including NVP. 
Direct-from-patient GBM samples were sorted for PDGFRβ expression immediately after surgical resection 
(without expansion or plating) using fluorescence activated cell sorting (FACS) (Fig 3A, STable4). The sorted 
and unsorted cells acquired from three patient tumor specimens were immediately captured for single-cell 
RNA-sequencing (scRNA-seq) and annotated for tumor identity with our cell types from the GBM meta-atlas 
(Fig 3A - C, SFig 6A). The resulting dataset consisted of 15,996 cells after quality control and copy number 
variation filtration for tumor cells (Methods). Using a combination of module 11 activity scoring and marker 
genes from our mixed vascular population, we molecularly defined a subset of our sequenced cells as NVP, 
and used the top marker genes of this cluster to define our NVP signature (STable5). Importantly, all of these 
annotated NVP cells contained copy number variation indicating they were tumor cells (SFig 6B), as opposed 
to tumor-associated vascular populations that are well described in the literature50. This enrichment and 
analysis provided confidence that NVP cells reliably exist across tumors and can be isolated for further 
characterization.  

  
Interrogation of vascular and neural stem cell gene module co-expression 

Within our annotated NVP population, we observed the expression of marker genes related to mural 
(PDGFRβ, NOTCH3), neural stem cell (HES1, NES, HOPX) and endothelial identities (TIE1, PECAM1) (Fig 
3C). Previous literature has demonstrated the presence of developmental marker genes in tumor vascular 
cells, and we sought to interrogate whether the presence of these markers was indicative of a larger gene 
program. Thus, we aggregated modules from published studies51 and calculated our own modules from 
published datasets52-54 to explore their activity in NVP cells and the rest of our data. NVP cells showed 
enrichment for adult vascular gene programs54, developmental vascular gene programs53, murine cancer stem 
cell51, normal stem cell programs55,56, and a recently identified meningioma NOTCH3+ stemness signature52 
(Fig 3D). These analyses highlighted that NVP cells co-express modules related to multiple vascular identities 
and stemness programs. However, NVP cells are neither the only vascular populations within the tumor nor the 
only progenitor populations, consistent with our meta-atlas analysis and previous studies12,14,18. Given the 
expression of oRG marker HOPX in our NVP cells, we explored representation of a curated oRG transcription 
network46. We observed that several additional canonical markers are expressed by the NVP cells (Fig 3D), 
further highlighting their potential to serve as progenitors within the tumor.  

 
Identification and elimination of NVP in an in vivo developmental GBM model extends survival 

  Given the link to developmental cell types and progenitors in GBM, we explored scRNA-seq data from 
a published, tractable, developmentally derived in vivo model of GBM57. This approach uses in utero 
electroporation to knockdown three tumor suppressors, giving rise to GBM-like tumors postnatally. We re-
analyzed these data from the lens of our human-annotated GBM cell types, finding numerous populations of 
interest including a mixed vascular population that resembled our NVP (Fig 3E). Excitingly, this model of GBM 
allows exploration of diverse progenitor populations that also exist in human patient tumors57. Using the same 
signatures as before, we scored the mouse tumor cells for these vascular and progenitor modules, finding that 
the mixed vascular population scored highly and specifically for our NVP score and similarly co-expressed 
various vascular and progenitor features (Fig 3E). Identifying NVP in this in vivo model of GBM provided 
orthogonal confirmation of the significance of NVP cells and provided a system in which to manipulate this 
population. Therefore, we performed in utero electroporation using this established 3xCr approach which 
initiates tumors with CRISPR-mediated knockdown of Pten, Nf1, and Trp53. 

Using this developmental in vivo tumor system, we sought to explore how NVP contributes to GBM 
composition. Our strategy was to leverage the mouse system to interrogate NVP in a way that would be cross 
applicable to the human GBM context. Although PDGFRβ is an excellent surface marker for enrichment of 
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NVP cells, in both our meta-atlas and our sorted cell analysis we noted that it was not entirely specific to the 
NVP population. When exploring a genetic manipulation, we were not restricted to surface markers and thus 
chose a handful of genes to target for knockout that were both specific to the NVP cluster and that were 
conserved between human and mouse NVP. These included highly specific transcription factors (SOX18 and 
FOXC1), neural stem cell marker gene FAM107A, endothelial marker CLDN5 and mural marker RGS5 (SFig 
7A). Our experimental condition applied the same 3xCr approach but added in simultaneous knockdown of our 
five NVP targets (3xCr+NVPnull), enabling exploration of how the resultant tumors would differ without NVP (Fig 
4A). 

Our previous analysis of this model indicated robust and consistent representation of the NVP 
population at P70, thus we sacrificed 4 control 3xCr and 4 experimental 3xCr+NVPnull mice with equal numbers 
of male and female animals at this timepoint (P70) to explore the impact of NVP on tumor cell type composition 
(SFig 7B). We performed single-nuclei RNA-sequencing (snRNA-seq) and obtained data from 80,530 nuclei 
after quality control (Fig 4B). As before, we annotated cell types with our meta-atlas reference, observing that 
the 3xCr+NVPnull resulted in a 96% reduction of the NVP cell fraction (Fig 4C). To further explore the 
differences between the 3xCr and 3xCr+NVPnull mice, we scored these data for the same modules that we 
observed to be activated in human NVP cells in the mouse tumor cells. We noted that a number of these 
modules were significantly downregulated in the 3xCr+NVPnull condition, indicating that these gene programs 
are co-expressed in the mouse NVP cells, were specifically targeted by our depletion strategy, and may have 
functional roles in NVP maintenance (Fig 4D). These results validated the parallels between the mouse and 
human NVP populations, enabling us to further explore the impact of NVP on tumor composition. Thus, we 
calculated the cell type composition for each of the 8 profiled tumors and compared how they differed with and 
without NVP to explore how NVP functionally contributes to GBM tumor biology.  In the 3xCr+NVPnull mice, 
there was a decrease in the number of cycling cells, vascular cells, and a modest decrease in the number of 
tumor progenitors such as oligodendrocyte precursor cells (OPCs), and oRGs. There was also an increase in 
certain cell types including differentiated populations such as astrocytes and oligodendrocytes, as well as 
neuronal progenitor cells (NPC) (Fig 4C-E) that may be playing a compensatory role. These data describe a 
specific role for NVP within the tumor and led us to hypothesize that NVP may generate multiple cell types 
within GBM tumors. We additionally evaluated survival of a separate cohort of 3xCr (n=23) and 3xCr+NVPnull 
(n=28) mice. The 3xCr+NVPnull cohort showed an increase in median overall survival compared to the 3xCr 
cohort (119 vs. 91.5 days, log-rank p-value = .03) (Fig 4F), indicating that the shifts in cycling populations and 
cell populations are sufficient to impact tumor growth and in vivo survival.    
 
DNA barcoding-based clonal analysis of enriched NVP cells from human GBM samples demonstrates dual fate 
of NVP 

The in vivo experiments provided direct evidence that NVP cells have essential roles in promoting GBM 
tumors. We sought to test our hypothesis that NVP generates tumor cell types in human GBM tumors, 
especially given recent findings that there exist species differences in brain vascular subtypes54. Studying 
human tumors involves additional challenges compared to mouse in vivo systems, including the observation 
that in vitro expansion of primary tumors alters tumor composition and may result in decreased progenitor 
complexity58. To address these challenges, we developed and optimized a human organoid tumor 
transplantation (HOTT) system that both preserves tumor heterogeneity and transcriptional fidelity to the 
parent tumor while also modeling key features of the tumor microenvironment12,59. Briefly, tumor cells directly 
from the patient can be labeled with lentivirus containing GFP markers and transplanted into an already 
existing cortical organoid that models key features of the developing human cortex. A unique feature of this 
HOTT system is that it can also enable the exploration of isolated subsets of tumor cells and allows for 
additional molecular modifications to be introduced. We took advantage of these features by repeating our 
enrichment for NVP by sorting for PDGFRβ+ cells and performed clonal tracking using the well described 
CellTag DNA barcoding system60 (Fig 5A - B).  

Upon transplantation of the NVP enriched tumor fraction into HOTT, we observed the recapitulation of 
complex cell morphology that we had previously seen in situ (Fig 5B). To perform this experiment, we first 
infected freshly dissociated GBM cells from 6 patients with a lentiviral library containing scRNA-seq compatible 
CellTag barcodes and a GFP tag before transplanting onto cortical organoids. We delivered the virus at a 
multiplicity of infection that would result in 3 - 4 barcodes introduced in each cell, enabling high confidence 
clone calling in subsequent analysis (Methods). We then allowed the tumor cells to proliferate before 
harvesting for scRNA-seq. The paired analysis of CellTag barcodes and transcriptional signatures provides the 
identity of tumor cells derived from the same clone.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.604840doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.24.604840
http://creativecommons.org/licenses/by-nc/4.0/


As before, we performed quality control analysis and filtered for tumor cells using copy number 
variation analysis, yielding 20,153 cells across 6 unique tumors. Cells were uniformly labeled with CellTag-
containing lentivirus (Fig. 5B), giving all cells the opportunity to be included in a clone. Our analysis showed 
that across our 6 tumors, we averaged a multiplicity of infection of 2-3, meaning that the probability of any two 
cells randomly receiving the same combination of barcodes is infinitesimally small, as has been previously 
described60. Using the CellTag clone calling pipeline61, we identified 1465 clones ranging in membership from 
2 to 28 cells, with an average size around 3. The transcriptional analysis was performed orthogonal to the 
clonal analysis, and identified a subset of cell types that we typically observe within GBM tumors. After 
performing clonal analysis on each tumor individually, we merged all tumors and clone identities in order to 
visualize trends in clone membership on the same UMAP space. Each clone represents a set of cells that are 
derived from a common progenitor in the HOTT system, though the parent cell may or may not remain or be 
captured by our system. As such, we present the clones from our analysis in sum (Fig 5E) and filtered for 
those that are restricted to containing one or more NVP cells in the clone (Fig 5F, bottom right, UCSC Genome 
Browser: https://gbm-nvp.cells.ucsc.edu). While here we pictorially represent select representations of clones 
with interesting and unexpected cell type membership, the vast majority of the total clones were comprised of 
cells in the same cluster, especially that of cycling cells. Because having multiple clone members of the same 
cell type is more likely than having clone members of different cell types, this provides confidence that the 
clone calling strategy indeed resulted in related cells being highlighted. Upon analyzing the cell types 
represented in these clonal relationships, we observed that cycling cells and OPCs were overrepresented. This 
was particularly interesting given the decrease in both the cycling population and OPCs observed when NVP 
was depleted in our in vivo experiment, suggesting an outsize role for NVP cells in generating cycling cells 
compared to their proportional representation in the tumor.  

Our informatic analysis and in situ validation led us to hypothesize that NVP cells have the propensity 
to generate both neuronal and vascular cells within the tumor. Indeed, we found several clones across multiple 
tumors that contained an NVP cell and at least one neuronal and/or vascular cell, confirming the dual potency 
of this population (Fig 5D). Importantly, the direct clonal relationship between NVP cells, vascular cells, and 
neurons is permitted by this DNA-barcode clone analysis and is not accessible by traditional scRNA-seq 
approaches. While we previously demonstrated GBM cell type composition changes as a result of NVP 
depletion, this direct-from-patient clone interrogation advances our understanding of NVP function by providing 
a concrete relationship between multiple tumor cell types. We note that across canonical models of GBM, 
neuronal and vascular populations are thought to sit at opposite poles of GBM transcriptional identities20,62, 
highlighting a unique aspect of NVP cells in that they are capable of giving rise to divergent states within the 
tumor.   

 
NVP-enriched samples can generate a majority of the parent tumor 

For a subset of our tumors (3 of 6), we performed a parallel transplantation into HOTT of the unsorted 
parent tumor in order to identify what fraction of the parent tumor can be generated by the NVP enriched 
fraction. We performed this control, as opposed to simply profiling the input tumor, in order to account for any 
cell type bias generated by the HOTT system. Across these 3 paired tumors, we recovered 74,234 cells. The 
NVP enriched fraction was able to give rise to 59% of parent tumor cell types, indicating a substantial 
contribution to the overall tumor landscape (Fig 5G). Notably, the NVP enriched fraction was deficient in 
numerous cell types present in the parent tumors, including mesenchymal, astrocyte, and transition state cells, 
validating our framework that although NVP has an essential role in GBM tumors, there are multiple progenitor 
cell types within any given patient tumor that generate these other populations. Again, these data are 
concordant with what we observed in vivo, showing that NVP has a functional role in promoting certain GBM 
cell types, but does not impact every cell in the tumor.    
 
Discussion 

Here, we utilized a new meta-atlas generation method to identify unified gene programs specifically 
within adult IDH1wt GBM, leading to the discovery and functional characterization of a novel GBM 
neurovascular progenitor population (NVP). The initial goal of this meta-atlas approach was to effectively 
describe functional gene programs of GBM cell subpopulations with a focus on progenitor diversity. Indeed, the 
intersection of modules and marker genes across clusters gave us a robust cell type annotation that enabled 
the precise description of GBM cell types and progenitor identities, as well as provided us with coherence for 
our downstream analysis. Our modules and cell types are consistent with the major features of tumors used by 
others in the field to describe GBM biology (SFig 2). The diversity of progenitor modules that emerged from our 
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meta-atlas additionally provided us with nuance in being able to describe the ‘flavors’ of progenitor identity that 
exist across heterogeneous cell types and GBM tumors. This led to our initial interest in pursuing NVP as a 
potential tumor progenitor due to the surprising confluence of multiple progenitor modules and a cluster with 
mixed vascular identity. Importantly, these progenitor modules and their intersection with cell type annotations 
serve as a resource for the community to further explore additional tumor populations and their progenitor 
features, accessible through the cell browsers we have constructed for this study.       

We discovered that although NVP cells comprise a small fraction of the total tumor, they 
disproportionately contribute to cycling cells and have dual fate potential in giving rise to neurons and/or 
vascular cells. This unexpected role of NVP initially seemed bizarre, but literature on the existence of pericyte 
progenitor cells in other tissue systems provide context for why NVP cells may exist in GBM. Pericytes across 
tissue systems have been described to be relatively undifferentiated cells and contribute to tissue repair after 
injury. Additionally the co-expression of pericyte markers with developmentally relevant markers such as 
HOPX63 and NES have been described in mesodermal tissues including the heart and skeletal muscle48 and 
reside in proximity to neurogenic cells where they participate in regenerative processes47. In the brain, primate 
pericytes have shown neurogenic potential after ischemia64 and human pericytes can be directly 
reprogrammed into functional neurons49. This raises the hypothesis that dual fate NVP cells in GBM have 
aberrantly resurrected these injury response mechanisms contributing to cancer adaptation and plasticity.    

In this study, we focused on the in situ and molecular validation of the existence of the NVP population, 
followed by functional characterization in vivo and in human patient GBM. In vivo experiments showed an 
expanded survival of mice with tumors lacking NVP, demonstrating that targeting NVP could be utilized as a 
therapeutic strategy. However, even in this experiment, compensatory mechanisms including the higher 
proportion of neural progenitor cells in these tumors reinforce that multiple progenitor populations exist within 
GBM tumors and multi-progenitor targeting will be required to effectively prevent tumor progression. This is 
further corroborated by our analysis that although NVP is disproportionately clonally linked to a subset of tumor 
cell types, entire populations within the parent tumor have no clonal relationship to NVP and therefore likely 
emerge from distinct progenitors. Additional work is needed to identify where in the progenitor hierarchy of 
GBM NVP cells may sit, as our clonal analysis does not provide historical information about either the tumor 
cell of origin or NVP emergence. The restriction of NVP potency to give rise to many but not all GBM tumor cell 
types presents a shift in our understanding of how direct-from-patient stem-like populations within the tumor 
function; this observation of restricted fate further bolsters the argument for why cell type-specific therapeutic 
approaches may be a valuable tool. Thus, our characterization of NVP cells serves as a paradigm that can be 
applied to all progenitor populations within GBM in order to advance our understanding of their role within the 
tumor to enable the development of effective combinatorial treatment strategies.   
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Figure 1. Meta-modules constructed from individual tumor analyses identify known and novel 
biological programs and cell states 
A) A novel workflow of meta-atlas generation was developed to overcome technical and biological variation 

when interpreting gene networks in single-cell RNA sequencing (scRNA-seq) in patient glioblastoma 
(GBM) samples. We performed uniform quality control (QC) of each individual patient tumor sample. 
Hierarchical clustering was performed on each patient individually, followed by the calculation of cluster 
markers. Genescores were calculated to identify specifically enriched markers for each cluster. Top 
genescores were combined across datasets in order to identify preserved sources of variation. Hierarchical 
clustering of top genescores was performed to identify gene modules explaining biological processes 
across all datasets.   

B) A stepwise exclusion process was implemented to curate the GBM meta-atlas from published primary 
GBM. The initial dataset included published primary GBM samples. The first criterion excluded pediatric 
samples, retaining only data from adult patients. Subsequently, samples harboring mutations in the 
isocitrate dehydrogenase 1 (IDH1) gene were excluded, focusing solely on IDH1 wild-type (IDH1WT) 
samples. The final exclusion step involved the removal of non-tumor cells per the original authors’ 
annotations. This filtration resulted in a final dataset comprising 69,547 cells. 

C) Genescores were calculated on a tumor-specific basis, and scores were filtered and aggregated across the 
datasets. The distance matrix of the correlation of genescores between markers of individual tumors was 
calculated and hierarchically clustered. Red boxes highlight clusters of genes with high correlation, which 
are binned into meta-modules. 

D) The distribution of meta-module sizes is shown with a density plot, indicating the frequency distribution of 
meta-modules by the number of genes they contain. The table provides key statistics of the meta-modules, 
showing a total of 152 meta-modules with sizes ranging from 10 to 323 genes and a median size of 56 
genes. 

E) For visualization purposes, an integrated uniform manifold approximation and projection (UMAP) of the 
cells in the meta-atlas was generated after uniform QC and filtration (Methods). Cells were integrated by 
conventional methods65, which utilizes similar subpopulations to find common anchors between the 
datasets. UMAPs are labeled by cluster membership (top left), dataset (top right), cell type as annotated by 
cluster marker analysis (bottom left) and cell type as annotated by the highest module activity score from 
published meta-modules18. 

F) UMAPs displaying the module activity of cell type-specific meta-modules in the GBM meta-atlas. Each plot 
shows the expression pattern of a specific meta-module across the integrated dataset. The cell type 
specific meta-modules largely correspond to orthogonally annotated cell types (1E, bottom left and bottom 
right). 
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Figure 2: Meta-module analysis identifies progenitor features in cluster with mixed vascular identity 
A) Our meta-modules contained multiple gene sets that appeared to correspond to different progenitor 

programs. UMAP plots depict the module activity of stemness-related meta-modules and the expression of 
associated stemness genes in the GBM meta-atlas. The associated stemness genes NES, YAP1, SOX6, 
PROM1, PAX6, and SOX2 are shown in corresponding plots, highlighting the correspondence but 
incomplete overlap between module activity and gene expression. 

B) Multiple progenitor programs overlapped in a small cluster annotated as “Mixed Vascular”, represented by 
cluster 13 on the integrated UMAP (Fig. 1E). Insets depict the expression of vascular-gene containing 
meta-module, meta-module 11 as well as member genes PDGFRβ and NOTCH3 (in orange box). Also 
expressed in this cluster but not contained in meta-module 11 are neural progenitor maker HOPX and 
endothelial marker TIE1. 

C) Module activity scores for meta-modules representing stemness programs were calculated for every cell in 
the meta-atlas. The heatmap depicts the expression profiles of vascular, mixed vascular, and NPC cell 
populations. The mixed vascular cell population exhibits a combination of stemness programs seen in both 
NPC and vascular cells. Expression of meta-module 11 uniquely distinguishes mixed vascular cells from 
vascular and NPC cells. 

D) The distribution of meta-module 11 activity scores is plotted for individual tumors. Each ridge plot depicts 
the meta-module 11 scores of cells for one individual tumor, with tumors separated by dataset. 

E) Immunostaining was performed to validate co-expression of vascular and progenitor markers in patient 
primary tumor tissue. Left panel: Tile scan of meta-module 11 members NOTCH3 (red) and PDGFRβ 
(magenta) co-localize with neural progenitor marker HOPX. Right panel: Tile scan of meta-module 11 
member PDGFRβ (green) co-localized with neural progenitor marker NES (red) (co-localization denoted by 
arrows). Scale bar in large image = 400 μM, scale bar in insets = 200 μM (2x zoom). Staining was 
performed in total 3 tumors per panel. Representative images are shown.  
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Figure 3. Enrichment of PDGFRβ+ cells reveals primary GBM NVP cells represented across human and 
mouse tumors 
A) Fluorescence activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq) enrichment 

strategy for primary GBM patient samples. Primary tumor samples were dissociated, and cells were 
labeled with PDGFRβ-PE and DAPI (live/dead). DAPI- PDGFRβ+ cells were collected via FACS. The 
FACS plot shows the separation of PDGFRβ+ (red) and PDGFRβ- (gray) cells. Sorted PDGFRβ+ cells 
were then captured with scRNA-seq along with the unsorted “Whole Primary” tumor. The UMAP displays 
the distribution of whole primary (gray) and sorted (red) cells in the scRNA-seq data. 

B) Left: Cells from the Sorted and Whole Primary samples were annotated by via projection onto the 
annotated GBM meta-atlas18. Right: Based on cluster marker analysis and expression of vascular and 
neural progenitor genes (panel C), the cluster in turquoise was annotated as our putative Neurovascular 
Progenitor, or “NVP”. 

C) UMAP representations of meta-module 11 activity score and mural cell markers (PDGFRβ, NOTCH3), 
neural progenitor markers (HES1, NES, HOPX), and endothelial markers (TIE1, PECAM1) used to 
determine “NVP” annotation in panel B. Aforementioned marker genes and module activity coincide in the 
cluster ultimately annotated as “NVP.” 

D) Left: Gene modules were derived from published studies51 or using in-house analysis of published scRNA-
seq datasets. Gene modules included those for human adult vasculature54, human developmental 
vasculature53, mouse glioma cancer stem cell programs62, mouse brain developmental types55 and human 
stem cell types52,56. Violin plots compare the relative activity score of modules from each dataset between 
NVP and non-NVP cells. NVP cells are enriched for mural, endothelial, and neural stem cell program 
expression compared to non-NVP cells. Right: DotPlot depicting the enriched expression of outer radial glia 
(oRG) markers46 in NVP cells. 

E) scRNA-seq data from a developmental model of mouse GBM57 was processed according to our standard 
pipeline (Methods) and annotated via projection onto the GBM meta-atlas (Seurat, MapQuery65). Right: The 
dataset was scored for module activity for the previously described published modules, highlighting the 
expression of neural progenitor cell modules and vascular cell modules in the population annotated Mixed 
Vascular. 
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Figure 4. In vivo depletion of NVP decreases GBM cycling cells and extends mouse survival 
A) We leveraged an in utero electroporation model of GBM to study the contribution of NVP cells to cell type 

composition and survival. The control group consisted of CRISPR-Cas9 mediated knockdown of Pten, 
Nf1, Trp53 (3xCr). The experimental cohort received this 3xCr plasmid with the addition of a plasmid 
which simultaneously expresses sgRNA sequences (3xCr+NVPnull) against five target genes (Sox18, 
Foxc1, Fam107a, Cldn5, Rgs5). Electroporation was performed at embryonic day 15 and tumors were 
harvested at postnatal day 70 then captured for single-nucleus RNA sequencing (snRNA-seq).   

B) UMAP depicts the representation of 3xCr and 3xCr+NVPnull cells. snRNAseq data was processed using 
our standard QC metrics in addition to Cellbender to account for technical artifacts associated with 
ambient RNA66.  

C) Left:  UMAP plots showing the impact of NVP depletion on GBM cell type representation. Cells were 
annotated by projection onto the GBM meta-atlas. “Neuronal” and “Immune” cells were excluded from 
downstream composition analysis, which shows the change in relative proportion of cell types from 3xCr 
to 3xCr+NVPnull mice. UMAP is split to label only 3xCr cells (left) or 3xCr+NVPnull cells (middle), allowing 
the visualization of reduced cluster representation in the cluster annotated as “NVP”. Right: difference in 
tumor cell type proportion between 3xCr and 3xCr+NVPnull mice. 

D) All cells in the dataset were scored for progenitor, stemness, and vascular modules (Fig. 2 and Fig 3). 
Log2 fold change of module activity in 3xCr+NVPnull cells compared to 3xCr mice was calculated, and -
log10 p-value is shown of the difference between the two conditions is shown. A t-test was performed for 
each variable to compare control and experimental conditions. The Benjamini-Hochberg procedure was 
applied to adjust the p-values for multiple comparisons, controlling the false discovery rate. 

E) Differences in cell type proportion between 3xCr and 3xCr+NVPnull conditions were calculated by scaling 
the proportion of each cell type in the experimental condition relative to the control condition. The bar 
graph shows the scaled proportions of various cell types, with the dashed line indicating the control 
condition. Percent increases or decreases in cell type proportions are determined based on their relative 
position to the dashed line. 

F) Kaplan-Meier curve showing survival of 3xCr (n=23) and 3xCr+NVPnull (n=28) mice. The 3xCr+NVPnull 
cohort showed an increase in median overall survival (50% survival depicted by dashed line) compared to 
the 3xCr cohort (119 vs. 91.5 days, log-rank p-value = .03).  
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Figure 5. CellTag DNA barcoding of PDGFRβ+ cells from primary GBM demonstrates neuronal and 
vascular clonal relationships. 
A) Six (6) primary GBM samples were subjected to FACS isolation of DAPI- PDGFRβ+ cells. These cells 

were then transduced with a lentiviral library containing plasmids which contain unique CellTag DNA 
barcodes and GFP. After transduction, cells were transplanted onto week 8-12 human cortical organoids. 
Following a proliferation period of 12-18 days, the tumor cells were dissociated from the organoid and 
sorted based on GFP. GFP+ cells are harvested for scRNA-seq. The resultant data include paired 
CellTag DNA barcode information with transcriptomic profiles, allowing the construction of clonal 
relationships, illustrating neuronal and vascular clonal dynamics. 

B) Live-image of 3D cortical organoid with transplanted PDGFRβ+ CellTagged tumor cells in culture (4X 
magnification, scale bar = 500 μM). The inset depicts the cellular morphology of transplanted cells (20X 
magnification, scale bar = 100 μM). UMAPs depict the detection of CellTag associated genes GFP.CDS 
and CellTag.UTR, indicating that tumor cells were uniformly labeled by lentiviral transduction. Histogram 
displaying the distribution of clone sizes. Total clones: 1465, minimum size: 2, mean size: 3.28, maximum 
size: 28. 

C) Cells were captured for scRNA-seq and subject to standard processing and QC (Methods). Cell identity 
was annotated via projection onto the GBM meta-atlas65. The bar graph depicts the likelihood of each cell 
type to be a member of a clone based on CellTag barcode analysis. Proportion of each cell type with a 
clone member was scaled to the proportion of cells in the entire dataset that are clone members. 

D) Representative clones are depicted on the UMAP. Each dot represents one cell, and cells of the same 
color belong to the same clone. Clone members in NVP share clonal identity with cells of various cell 
types in the annotated UMAP, including vascular, neuronal, and other NVP cells.  

E) UMAP highlighting cells that are members of a clone, colored by tumor. Clone members were distributed 
across cell types, with increased in the cycling cells cluster. 

F) UMAP highlighting clones (n=90) with at least one NVP member, colored by tumor. NVP cells harbored 
clone partners in a diverse array of cell types, including other NVP cells, cycling cells, neurons, and 
vascular cells.  

G) In parallel to PDGFRβ+ FACS sort and CellTag, in a subset of our tumors, we conducted a parallel 
infection, organoid transplantation, and scRNA-seq experiment. UMAP depiction of parent tumor scRNA-
seq data is shown on the left. The right UMAP shows the PDGFRβ+ CellTagged cells overlayed on the 
UMAP space of the parent tumor, depicting that the majority of cell types could be derived from the 
sorted fraction. Notably, not all cell types are represented in the overlay. The bar graph depicts the 
number of unique cell types present in each tumor in either the parent sample or PDGFRβ+ CellTagged 
sample. 
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Supplemental Figure 1: Meta-modules reveal inter-dataset axes of variation in GBM 
A) Overview of the meta-atlas composition by dataset and tumor, and the contribution to gen

analysis. Left: Stacked bar graphs showing the composition of cells (n = 69,547), clusters (n 
tumors (n = 55), and s (n = 21,849) in the meta-atlas, categorized by dataset. Middle panel: Pi
depicting the composition of cells in the meta-atlas by tumor, colored by dataset. Right panel: Ba
showing the fraction of clusters in each dataset contributing to  analysis. 

B) Number of meta-modules expressed by dataset, cluster, and cell show similarity in module n
representation across datasets. 

C) Relationship between size of the meta-module (gene #) and likelihood of cell expression depicts
correlation between module size and number of cells expressing the module. 

D) Heatmap displaying the prevalence of meta-modules across tumors in the meta-atlas. Ea
represents a tumor, and each column represents a meta-module, ordered by overall prevalenc
color gradient indicates the expression level of each meta-module, with darker colors repre
higher expression levels. The dendrogram on the left clusters tumors based on their meta-
expression profiles, and the color-coded bar on the right indicates the dendrogram cut. This illu
the heterogeneity of meta-module expression across different tumors. 
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Supplemental Figure 2: Meta-modules recapitulate features of published GBM gene networks and
contribute novel signatures 

A-D) Jaccard index heatmaps showing the correlation between gene membership in the GBM
atlas meta-modules and modules from published datasets18,29-31. The y-axis includes modu
representing genes not assigned to any published modules in that dataset. Color intensity indica
strength of the Jaccard correlation, with darker colors representing higher correlations.  
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Supplemental Figure 3. Stemness meta-modules label annotated progenitor cell types in pub
normal neurodevelopmental datasets 
A) UMAPs and violin plots showing the expression of stemness meta-modules from the GBM meta-

a meta-atlas of the developing human brain27. Top UMAP depicts published annotation of cell t
the scRNA-seq dataset. Bottom UMAPs show module activity score of GBM meta-atlas ste
modules, depicting enrichment of stemness modules across developmental cell types. Violin p
expression levels for each stemness meta-module across different cell types and are enric
progenitor population (OPC, RG, RG.Div), indicating that stemness modules label progenitor ce
and neurons in the developing brain. 

B) UMAPs and violin plots showing the expression of stemness meta-modules from the GBM meta-
a dataset of sorted neural progenitor cell populations34. Top: cells from the dataset were annotate
the authors’ annotations, with the exception that all of the sorted progenitor populations were g
into one cell type. Bottom: Module activity for stemness meta-modules demonstrate represe
across a variety of neural stem cell subtypes. Right: violin plots show stemness module represe
in neural stem cell types, such as NSC, NSPC, OPC, and Sorted Progenitors. 
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Supplemental Figure 4: Co-expression of meta-module 11 genes with progenitor genes localize to
vascular niches 
A) Immunostaining was performed to validate co-expression of additional and progenitor markers in

primary tumor tissue. Left panel: Tile scan of meta-module 11 member and mural cell marker C
(green) and neural progenitor marker NES (red) (co-localization denoted by arrows). Co-
appears to mostly localize to vascular morphologies while also existing in non-vascular associated
parenchyma. Scale bar in large image = 400 μM, scale bar in insets = 200 μM (1.7x zoom). Staini
performed in 3 tumors per panel. Representative images are shown.  

B) Immunostaining in additional tumor samples demonstrates the co-localization of meta-mod
members NOTCH3 (red) and PDGFRβ (magenta) with neural progenitor marker HOPX (gree
localization denoted by arrows. Staining was performed total 3 tumors per panel. Representative 
are shown. Scale bar = 40 μM.  

 to 

 in patient 
 COL1A1 

staining 
ted tumor 
ining was 

odule 11 
een). Co-
e images 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.604840doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.24.604840
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
Supplemental Figure 5: Co-expression of meta-module 11 member PDGFRβ with neural progenit
marker NES in additional primary GBM samples 
A) Immunostaining was performed to validate co-expression of vascular and progenitor mark

additional patient primary tumor tissue. Left panel: Tile scan of meta-module 11 member PD
(green) co-localized with neural progenitor marker NES (red) (co-localization denoted by arrows)
bar in large image = 400 μM, scale bar in insets = 200 μM (2x zoom). 

B) Immunostaining was performed to validate co-expression of vascular and progenitor mark
additional patient primary tumor tissue. PDGFRβ (green) co-localized with neural progenitor mark
(red) (co-localization denoted by arrows). Staining was performed in 3 tumors per panel. Represe
images are shown. Scale bar = 40 μM. 
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Supplemental Figure 6: NVP cells were identified in all profiled patients 
A) UMAP representations of cluster membership and patient origin. Left: UMAP plot showing 

membership from the Sorted and Whole Tumor samples. Right: UMAP plot displaying patient-
clustering, with cells colored by patient (PT492, PT494, PT497). 

B)  InferCNV analysis of NVP-enriched cells displays evidence of copy number variations characte
malignancy. Heatmap showing the inferred copy number variations in reference cells (top) and ob
cells (bottom), with variations indicated by red (gain) and blue (loss). 
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Supplemental Figure 7: Candidate selection in human and mouse GBM 
A) Candidate gene representation in human and mouse GBM. UMAP plots show the expression of 

selected genes in human PDGFRβ+ enriched GBM cells (top row) and mouse GBM cells57 (bottom
Candidate genes were specific to the annotated “NVP” cluster in the human and “Mixed Vascular”
cluster in the mouse models. CRISPR-Cas9 target genes are boxed in blue. PDGFRβ and NOTC
shown as examples of meta-module 11 gene members. 

B) Dataset composition of snRNA-seq data from 3xCr and 3xCr+NVPnull cells. UMAP plots display th
clustering of cells based on cluster identity (left), sample origin (middle), and sex (right). 
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Supplemental Figure 8: Clonal analysis of PDGFRβ+ human primary GBM cells 
A) UMAP plots showing CellTagged PDGFRβ+ cells after dissociation from cortical organoid labe

cluster (left) or patient (n=6) (middle). Cells were scored for the NVP signature derived from e
NVP cells (Fig 3). 

B) UMAP plots of matched parent tumor primary GBM samples labeled by cluster (left) or patien
right). 

C) Feature plots displaying the expression of cell type markers (NES, HOPX, PDGFRβ, NOTC
PDGFRβ+ sorted (top row), organoid transplanted samples and matched, organoid transplanted
tumors (bottom row). 

 

beled by 
 enriched 

ient (n=3, 

TCH3) in 
ed parent 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.07.24.604840doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.24.604840
http://creativecommons.org/licenses/by-nc/4.0/


Materials and Methods: 
 
Meta-atlas dataset acquisition and uniform quality control 
Gene count matrices for individual cells and corresponding metadata were obtained from various sources. For 
all datasets except those from Couturier and Bhaduri were downloaded from the Gene Expression Omnibus 
(GEO), and cells from the same individual were combined. All data not obtained from GEO were obtained 
through personal communication. While many of the datasets contained multiple tumor types, only direct-from-
patient IDH1WT primary adult glioblastoma samples were incorporated into our analysis. 
 
The 10X-derived count matrices and directories were processed using a standard pipeline to generate Seurat 
objects (Seurat version 4). Normalization of the counts was performed as needed, and cells with fewer than 
500 detected genes and more than 10% of UMIs mapping to mitochondrial genes were filtered out. Genes 
detected in fewer than three cells were omitted. Datasets were subset to contain only “tumor” cells based on 
the paper’s published annotations, or by cluster-based methods if published annotations were unavailable. 
 
Generation of meta-modules from tumor cluster markers 
For each individual tumor, we began by performing a self-correlation analysis on the normalized gene 
expression matrix to cluster cells based on their transcriptomic profiles. This procedure produced a correlation-
based distance matrix, which was then hierarchically clustered to allocate cells into specific clusters. Most 
Seurat objects were clustered at the highest resolution (hclust deepSplit option set at 4). The resulting cluster 
assignments for each tumor were added as metadata into their respective Seurat objects. Conventional Seurat 
commands were subsequently employed to identify cluster markers. Genescores for these cluster markers 
were computed using the following equation: 
 
Genescore of Gene A in Cluster 1 = [ (% of cells in Cluster 1 expressing Gene A) / (% of cells not in Cluster 1 
expressing Gene A) ] * log2-fold-change of average Gene A expression between Cluster 1 cells versus all other 
cells in the dataset. 
 
From the individual gene signatures, we derived gene modules exhibiting shared expression patterns across 
the meta-atlas. We compiled cluster markers from all tumors within the meta-atlas, retaining those in the 90th 
percentile of each dataset. The resulting table, containing genes, the meta-atlas clusters in which these genes 
were identified as markers, and their corresponding genescores, was used to create a distance matrix. 
Hierarchical clustering and division were performed using the dynamicTreeCut R Package with a minimum 
module size set to 10 genes. This strategy grouped genes based on their scores across all clusters in the 
meta-atlas, thereby forming meta-modules of genes with similar expression patterns across all 55 tumors 
represented in our meta-atlas.  
 
Module activity score analysis 
We evaluated meta-module activity within each cell by computing a module activity score based on the 
average expression level of each gene within a meta-module. Specifically, the activity score was determined 
by summing the normalized counts per million (CPM) for each meta-module gene and dividing this sum by the 
total number of genes in the meta-module to mitigate bias toward larger modules. Module activity scores for 
each module, for each cell were incorporated into Seurat objects as metadata, facilitating visualization using 
the FeaturePlot and DimPlot functions in Seurat. These scores proved to be highly versatile metrics, enabling 
the calculation of meta-module activity in datasets beyond our meta-atlas and allowing the measurement of 
activity across a wide range of gene networks. 
 
Batch corrected integration for visualization and cell type annotation 
For visualization purposes, we constructed the UMAP for our meta-atlas by integrating the specified datasets 
using conventional Seurat pipelines. Similarities between cells from different Seurat objects were identified and 
used as anchors to harmonize the data, employing the PCA method. FindVariableFeatures and ScaleData 
functions to prepare the data for principal component analysis (RunPCA function). Significant principal 
components were identified following the methods described by Shekhar et al., 201667. 
Graph-based clustering was performed using the FindNeighbors and FindClusters functions, resulting in 23 
clusters. Differential gene expression analysis (FindAllMarkers) was used to identify cluster markers, reporting 
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only genes positively enriched in a cluster. Annotation of cell identity based on integrated UMAP space was 
performed using a combination of annotation methods. 
 
Immunofluorescent staining 
Human primary GBM samples were obtained from patients undergoing surgery at Ronald Regan UCLA 
Medical Center. All patients signed informed consent forms for tissue collection under institutional IRB#10-
000655. Samples were fixed in 4% paraformaldehyde for overnight at 4°C, rinsed with PBS, and equilibrated in 
30% sucrose in PBS for 24-48 hours at 4°C. Post-equilibration, tumors were embedded in a 1:1 mixture of 
OCT and 30% sucrose, then frozen on dry ice. Frozen blocks were either stored at -80°C or processed on the 
cryostat into 10-16 μm-thick sections for immunofluorescence staining. 
 
Sections were first rinsed with PBS for 15 minutes and subjected to antigen unmasking using a citrate-based 
solution (10 mM sodium citrate, pH 6) heated to 95°C for 20 minutes. Following this, sections were 
permeabilized and blocked with a buffer containing 5% donkey serum, 3% bovine serum albumin, and 0.1% 
Triton X-100 in PBS for 30 minutes at room temperature. Primary antibodies were incubated overnight at 4°C 
in the blocking buffer: rabbit anti-PDGFRβ (1:100), goat anti-PDGFRβ (1:100), mouse anti-Nestin (1:500), 
mouse anti-NOTCH3 (1:200), rabbit anti-COL1A1 (1:200), and rabbit anti-HOPX (1:500). 
 
Following primary antibody incubation, sections were washed three times with PBS for 10 minutes each. 
Secondary antibody incubations, including DAPI (1:1000), were performed in blocking buffer for 2 hours at 
room temperature using the following secondary antibodies: AlexaFluor 555 donkey anti-goat (1:500), 
AlexaFluor 555 donkey anti-mouse (1:500), and AlexaFluor 488 donkey anti-rabbit (1:500). 
 
Slides were then mounted with ProLong Gold antifade reagent and stored at 4°C for imaging using the ZEISS 
LSM 880 confocal system or EVOS M5000 digital-inverted benchtop microscope. 
 
Tumor dissociation 
Primary tumors were obtained from Ronald Reagan Hospital at UCLA, with patient consent and Institutional 
Review Board approval (IRB #10-000655 and #21-000108). Tumors were dissected into small fragments using 
a sterile scalpel and transferred to 5 mL microcentrifuge tubes containing 2.5 mL Papain and 125 μL DNase. 
Samples were incubated at 37°C for 45-60 minutes, with vigorous shaking by hand for 10 seconds every 5 
minutes to facilitate dissociation. Post-incubation, the tissue was further dissociated by trituration and 
centrifuged at 300 x g for 5 minutes. 
 
The cell suspension was then passed through a 40 μm filter to remove debris and counted. For further debris 
removal, cells were subjected to an ovomucoid density gradient according to the Papain Tissue Dissociation 
Kit instructions. Briefly, up to 20 million tumor cells were resuspended in a solution of ovomucoid inhibitor, 
DNase, and EBSS and carefully layered on top of an ovomucoid inhibitor cushion. The gradients were 
centrifuged at 70 x g for 6 minutes. The supernatant was discarded, and the tumor cells were collected, 
combined, and resuspended in media or FACS buffer for subsequent analyses. 
 
Fluorescence-activated cell sorting 
The cell suspension was incubated on ice for 30 minutes with Phycoerythrin (PE)-conjugated mouse anti-
hPDGFRβ (1:100) and DAPI (1:2000). Following incubation, cells were washed and sorted using a Sony 
SH800, BD FACSAria, or Bio-Rad S3e cell sorter. All fluorescence-activated cell sorting (FACS) gates were 
set using unlabeled cells and single-color controls to ensure accurate gating and minimize background 
fluorescence. PDGFRβ+, DAPI- cells were collected into Sasai3 media. 
 
Single cell capture and sequencing 
Single cells, either sorted by FACS or derived from dissociated tumor cells, were captured using the 10X 
Genomics Chromium v3.1 3’ capture protocol on the 10X Chromium system. Targeting 10,000 cells for 
capture, all cells were used if fewer than 20,000 cells were retrieved post-sorting. The capture process was 
conducted according to the manufacturer’s instructions, and library preparation adhered to their guidelines. 
Sequencing was performed on an Illumina NovaSeq 6000 or NovaSeq X. 
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Single-cell analysis and quality control 
Single-cell RNA sequencing (scRNA-seq) reads were aligned to a custom reference using a species-specific 
reference genome. For human samples, data was aligned to the GRCh38 human reference genome, 
incorporating sequences for the CellTag UTR and GFP.CDS. For mouse samples, data was aligned to the 
mm10 mouse reference genome, incorporating sequences for eGFP. 
 
Cell-by-gene count matrices were generated using the 10X Genomics CellRanger pipeline with default 
parameters. Subsequent data analysis was performed using the Seurat R package in R Studio. Single-nucleus 
samples were run through CellBender66, a package capable of removing background noise associated with 
ambient RNA in snRNA-seq data. 
 
Cells expressing a minimum of 500 genes and exhibiting less than 10% mitochondrial gene content were 
retained. Genes expressed in at least three cells were also retained. Unique Molecular Identifier (UMI) counts 
were normalized via logarithmic transformation with a scaling factor of 10,000. Principal Component Analysis 
(PCA) was conducted on the scaled data using the top 2,000 variable genes. The number of dimensions 
(dims) was determined according to previously described methods67. Specifically, significant principal 
components (PCs) were selected based on the larger value between the square of the standard deviation of 
PCA scores (Seurat.Obj@reductions$pca@stdev^2) and the square root of the ratio of the number of genes to 
the number of cells plus one (sqrt(length(row.names(Seurat.Obj)) / length(colnames(Seurat.Obj))) + 1)^2. 
 
Cells were clustered in the PCA space using Seurat’s FindNeighbors and FindClusters functions with a 
resolution parameter set to 2.0. Visualization of cell clusters was performed using Uniform Manifold 
Approximation and Projection (UMAP) based on the previously defined dimensions. Doublets were predicted 
and excluded using the DoubletFinder R package68 with default parameters. 
 
Copy number variation analysis 
To reduce the risk of false positives or negatives in tumor cell identification via FACS, copy number variation 
(CNV) analysis was conducted using InferCNV69 with default settings. Batch-matched naïve organoids served 
as the reference for this analysis. Where appropriate, datasets were subset to contain tumor cells only. 
 
Generation of modules from published datasets 
Published gene lists were utilized for module activity score analysis when available. In cases where published 
gene lists were not available, gene modules were derived by performing differential gene expression analysis 
using the Seurat function FindAllMarkers, focusing exclusively on positively enriched genes based on the 
authors’ published cell annotations. The resulting cluster markers were subsequently used to define the gene 
modules.  
 
sgRNA candidate selection 
Candidates for in vivo knockout were identified by intersecting human and mouse NVP signatures. The mouse 
signature was derived calculating cluster markers from clusters in the mouse single-cell dataset57, annotated 
as “Mixed Vascular” following projection onto the GBM meta-atlas. These mouse cluster markers were 
intersected with those calculated from the human NVP-enriched cluster (Figure 3). Feature plots for all 
intersecting genes were generated, prioritizing genes specific to the putative NVP population in both mouse 
and human datasets. Additionally, genes with transcription factor functions were preferred due to their potential 
role in regulating critical gene programs within our clusters of interest. Sox18 and Foxc1 were selected based 
on these criteria. In addition to transcription factors, intersecting and specific genes that represent markers of 
mixed vascular and neural progenitor identities were also considered as candidates. Fam107a (outer radial 
glia), Cldn5 (endothelial), and Rgs5 (mural) were chosen for their representative roles in these cellular 
identities. 
 
sgRNA design 
For the design of single-guide RNAs (sgRNAs), we employed the CRISPR design tool available at CRISPOR70 
(http://crispor.tefor.net/). sgRNA sequences were designed against the mm10 genome, incorporating a 20bp-
NGG sequence as the SpCas9 PAM site. Genomic sequences for the genes of interest were sourced from the 
NCBI database. Target sites were selected based on the following criteria: (i) the presence of a protospacer 
adjacent motif (PAM) sequence (NGG) required for SpCas9 binding, (ii) positioning within the coding region of 
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the gene, preferably targeting early exons to enhance the likelihood of generating loss-of-function alleles, and 
(iii) minimal off-target potential as predicted by the CRISPR design tool, prioritizing sgRNAs with high on-target 
activity scores and low off-target scores. 
 
For genes with only a single exon (Foxc1 and Cldn5), we designed two sgRNAs: one at the 5’ end and one at 
the 3’ end to maximize the chances of completely disrupting protein expression. For other targets, sgRNAs 
were designed against the second exon to achieve efficient gene disruption. 
 
Cloning of an all-in-one CRISPR/Cas9 vector expressing multiple gRNAs 
The cloning of an all-in-one CRISPR/Cas9 vector expressing multiple gRNAs was conducted using the 
Multiplex CRISPR/Cas9 Assembly system available from Addgene71. This approach utilizes a Golden Gate 
assembly system to sequentially assemble multiple inserts into a single plasmid. The final experimental 
plasmid contained sgRNAs targeting Sox18, the 5’ end of Foxc1, the 3’ end of Foxc1, the 5’ end of Cldn5, the 
3’ end of Cldn5, Fam107a, and Rgs5. 
 
In utero electroporation 
Mouse gliomas were generated using the CD1 IGS mouse background, following previously described 
protocols57,72. In utero electroporation was performed on embryonic day 15 with a plasmid cocktail containing 
constructs for CRISPR–Cas9-mediated knockout of tumor suppressor genes Nf1, Trp53 (p53), and Pten, 
referred to as the triple CRISPR (3xCr) construct. The control group received a plasmid cocktail consisting of 
1.5 µg/µl 3xCr, 2 µg/µl pGlast-PBase, and 0.25 µg/µl PBCAG-EGFP. The experimental group, termed 
3xCr+NVPnull, received an additional plasmid (also at 1.5 µg/µl) containing seven sgRNAs against NVP target 
genes. Mice were housed in a controlled environment with food and water available ad libitum, under a 12-hour 
light/dark cycle, at 20–22°C and 40–60% humidity. Both female and male mice were included in all 
experiments. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at 
Baylor College of Medicine and conform to the US Public Health Service Policy on Human Care and Use of 
Laboratory Animals. 
 
Single-nucleus capture and sequencing of mouse tumors 
At postnatal day 70 (P70), mice were euthanized, and tumors were dissected under a GFP fluorescent 
microscope. GFP-positive tumors were snap-frozen in liquid nitrogen for storage. Nuclei were isolated using 
the 10X Genomics Chromium Nuclei Isolation Kit with an 8-minute lysis time. Samples underwent two 
additional washing steps before proceeding to GEM (Gel Bead-in-Emulsion) capture, targeting the recovery of 
10,000 cells. After standard QC, including Cellbender to remove technical artifacts associated with ambient 
RNA, data was processed using our Seurat pipeline and cells were annotated by projection onto the human 
GBM meta-atlas. “Neuronal” and “Immune” cells were excluded from downstream composition analysis, as 
these populations had low percentages of GFP positivity.  
 
Stem cell culture and cortical organoid generation 
The human embryonic stem cells (hESCs) UCLA6 was cultured as previously described28,73,74. Stem cells were 
maintained on Matrigel-coated 6-well plates in mTeSR Plus medium supplemented with 10% mTeSR Plus 
Supplement and 1X Penicillin/Streptomycin or Primocin. Media was changed every other day, and cells were 
passaged upon reaching >75% confluence. 
 
For passaging, ReLeSR was applied at room temperature for 1 minute, aspirated, and cells were incubated at 
37°C for 5 minutes. Cells were then dissociated into smaller clusters and replated at a 1:4 or 1:6 ratio on new 
Matrigel-coated plates. For cryopreservation, the passaging procedure was followed until the final step, where 
cells were resuspended in 1 ml of mFreSR per well. The cell suspension was transferred to cryovials and 
stored at -80°C for 24-48 hours before transfer to liquid nitrogen for long-term storage. 
 
Cortical organoid generation 
Cortical organoids were generated following an adapted protocol from Kadoshima et al75, in alignment with 
other studies28,73,74. Briefly, human embryonic stem cells (hESCs) at >75% confluence in 6-well plates were 
treated with 1 mL Accutase per well and incubated at 37°C for 5 minutes. Cells were then washed with 1 mL of 
Sasai1, composed of GMEM, 20% KnockOut Serum, 0.1 mM β-mercaptoethanol, 1X Non-Essential Amino 
Acids (NEAA), 1X Sodium Pyruvate, and 1X Penicillin/Streptomycin or Primocin. 
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Cells were detached by scraping and collected in 15 mL tubes, followed by centrifugation at 300 x g for 5 
minutes. The cell pellets were resuspended in Sasai1 supplemented with 20 μM Y27632 (Rock inhibitor), 5 μM 
SB431542 (TGF-β inhibitor), and 3 μM IWR1-endo (Wnt signaling inhibitor). A total of 1 million cells in 10 mL of 
Sasai1 with the small molecules were seeded into 96-well V-shaped low attachment plates to aggregate over 
72 hours. 
On Day 3, 50 μL of medium was replaced with 100 μL of fresh Sasai1 containing the small molecules. Media 
changes were performed every other day until Day 7, when the Rock inhibitor was omitted. On Day 18, 
organoids were transferred to ultra low attachment 6-well plates with media changes every other day. From 
Day 18 to Day 35, Sasai 2, consisting of DMEM/F-12 with Glutamax, 1X N-2 supplement, 1X Lipid 
Concentrate, and 1X Penicillin/Streptomycin or Primocin, was used. 
 
From Day 35 onward, Sasai3 was applied, containing DMEM/F-12 with Glutamax, 1X N-2 supplement, 1X 
Lipid Concentrate, 1X Penicillin/Streptomycin or Primocin, 10% Fetal Bovine Serum, 5 μg/mL Heparin, and 
0.5% Growth factor-reduced Matrigel. Throughout the culture period, live images were periodically taken to 
monitor organoid growth, and immunostaining was performed at Weeks 5 and 8 to confirm neuronal 
differentiation. 
 
CellTag virus 
Lentivirus containing the CellTag-V1 barcode library was either directly purchased from Addgene or 
manufactured by a commercial vendor (Vectorbuilder) using the DNA plasmid library purchased from Addgene. 
For commercial generation of CellTag virus, the libraries were sequenced using MiSeq and CellTags were 
filtered in order to create a whitelist based on the standard CellTag workflow. The Vectorbuilder lentiviral library 
displayed a complexity of 7,989 barcodes, while the Addgene lentiviral library had a complexity of 19.974 
barcodes. Appropriate whitelists were applied to samples during data processing depending on which lentivirus 
was used in the experiment. 
 
Transduction with CellTag and transplantation onto cortical organoids 
Immediately following FACS, PDGFRβ+ cells were resuspended in Sasai3 medium. CellTag virus and 
polybrene (1:1000) were added to the cells, which were then incubated at 37°C for 60 minutes with gentle 
rotation. Amount of CellTag virus was based on a target MOI of 4 using this formula: TUtotal = (MOI x Cell 
Number)/Viral titer (TU/μl). 
 
Post-transduction, cells were washed three times with warm PBS and Sasai3 medium. The transduced tumor 
cells were resuspended in 20 μL of Sasai3 medium and transplanted onto cortical organoids using the hanging 
drop method. 
 
For the hanging drop method, 8-12-week-old human cortical organoids were transferred to the lid of a 10cm 
dish using wide-bore 1000 μL tips. Excess media was removed, and 10-15 μL of the tumor single-cell 
suspension was added atop each organoid. The lid was then carefully inverted onto a 10 cm dish containing 10 
mL of base culture medium to prevent evaporation during the hanging drop stage. These hanging drop co-
cultures were maintained at 37°C for 12-16 hours, after which they were transferred to ultra-low attachment 6-
well plates with Sasai3. Tumor cells typically surrounded the organoids and began migrating inward after a few 
days. These co-cultures were maintained for 12 – 18 days, with media changes performed three times per 
week, before being harvested for analysis.  
 
Organoid-tumor transplant dissociation and collection of GFP+ cells by FACS 
Tumor-transplanted organoids were transferred to a 1.7 mL Eppendorf tube containing 1 mL Papain and 50 μL 
DNase, and incubated at 37°C for 45-60 minutes. During the initial 10 minutes of incubation, the tube was 
shaken vigorously by hand for 10 seconds to aid dissociation, a process repeated every 5 minutes. Following 
incubation, the material was further dissociated by trituration and centrifuged at 300 x g for 5 minutes. The 
resulting pellet was resuspended in cold FACS buffer, filtered through a 40 μm mesh, and stained with DAPI to 
identify non-viable cells. DAPI-/GFP+ tumor cells were sorted and collected for downstream single-cell capture. 
Flow cytometry and cell sorting were performed using a Bio-Rad S3e. Gates were set to remove debris, 
eliminate doublets, and exclude dead cells using DAPI staining. Gates for GFP positivity were calibrated using 
control, batch-matched organoids without transplantation. 
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CellTag barcode analysis 
scRNA-seq data was first subject to quality control as described above. Only quality-controlled cells were 
inputted into the CellTag barcode analysis. Barcode analysis was performed using the CellTagR package to 
support clone calling. First, BAM files were filtered using samtools to include only unmapped reads. A CellTag 
object was then created, initialized with the BAM file. To enhance the accuracy of clone identification, the 
starcode algorithm76 was employed to cluster similar barcodes. This clustering corrects sequencing errors and 
allows for the more accurate identification of true clonal relationships by grouping barcodes based on 
sequence similarity. In order to investigate clones at different levels of stringency, we repeated the CellTag 
analysis with varying levels of strictness. The highest level of rigor involved inputting cells into the clone calling 
analysis which contained a minimum of two counts of at least two unique CellTag barcodes. High confidence 
clones were defined as clones identified by a minimum of two overlapping unique CellTag barcodes per cell. 
The next threshold involved inputting cells which contained a minimum of two counts of at least one unique 
CellTag barcode. Clones at this level were defined by cells that had an overlap of at least one unique barcode. 
For the analyses presented here, this distinction was not used.  
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