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ABSTRACT
Background. Ulcerative colitis-associated colorectal cancer (UC-CRC) is a life-
threatening complication of ulcerative colitis (UC). The mechanisms underlying UC-
CRC remain to be elucidated. The purpose of this study was to explore the key
genes and biological processes contributing to colitis-associated dysplasia (CAD)
or carcinogenesis in UC via database mining, thus offering opportunities for early
prediction and intervention of UC-CRC.
Methods.Microarray datasets (GSE47908 andGSE87466)were downloaded fromGene
Expression Omnibus (GEO). Differentially expressed genes (DEGs) between groups of
GSE47908 were identified using the ‘‘limma’’ R package. Weighted gene co-expression
network analysis (WGCNA) based on DEGs between the CAD and control groups was
conducted subsequently. Functional enrichment analysis was performed, and hub genes
of selected modules were identified using the ‘‘clusterProfiler’’ R package. Single-gene
gene set enrichment analysis (GSEA) was conducted to predict significant biological
processes and pathways associated with the specified gene.
Results. Six functional modules were identified based on 4929 DEGs. Green and blue
modules were selected because of their consistent correlation with UC and CAD, and
the highest correlation coefficient with the progress of UC-associated carcinogenesis.
Functional enrichment analysis revealed that genes of these two modules were
significantly enriched in biological processes, including mitochondrial dysfunction,
cell-cell junction, and immune responses. However, GSEA based on differential
expression analysis between sporadic colorectal cancer (CRC) and normal controls
from The Cancer Genome Atlas (TCGA) indicated that mitochondrial dysfunction
may not be the major carcinogenic mechanism underlying sporadic CRC. Thirteen
hub genes (SLC25A3, ACO2, AIFM1, ATP5A1, DLD, TFE3, UQCRC1, ADIPOR2,
SLC35D1, TOR1AIP1, PRR5L, ATOX1, and DTX3) were identified. Their expression
trends were validated in UC patients of GSE87466, and their potential carcinogenic
effects in UC were supported by their known functions and other relevant studies
reported in the literature. Single-gene GSEA indicated that biological processes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to angiogenesis
and immune response were positively correlated with the upregulation of TFE3,
whereas those related tomitochondrial function and energymetabolismwere negatively
correlated with the upregulation of TFE3.
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Conclusions. Using WGCNA, this study found two gene modules that were signif-
icantly correlated with CAD, of which 13 hub genes were identified as the potential
key genes. The critical biological processes in which the genes of these two modules
were significantly enriched include mitochondrial dysfunction, cell-cell junction, and
immune responses. TFE3, a transcription factor related to mitochondrial function and
cancers, may play a central role in UC-associated carcinogenesis.

Subjects Bioinformatics, Gastroenterology and Hepatology, Internal Medicine, Oncology,
Medical Genetics
Keywords Ulcerative colitis, Colitis associated dysplasia, Ulcerative colitis associated colorectal
cancer, Weighted gene co-expression network analysis

INTRODUCTION
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease (IBD), which is
characterized by long-standing and recurring chronic inflammation of the colonic
mucosa. UC-associated colorectal cancer (UC-CRC) is the most severe and life-threatening
complication, especially in patients suffering fromUC for a long duration. Epidemiological
data have revealed that the risk of UC-CRC increases with disease duration (Bernstein et al.,
2001; Bopanna et al., 2017). Although more attention has been given to the colonoscopic
screening of dysplasia and cancer in UC patients (Laine et al., 2015;Rubin et al., 2019), early
diagnosis is difficult because of the flat appearance andmultifocal lesions. Therefore, there is
an urgent need to explore the molecular biological mechanisms underlying UC-associated
carcinogenesis and to find new strategies for early diagnosis, treatment, and prevention of
UC-CRC.

Early genetic changes in precancerous lesions have been reported to contribute to the
initiation of carcinogenesis. For example, Ju et al. (2020) revealed that 70% of miRNA
alterations occur during the transition from normal to a preneoplastic stage of breast
cancer. Similarly, Zhang et al. (2020) found that most of the differentially expressed genes
(DEGs) identified in high-grade intraepithelial neoplasia (HGIN) and early gastric cancer
(EGC) compared to their paired controls have already changed in low-grade intraepithelial
neoplasia (LGIN) lesions. In addition, they identified 22 coDEGs (co-upDEGs and co-down
DEGs), which are thought to play crucial roles in gastric tumorigenesis and progression,
during the stages of LGIN, HGIN, EGC, and gastric adenocarcinoma. This phenomenon
offers the possibility of early diagnosis and treatment of cancers in patients with UC. In
fact, some abnormal molecular events have also been demonstrated in the inflamed colonic
mucosa of UC before any apparent histological evidence of colitis-associated dysplasia
(CAD) or cancer (Itzkowitz, 2006; Itzkowitz & Yio, 2004; Tang et al., 2012). However,
comprehensive analysis based on gene expression profiles to reveal the genetic changes that
occur in UC and contribute to carcinogenesis is still lacking.

In the present study, using database mining, we explored the key genes and biological
processes contributing to CAD that were dysregulated in UC. We conducted weighted
gene co-expression network analysis (WGCNA) based on DEGs between CAD and control
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groups and found two gene modules correlated with the progression of UC-associated
carcinogenesis. Functional enrichment analysis of the genes in these two modules revealed
the associated crucial biological processes. Thirteen hub genes were identified as the
potential key genes. Furthermore, we investigated the changes in their expression in the
UC and CAD groups.

MATERIALS & METHODS
Data selection and processing
By searching the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database, the microarray dataset GSE47908 based on the GPL570 platform was selected
for analysis because it embraces the transcriptional profiles of colonic mucosa from
both UC and CAD patients (Bjerrum et al., 2014). Specifically, it included data from 45
patients with UC (20 with left-sided colitis, 19 with pancolitis, and six with UC-associated
dysplasia) and 15 healthy controls. After obtaining the data, principal component analysis
(PCA) was performed to check and visualize the grouped data. For validation, another
microarray dataset GSE87466 comprising the gene expression profiles of colonic mucosa
from 87 patients with UC and 21 healthy controls was selected to check the gene expression
trends in UC (Li et al., 2018). For comparison, we downloaded the transcriptome and
clinical data of 480 patients with sporadic colorectal cancer (CRC) and 41 healthy controls
from The Cancer Genome Atlas (TCGA) database (date limit: February 23, 2021), using
‘‘TCGAbiolinks’’ R package version 2.16.4. The gene expression profiles were normalized
using the voom function in ‘‘limma’’ R package (Ritchie et al., 2015).

Differential expression analysis
Differential expression analysis was performed using the ‘‘limma’’ R package (Ritchie et al.,
2015). The sum of the mean value of absolute log2 fold change (FC) and the two standard
deviations of absolute log2 FC was used as the cut-off value of log2 FC. Genes with absolute
log2FC >log2 FC cut-off and adjusted p value <0.05, were considered as DEGs. The results
are visualized as volcano plots.

WGCNA
The expression profiles of DEGs between CAD and control group were extracted to
construct weighted gene co-expression network using R package ‘‘WGCNA’’ (Langfelder
& Horvath, 2008; Zhang & Horvath, 2005). First, the candidate soft-thresholding powers
(1 to 30) were used to calculate the scale independence and mean connectivity using the
pickSoftThreshold function. The first candidate power, whose degree of independence was
>0.8, was selected as the proper power. Then, a co-expression network was constructed
and modules were identified using the blockwiseModules function, with the parameters
mergeCutHeight set to 0.28 and minModuleSize set to 30. Each module was assigned
a unique color. Finally, the Pearson correlation coefficient and corresponding p value
between each module’s eigengene and phenotype were calculated. In addition to the UC
and CAD phenotypes, another phenotype ‘‘Progress’’ was also included to quantify the
dynamic process of UC-associated carcinogenesis. The phenotype ‘‘Progress’’ was assigned
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the values of 0,1, and 2, to represent the control, UC, and CAD groups, respectively; this
reflected the progressive process from normal to UC and then to CAD. It means that if
a module is significantly correlated to ‘‘Progress’’, then this module is considered to be
correlated to the progressive process from normal to CAD.

Identification of hub genes
For a specified module gene, the module membership (MM) calculated by signedKME
function represents its degree of importance in the module, and gene significance (GS)
calculated by the cor function represents the degree of correlation with the phenotype. By
calculating MM and GS, the module genes with high MM and GS can be defined as hub
genes. In the present study, thresholds of MM >0.9 and GS >0.7, were chosen to screen for
the hub genes of each module (Zou et al., 2019).

Function enrichment analysis
Functional enrichment analysis was performed using the ‘‘clusterProfiler’’ R package (Yu et
al., 2012). Significantly enriched Gene Ontology-Biological processes (GO-BP) and Kyoto
Encyclopedia ofGenes andGenomes (KEGG) pathwayswere identified using enrichGOand
enrichKEGG functions, respectively. Gene set enrichment analysis (GSEA) was performed
based on the gene list sorted by log2FC obtained from differential expression analysis
using gseGO and gseKEGG functions (Subramanian et al., 2005). Single-gene GSEA was
conducted based on the gene list sorted by Spearman correlation coefficient between every
gene and the specified hub gene to predict the significant biological processes and pathways
associated with the hub gene. A p value <0.05 was considered significant.

RESULTS
GEO data overview
A flow chart of the present study is shown in Fig. 1A. As for GSE47908 dataset, 15 controls,
20 patients with left-sided colitis, and six patients with UC-associated dysplasia were
enrolled in the present study, representing the control, UC, and CAD groups, respectively.
Clinical data including sex, age, disease duration, Mayo score, Mayo endoscopic score,
smoking status, and daily medication were extracted and compared using the chi-squared
test (Bjerrum et al., 2014). Results showed that there were no significant differences in
sex, disease duration, smoking status, or daily medication between the groups. As for age,
Mayo score, and Mayo endoscopic score, only median and interquartile ranges (IQR)
were known, and the corresponding p-values could not be calculated (Table S1). After
processing, four outliers were removed and a total of 37 samples, including 13 controls,
18 patients with UC, and six patients with CAD, were enrolled. As shown in the PCA plot
(Fig. 1B), the gene transcriptional profiles of these three groups were clearly distinct from
each other. The PCA plot of gene expression profiles of 87 patients with UC and 21 healthy
controls in GSE87466 dataset shown in Fig. 1C, also indicates a significant distinction
between these two groups.
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Figure 1 Overview of the work flow and GEO data. (A) Flow chart of the present study; (B) Principal
component analysis plot of the gene expression profiles in GSE47908. Two principal components contain-
ing 37.23% of the variance illustrate separate clustering of the three group of samples; (C) Principal com-
ponent analysis plot of the gene expression profiles in GSE87466. It shows the separate clustering of the
two groups with a few samples overlapping by two principal component containing 31.81% of the vari-
ance.

Full-size DOI: 10.7717/peerj.11321/fig-1

Differential expression analysis
To investigate the genetic changes during the progress from normal to UC and then to
CAD, differential expression analyses between UC and control, CAD and UC, and CAD
and control groups in GSE47908 were performed. The results are presented in Fig. 2.
There were 679 upregulated and 288 downregulated genes in UC compared to those in the
control group (Fig. 2A, log2 FC cut-off of 1.092), 260 upregulated and 616 downregulated
genes in CAD compared to those in the UC group (Fig. 2B, log2 FC cut-off of 1.073), and
305 upregulated and 462 downregulated genes in CAD compared to those in the control
group (Fig. 2C, log2 FC cut-off of 0.804). Venn diagrams were then used to further detail
the genetic changes during this dynamic process. There were 67 co-up DEGs (Fig. 2D) and
46 co-down DEGs (Fig. 2E) in UC vs. controls and CAD vs. controls. In addition, the Venn
diagram shows that among 260 upregulated and 616 downregulated genes in CAD vs. UC,
only 61 upregulated (Fig. 2D) and 180 downregulated genes (Fig. 2E) changed significantly
compared to the control group. This indicates that some DEGs dysregulated during the
progress from normal to UC may continue to change in CAD and even contribute to the
initiation of CAD, while others might be only responsible for the development of UC and
may change back to the normal level if the inflammation is controlled.
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Figure 2 Differential expression analysis. (A) Volcano plot between UC and control groups. There are
679 up-regulated genes and 288 down-regulated genes in UC compared to controls when log2FC cut-off
value was set to 1.092 by calculated. (B) Volcano plot between CAD and UC groups. There are 260 up-
regulated genes and 616 down-regulated genes in CAD compared to UC when log2FC cut-off value was
set to 1.073 by calculated. (C) Volcano plot between CAD and control groups. Black vertical line indi-
cates log2FC of 0.804, and grey vertical indicates log2FC of 0.3. There are 305 up-regulated genes and 462
down-regulated genes in CAD compared to controls when log2FC cut-off value was set to 0.804, 2904 up-
regulated genes and 2025 down-regulated genes when log2FC cut-off value was set to 0.3. (D) Venn dia-
gram illustrating up-regulated genes in different groups. (E) Venn diagram illustrating down-regulated
genes in different groups. (F) Heat map of top 40 up-regulated and 40 down-regulated DEGs between
CAD and controls after sorted by adjusted p-value from smallest to largest.

Full-size DOI: 10.7717/peerj.11321/fig-2
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To gain further insights into the expression pattern of DEGs during the progress from
normal to UC and then to CAD, the top 40 upregulated and top 40 downregulated DEGs
between CAD and controls after sorting by adjusted p-value were visualized in a heat map
(Fig. 2F). Row cluster analysis showed that these DEGs were grouped under two clusters:
upregulated and downregulated genes in CAD compared to those in controls. However,
when UC samples were taken into consideration, every cluster could be further divided
into two sub-clusters, showing different changing trends of these DEGs during the progress
from normal to CAD.

It should be noted that no co-up or co-down DEGs in UC vs. control groups and
CAD vs. UC groups were identified in Venn diagrams, while the heatmap showed marked
continuous changes in the expression patterns of some DEGs from control to UC and then
to CAD. The traditional filter method for DEGs can potentially miss somekey information.
To make our analysis more comprehensive, the cut-off criteria of log2 FC was set to 0.3,
leading to the identification of 4929 DEGs between the CAD and control groups, which is
a suitable number of DEGs for WGCNA analysis.

WGCNA
WGCNAwas performed using 4929 DEGs between the CAD and control groups. By setting
the soft threshold to 12 (Figs. 3A–3B), a total of six functional modules, apart from the gray
module, were identified (Fig. 3C). The turquoise, red, and blue modules were positively
correlated with CAD, and the brown, yellow, and green modules were negatively correlated
with CAD. Furthermore, the green and blue modules were correlated with UC and CAD
in the same direction respectively, and were found to be correlated with ‘‘Progress’’ with
the highest correlation coefficients (green module: correlation coefficient=−0.75, p-value
= 9e−08; blue module: correlation coefficient = 0.71, p-value = 9e−07) (Fig. 3D). This
indicates that genes belonging to blue and green modules and the relevant biological
processes begin to change at an earlier stage and continue to change throughout the whole
process of progression from normal to UC and then to CAD.

Function enrichment analysis
The GO-BP enrichment analysis of each module is shown in Table S2. Green module
genes were significantly enriched in biological processes related to mitochondrial function
and energy metabolism (Fig. 4A). Consistent with this observation, KEGG pathway
enrichment analysis indicated that the green module genes were significantly enriched
in energy metabolism-related pathways, such as the TCA cycle, carbon metabolism,
and oxidative phosphorylation (Fig. 4B). Blue module genes were significantly enriched
in biological processes related to cell–cell junctions and immune responses, especially
neutrophil-mediated immunity (Fig. 4C). The KEGG pathways that blue module genes
were significantly enriched in included infection-related pathways, focal adhesion, tight
junction, Hippo signaling pathway, Notch signaling pathway, and ErbB signaling pathway
(Fig. 4D).

To further explain the role/s of mitochondrial dysfunction during the process
of UC-associated carcinogenesis, GSEA was performed to analyze the alterations in
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Figure 3 Weighted gene co-expression network analysis. (A) Network topology for different soft-
thresholding powers. The scale-free topology can be attained at the soft-thresholding power of 12. (B)
Cluster dendrogram and gene modules identified by WGCNA. (C) Correlation heat map of gene modules
and traits, labelled with correlation coefficient and p value. The trait ‘‘Progress’’ means the progressive
process from normal to UC, and then to CAD, which is assigned the value of 0, 1 and 2, to represent the
control, UC and CAD group, respectively.

Full-size DOI: 10.7717/peerj.11321/fig-3

mitochondrial function-related GO-BP in the UC and CAD groups. The results indicated
that mitochondrial function-related GO-BP, including cellular respiration, oxidative
phosphorylation, respiratory electron transport chain, and mitochondrial gene expression,
were all significantly downregulated in UC (Fig. S1A) and CAD (Fig. S1B) groups as
compared to those observed for the control group.

To explore the differences between UC-CRC and sporadic CRC in terms of the alteration
of mitochondrial functions, the gene expression profiles of 480 sporadic CRC patients and
41 healthy controls from the TCGA database were analyzed. After differential expression
analysis, GSEA of GO-BP was conducted based on the gene list sorted by log2 FC. The
results showed that biological processes, including mitochondrial gene expression and
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Figure 4 GO-BP and KEGG pathways enrichment analysis. (A) Biological processes enriched in green
module genes. (B) KEGG pathways enriched in green module genes. (C) Biological processes enriched in
blue module genes. (D) KEGG pathways enriched in blue module genes.

Full-size DOI: 10.7717/peerj.11321/fig-4

mitochondrial translation, were upregulated in sporadic CRC patients, and no other
mitochondrial function-related biological processes were identified (Table S3). This
indicates that the carcinogenic mechanism underlying sporadic CRC is different from that
of UC-CRC.

Identification and validation of hub genes
Based on MM >0.9 and GS >0.7, seven genes (SLC25A3, ACO2, AIFM1, ATP5A1, DLD,
TFE3, and UQCRC1) were identified as hub genes in the green module (Fig. 5A) and six
hub genes (ADIPOR2, SLC35D1, TOR1AIP1, PRR5L, ATOX1, and DTX3) were identified
in the blue module (Fig. 5C). The differential expression patterns of these 13 hub genes
during the progression from normal to UC and then to CAD are displayed in Figs. 5B
and 5D. All of them were observed to be continuously up/downregulated significantly,
supporting their potential persistent roles in UC-associated carcinogenesis.

Considering the small sample size of the GSE47908 dataset, validation using another
dataset was considered indispensable. To validate the changes in the inflammatory phase,
differential expression analysis of the 13 hub genes was performed in UC patients from
GSE87466 dataset (87 patients with UC and 21 controls). The results showed that the
expression changes of hub genes in UC patients of GSE87466 dataset were consistent with
those observed for patients belonging to GSE47908 dataset (Fig. 6). To further explore
the potential association of hub genes with UC-associated carcinogenesis, a brief literature
review was performed to search for the proof of their carcinogenic effects (Bruggemann et
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Figure 5 Hub genes of green and blue modules. (A) Identification of hub genes of green module by MM
and GS filtering. (B) Differential expression patterns of seven hub genes of green module. (C) Identifica-
tion of hub genes of blue module by MM and GS filtering. (D) Differential expression patterns of six hub
genes of blue module.

Full-size DOI: 10.7717/peerj.11321/fig-5

al., 2017; Byeon et al., 2010; Chung et al., 2017; Ciccarone et al., 2020; Ding et al., 2020; Jana
et al., 2020; Karginova et al., 2019; Khalil, 2007; Kim et al., 2019; Laiho et al., 2003; Li et al.,
2019; Linehan et al., 2019; Liu et al., 2018;Millan & Huerta, 2009;Oehler et al., 2009; Perera
et al., 2015; Rao et al., 2019; Seth et al., 2009; Thedieck et al., 2007; Viola et al., 2017; Wang
et al., 2013; Wang et al., 2020). The results are presented in Table 1. With the exception of
TOR1AIP1 and PRR5L, almost all other hub genes have been reported to be involved in
cancers. Furthermore, five of the hub genes (AIFM1, ATP5A1, UQCRC1, ADIPOR2, and
ATOX1) may play roles in the carcinogenesis of sporadic CRC. These known associations
between hub genes and cancers suggest the possible carcinogenic effects of these hub genes
in CAD.

Predication of the potential function of TFE3 in UC-associated
carcinogenesis by GSEA
Among the proteins encoded by the hub genes, TFE3, a transcription factor, has been known
to be involved in the onset and progress of cancers by regulating many biological processes,
such as energy metabolism, lysosomal biogenesis, and immune response (Beckmann,
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Figure 6 (A–M) Validation of the expression change of hub genes in UC fromGSE87466.
Full-size DOI: 10.7717/peerj.11321/fig-6

Su & Kadesch, 1990; Perera et al., 2015; Willett et al., 2017). In this study, we found that
TFE3 was continuously upregulated during UC-associated carcinogenesis. However, the
plausible roles of TFE3 in this process remain unclear. Single-gene GSEA revealed that
biological processes and KEGG pathways related to angiogenesis and immune response
were positively correlated with the upregulation of TFE3 (Figs. 7A, 7C), whereas those
related to mitochondrial function and energy metabolism were negatively correlated with
the TFE3 upregulation (Figs. 7B, 7D).
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Table 1 Literature review of the proof for the carcinogenic effects of hub genes.

Genes Encoding protein Known function Any proof
for carcinogenesis

Any proof
for CRC

SLC25A3 Phosphate carrier protein,
mitochondrial

Transport of phosphate to
mitochondrial matrix, in-
volve in ATP synthesis

Yes (Oehler et al., 2009) No

ACO2 Aconitate hydratase,
mitochondrial

Catalyze the isomerization
of citrate to isocitrate, in-
volve in tricarboxylic acid
cycle

Yes (Ciccarone et al., 2020;
Wang et al., 2013)

No (Laiho et al., 2003)

AIFM1 Apoptosis-inducing factor
1, mitochondrial

Regulate apoptosis, and in-
volve in mitochondrial res-
piratory

Yes (Liu et al., 2018; Rao et
al., 2019)

Yes (Millan & Huerta,
2009)

ATP5A1 ATP synthase
subunit alpha,
mitochondrial

A component of the mito-
chondrial complex V in the
respiratory chain, involve
in ATP synthesis

Yes (Bruggemann et al.,
2017)

Yes (Seth et al., 2009)

DLD Dihydrolipoyl dehydroge-
nase, mitochondrial

Function as a dehydro-
genase regulating energy
metabolism, or as a pro-
tease

Yes (Khalil, 2007) No

TFE3 Transcription
factor binding
to IGHM enhancer 3

Function as transcription
factor, regulate many
biological processes,
such as energy
metabolism,lysosomal
biogenesis and immune
response

Yes (Linehan et al., 2019;
Perera et al., 2015)

No

UQCRC1 Cytochrome b-c1 complex
subunit 1, mitochondrial

A component of the com-
plex III in the respiratory
chain, involve in ATP syn-
thesis

Yes (Wang et al., 2020) Yes (Li et al., 2019)

ADIPOR2 Adiponectin receptor
protein 2

Regulates glucose and lipid
metabolism, mediate in-
creased AMPK and PPAR-
alpha ligand activities

Yes (Chung et al., 2017) Yes (Byeon et al., 2010)

SLC35D1 UDP-glucuronic
acid/UDP-N-
acetylgalactosamine
transporter

Transport both UDP-
glucuronic acid and UDP-
N-acetylgalactosamine to
ER lumen, participate in
glucuronidation and/or
chondroitin sulfate biosyn-
thesis

Yes (Viola et al., 2017) No

TOR1AIP1 Torsin-1A-interacting
protein 1

Localize to the inner nu-
clear membrane, maintain
the attachment of the nu-
clear membrane to nuclear
lamina during cell division

No No

(continued on next page)

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11321 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.11321


Table 1 (continued)

Genes Encoding protein Known function Any proof
for carcinogenesis

Any proof
for CRC

PRR5L Proline-rich protein 5-like Associate with mTORC2
complex that regulate cel-
lular processes including
survival and cytoskeleton
organization

No (Thedieck et al., 2007) No

ATOX1 Copper transport protein Bind and deliver cytosolic
copper to copper ATPase
proteins, and be important
in cellular antioxidant de-
fense

Yes (Karginova et al., 2019;
Kim et al., 2019)

Yes (Jana et al., 2020)

DTX3 Deltex E3 ubiquitin ligase 3 Function as an E3 ubiqui-
tin ligase, regulate Notch
signaling

Yes (Ding et al., 2020) No

Figure 7 Single-gene GSEA analysis of TFE3. (A) Enriched biological processes of genes positively corre-
lated with TFE3. (B) Enriched biological processes of genes negatively correlated with TFE3. (C) Enriched
KEGG pathways positively correlated with TFE3. (D) Enriched KEGG pathways negatively correlated with
TFE3.

Full-size DOI: 10.7717/peerj.11321/fig-7

DISCUSSION
Most traditional research related to understanding of carcinogenic mechanisms focuses
on comparison between tumor and normal tissue; however, this idea seems to be not fully
applicable to UC-CRC considering its gradual molecular changes from inflammation to
cancer. As UC-CRC arises due to the chronic inflammation of the colonic mucosa, it is
logical to find the carcinogenic genes and biological processes associated with inflammation
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during the progression of UC (Itzkowitz & Yio, 2004). In the present study, we identified
two functional modules by WGCNA using the transcriptional profiles of colonic mucosa
from healthy individuals and UC and CAD patients, which are correlated with UC and
CAD in the same direction, suggesting their potential carcinogenic function when they
contribute to inflammation. Thirteen hub genes (SLC25A3, ACO2, AIFM1, ATP5A1, DLD,
TFE3, UQCRC1, SLC35D1, TOR1AIP1, PRR5L, ATOX1, and DTX3) were identified, and
their continuous up/down-regulation supported their continuous roles during the process
of progression from inflammation to carcinogenesis.

Functional enrichment analysis revealed that the green module genes were significantly
enriched in biological processes and pathways related to mitochondrial function and
energy metabolism. Consistently, almost all the hub genes of the green module (SLC25A3,
ACO2, ATP5A1, DLD, and UQCRC1) were found to have involved in mitochondrial
functions, such as the TCA cycle and ATP synthesis. Mitochondria have been discovered
to play a multifunctional role in the pathogenesis of cancers (Sajnani et al., 2017). The
well-known ‘‘Warburg effect’’ describes the shift in energy metabolism of cancer cells
from mitochondrial respiration to glycolysis (Warburg, 1956). This shift may result from
the mutation or dysregulation of genes related to energy metabolism, such as the genes
encoding the enzymes involved in the TCA cycle. A decreased copy number of mtDNA
has been found in lung cancer, liver cancer, gastric cancer, and CRC (Lee et al., 2005). That
is to say, the downregulated hub genes related to mitochondrial respiration during UC
inflammation may contribute to the transformation from UC to cancer by participating
in the shift of energy metabolism. In addition, the alterations in these hub genes may lead
to abnormal enzymatic reactions and oncometabolites, which in turn exert carcinogenic
effects mainly through epigenetic regulation (Nowicki & Gottlieb, 2015). Another hub
gene of the green module, AIFM1, is a well-known caspase-independent death effector
released from mitochondria, and was later discovered to also play a role in oxidative
phosphorylation (OXPHOS) by regulating complex I proteins post-transcriptionally. Both
cell death and OXPHOS processes have been involved in cancer pathogenesis (Liu et al.,
2018; Rao et al., 2019), but the role of AIFM1 during UC-associated carcinogenesis needs
further investigation.

TFE3 is a member of the MiT family of helix-loop-helix leucine zipper transcription
factors that regulate their target genes by binding to E-box sequences in promoters. E-box
sequences aremainly found in genes related to energymetabolism, including those involved
in glycolysis and lipid metabolism. TFE3 has been reported to regulate mitochondrial
dynamics and function in the liver (Pastore et al., 2017). Moreover, TFE3 has been validated
as an oncogene in kidney and pancreatic cancers by virtue of its regulation of metabolic
and non-metabolic pathways (Linehan et al., 2019; Perera et al., 2015). In the present study,
single-gene GSEA revealed a link between TFE3 and mitochondrial function, while the
latter was considered to be highly involved in UC-associated carcinogenesis. Therefore, it is
logical to speculate that TFE3may play a role in UC-associated carcinogenesis by regulating
mitochondrial function. Further experimentation is required to confirm this hypothesis.

The genes encoding for proteins involved in cell–cell junctions and immune responses
along with those involved in pathways, including the Hippo signaling pathway, Notch

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11321 14/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.11321


signaling pathway, and ErbB signaling pathway, were significantly enriched in the blue
module. Cell–cell junctions are vital for tissue homeostasis as they not only maintain
the barrier function, but regulate complex cellular signaling networks related to cell
proliferation and migration (Garcia, Nelson & Chavez, 2018). Disruption of tight junctions
and subsequent immune dysfunction due to exposure to antigens play critical roles in
UC pathogenesis. The Hippo pathway is an important signaling pathway regulating cell
proliferation and apoptosis, and its dysregulation contributes to cancers. Moreover, the
activity of the Hippo pathway is highly dependent on cell junctions (Karaman & Halder,
2018). Therefore, it is logical to think that the altered cell junctions and relevant signaling
network during the inflammatory phase of UC may contribute to carcinogenesis (Feigin &
Muthuswamy, 2009).

The obvious limitation of the present study is the small sample size; however, additional
CAD or UC-CRC clinical specimens were not available for validation. The same expression
trend of hub genes in another UC dataset and the reported relationships between these
genes and cancers may help in demonstrating the reliability of this study. Further efforts
are being made in this direction. This work is expected to provide new insights into the
process of UC-associated carcinogenesis.

CONCLUSIONS
In conclusion, this study, using WGCNA, found two gene modules that were significantly
correlated with the process of UC-associated carcinogenesis from inflammation to
dysplasia. From these two modules, 13 hub genes (SLC25A3, ACO2, AIFM1, ATP5A1,
DLD, TFE3, UQCRC1, ADIPOR2, SLC35D1, TOR1AIP1, PRR5L, ATOX1, and DTX3)
were identified as key genes involved in UC-associated carcinogenesis. Functional
enrichment analysis revealed the critical biological processes contributing to UC-associated
carcinogenesis, mainly include mitochondrial dysfunction, cell–cell junction, and immune
responses. TFE3, a transcription factor related to mitochondrial function and cancer, seem
to play a central role in this process.
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