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ABSTRACT 
 

Metabolic reprogramming is a common feature of tumor cells and is associated with tumorigenesis and 
progression. In this study, a metabolic gene-associated prognostic model (MGPM) was constructed using 
multiple bioinformatics analysis methods in cervical carcinoma (CC) tissues from The Cancer Genome Atlas 
(TCGA) database, which comprised fifteen differentially expressed metabolic genes (DEMGs). Patients were 
divided into a high-risk group with shorter overall survival (OS) and a low-risk group with better survival. 
Receiver operating characteristic (ROC) curve analysis showed that the MGPM precisely predicted the 1-, 3- and 
5-year survival of CC patients. As expected, MGPM exhibited a favorable prognostic significance in the training 
and testing datasets of TCGA. And the clinicopathological parameters including stage, tumor (T) and metastasis 
(M) classifications had significant differences in low- and high-risk groups, which further demonstrated the 
MGPM had a favorite prognostic prediction ability. Additionally, patients with low-ESTMATEScore had a shorter 
OS and when those combined with high-risk scores presented a worse prognosis. Through “CIBERSORT” 
package and Wilcoxon rank-sum test, patients in the high-risk group with a poor prognosis showed lower levels 
of infiltration of T cell CD8 (P < 0.001), T cells memory activated (P = 0.010) and mast cells resting (P < 0.001), 
and higher levels of mast cells activated (P < 0.001), and we also found these patients had a worse response for 
immunosuppressive therapy. These findings demonstrate that MGPM accurately predicts survival outcomes in 
CC patients, which will be helpful for further optimizing immunotherapies for cancer by reprogramming its cell 
metabolism. 
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INTRODUCTION 
 

Cervical carcinoma (CC) is a common gynecological 

malignant tumor. Although both the incidence and 

mortality rates of CC patients have been declining in 

recent years due to increased screening rates for the 

HPV virus, it remains an important global health 

concern occurring across various age groups in 

females [1]. According to a World Health 

Organization (WHO) study, there were 569,847 new 

cases (about 3.2%) of CC were diagnosed and 

311,365 patients (about 54.6%) died of this disease 

in 2018 alone [2]. Squamous cell carcinoma (SCC) 

and adenocarcinoma (AdCA) are the two most 

frequent histopathological subtypes of CC patients 

[3, 4]. Patients with early stage or localized lesions 

can perform surgery to achieve long-term survival, 

while most patients usually have advanced 

symptoms at the time of diagnosis. After treating 

with conventional therapies, such as chemotherapy, 

radiation therapy, or a combination of both, the 

survival period still cannot be extended. Therefore, 

there is an imminent need for improving CC 

screening and therapeutic methods. 

 

It has been well known that metabolic pathways can 

be altered in tumor cells to acquire more nutrients for 

proliferation and survival [5–7]. Metabolic 

reprogramming could inhibit their anti-tumor 

activities in the immune cells, thereby influencing 

tumor progress and immunotherapeutic efficacy [8–

10]. Studies have shown that some metabolic 

processes including nucleotide, vitamin/co-factor and 

carbohydrate were invariably related to poor 

prognosis. based on the mRNA expression patterns of 

33 different cancers and chemoresistance of cancer 

cells. However, the roles of metabolic-related 

mechanisms and immunity in CC patients are not 

elucidated. The clinically feasible and superior or 

comprehensive models are also needed to anticipate 

the overall survival (OS) of tumor patients [11]. 

Increasingly, the fast-developing genomic profiling 

and the viability of big data analysis provide more 

convenience for determining the optimal care and 

evaluating prognosis of cancer patients by 

constructing risk models. In this study, we built a 

metabolic gene-associated prognostic model 

(MGPM) of cervical cancer based on metabolic-

related genes with differentially expressed between 

tumor and normal tissues, assessing its correlation 

with tumor microenvironment and immunity to 

evaluate its clinical significance for the prognosis of 

CC. These will interpret the mechanism and the 

correlation of tumor immunity from the perspective 

of metabolism, and will all need to be further 

confirmed in the future. 

RESULTS 
 

Identified differentially expressed metabolic genes 

and conducted enrichment analysis 

 

The cancer cell metabolic gene set comprising 2071 

genes was downloaded from ccmGDB 

(https://bioinfo.uth.edu/ccmGDB/). A total of 495 CC-

specific mRNAs (1320 upregulated and 1944 

downregulated) were identified as differentially 

expressed metabolic genes (DEMGs), with Limma 

package using P value < 0.05 and |logFC| > 1 as 

screening criteria. The volcano map exhibits significant 

differences and distribution of mRNAs in CC based on 

the fold change (Figure 1A). GO analysis showed that 

the DEMGs were significantly associated with purine-

containing compound metabolic, ribose phosphate 

metabolic, purine nucleotide metabolic, ribonucleotide 

metabolic and purine ribonucleotide metabolic 

processes (Figure 1B). And the pathways such as purine 

metabolism, biosynthesis of amino acids, pyrimidine 

metabolism, biosynthesis of cofactors and carbon 

metabolism were mainly enriched in the KEGG 

pathways (Figure 1C). 

 

Construction of a metabolic prognostic model based 

on fifteen DEMGs for cervical carcinoma 

 

The survival difference of the DEMGs was analyzed by 

Kaplan-Meier method and log-rank analysis. There are 

72 genes remarkably related to the prognosis of CC 

(Supplementary Figure 1). A total of 15 DEMGs were 

incorporated into the multivariate Cox regression 

analysis after univariate Cox and Lasso regression 

analysis (Figure 2A–2C). A multivariate Cox 

proportional hazards regression model was 

subsequently utilized to build the metabolic gene-

associated prognostic model (MGPM) risk signature 

and calculate the risk score of each individual, patients 

were then divided into low- and high-risk groups using 

the median risk score as a cut-off. And nine out of 

fifteen variables ((HCCS, LDHC, PGK1, MSMO1, 

PLA2G7, LIPG, TUBB4B, AGPAT4 and GNG8) had 

significant statistical difference (P < 0.05) in MGPM 

(Supplementary Table 1). The survival analysis of the 

MGPM using the Kaplan–Meier method indicated that 

the patients in the high-risk group had a shorter overall 

survival compared with those in the low-risk group, and 

there was a significant difference between them (P < 

0.001, Figure 2D). The ROC curve analysis represented 

a favorite prognostic value for this model in evaluating 

the overall survival of patients with CC (1-year AUC = 

0.842, 3-year AUC = 0.861, 5-year AUC = 0.849; 

Figure 2E). The survival status of each patient was 

evaluated according to the risk score (Figure 2F). 

Compared with the low-risk group, patients have a 

https://bioinfo.uth.edu/ccmGDB/
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shorter survival time and a higher incidence of death in 

the high-risk group (Figure 2F). The percentage of 

deaths in the low- and high-risk groups was 42% and 

8%, respectively. There is a statistical difference 

between them (P < 2.22E-16, Figure 2G). Additionally, 

the nomogram was employed to depict the prospective 

survival of CC patients (Figure 2H), and the calibration 

plot was performed to assess the discernment of the 

MGPM-based risk signatures, and the result exhibited 

its predicted value was virtually coincided with the 

actual value (Figure 2I). The clinicopathological 

characteristics of CC patients in this model are detailed 

in Supplementary Table 2. 

 

Validation of the MGPM-based risk signature in the 

training and testing cohorts 

 

Subsequently, we proceeded with internal verification in 

the training (N = 147) and testing (N = 146) groups to 

evaluate the accuracy and robustness of the MGPM 

comprising fifteen DEMGs (Figure 3). From top to 

bottom, the risk score of each sample was calculated and 

ranked based on the MGPM in the training and testing 

data groups, respectively. And then, the overall survival 

status of CC patients according to the risk score 

distribution was presented using a scatter plot. Both data 

sets showed patients with high-risk score were bound up 

with a higher mortality rate, and the increase of risk 

score was proportional to the death rate in CC patients. 

A heatmap presenting the expression profiles of those 

signature genes displayed those patients in the high-risk 

group were more geared to elevate NPR2, PGK1, 

MSMO1, LIPG and AGPAT4 levels, while those in the 

low-risk group were more inclined to elevate 

ALOX12B, HCCS, LDHC, PTGDS, SULT1E1, 

SULT1A3, TYMS, PLA2G7, TUBB4B and GNG8 

levels, these finding in the training dataset showed 

consist with the testing dataset. Lastly, Kaplan-Meier 

survival curve analysis indicated that the overall survival 

of patients with high-risk score was remarkably shorter 

than those with low-risk score in both datasets (P < 

0.001), and ROC curve analysis also indicated there was 

a favorite prognostic predictive value of the MGPM both 

in training set (1-year AUC = 0.842, 3-year AUC = 

0.861, 5-year AUC = 0.849) and testing set (1-year AUC 

= 0.843, 3-year AUC = 0.85, 5-year AUC = 0.827). 

 

 
 

Figure 1. Filtered differentially expressed metabolic genes (DEMGs) and performed Enrichment analysis. (A) A volcano map 

presented DEMGs between the cervical cancer and the normal samples, Dots represent significantly down-regulated (Green) and up-
regulated (Red) genes. (B) GO function annotations and (C) KEGG enrichment analysis. 
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Relationship between MGPM-based risk signatures 

and clinicopathological characteristics of CC patients 

 
Next, the association between the MGPM-based risk 

signatures and the clinicopathological parameters was 

analyzed. A heatmap was employed to present the 

correlations between the MGPM-based risk signatures 

and clinicopathological variables. The results indicated 

that there were significant statistical differences 

between them regarding the tumor node metastasis 

classification (P < 0.01), survival status (P < 0.001) and 

estimate score (P < 0.0001) (Figure 4A). The 

differences in clinicopathological parameters were then 

evaluated between the low- and high-risk groups of 

MGPM by Wilcoxon rank-sum test. There are 

statistically significant differences in stage (P = 0.009) 

primary tumor (T, P = 0.00056) and lymph nodes (N, 

P = 0.031), while no statistical differences in remote 

 

 
 

Figure 2. Construction of metabolic gene-associated prognostic model (MGPM) using a series of bioinformatics technology. 
(A, B) LASSO Cox regression analysis with 5-fold cross-validation and generation of coefficient outline based on the log (lambda) sequence 
were used to identify the potential independent prognostic risk signature genes. (C) Multivariate Cox regression analysis results show the p 
values and hazard ratios (HR) with confidence intervals (CI) of the fifteen DEMGs. (D) Kaplan-Meier survival curves show the overall survival 
(OS) rates of high-risk (n = 146) and low-risk (n = 147) CC patients. Patients in high-risk group had a shorter OS compared to those in low-
risk group. (E) ROC curve analysis results show the accuracy and reliability of the MGPM in determining the 1-, 3- and 5-year survival 
outcomes (AUC values are shown in parentheses). (F) From the top to bottom, the survival status of each patient was sorted according to 
the low-risk (blue) and high-risk (red) scores. A scatter plot then exhibited the survival status and survival time of patients, the dots 
represent patients that have died (red) and alive (blue) at the time of analysis. (G) Analysis of the difference in survival status between the 
low- and high-risk groups. (H, I) The nomogram and calibration plot were employed to depict the expected survival of individual CC patients 
and to assess the discriminative ability of the MGPM‐based risk signature, respectively. 
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metastasis (M, P = 0.97) (Wilcoxon signed-rank test, 

Figure 4B–4E). 

 

To explore its clinical application and usability, we 

performed Cox regression analysis on common clinical 

characteristics. The results exhibited that the risk score 

of MGPM had statistically significant differences in 

both univariate- and multivariate-Cox regression groups 

(P < 0.001), which indicated the MGPM could as an 

independent index for prognosis to forecast the OS of 

CC patients (Figure 5A, Supplementary Table 3). After 

stratifying patients according to clinicopathological 

parameters, the overall survival rate of patients with the 

following characteristics will be significantly shortened 

in the high-risk group by Kaplan–Meier analysis, 

including age ≤ 65 (P < 0.001) and age > 65 (P = 0.022) 

(Figure 5B), stage I/II (P < 0.001) and stage III/IV (P < 

0.001) (Figure 5C), T1-2 stage (P < 0.001) and T3-4  

stage (P = 0.006) (Figure 5D), M0 stage (P < 0.001) 

(Figure 5E (a)), N0 stage (P = 0.006) and N1 stage (P = 

0.001) (Figure 5F). However, there were no significance 

in M1 stage patients (P = 0.208, Figure 5E (b)) in both 

the high- and low-risk groups. 

 

The risk score based on MGPM was negatively 

associated with ESTIMATEScore of tumor 

microenvironment 

 

ImmuneScore and StromalScore have been represented 

scores according to the ratio of immune and stromal

 

 
 

Figure 3. The MGPM comprising fifteen metabolic genes was verified in the training and testing data set. From top to 
bottom, the ranked dot plot illustrating the predictor-score distribution, a scatter plot presenting the patients’ overall survival status, a 
heatmap showing the expression profile of the fifteen signature genes of CC patients, Kaplan-Meier survival curves indicating the OS 
rates of high- and low-risk groups and ROC curve analysis demonstrating the accuracy and reliability of the MGPM in determining 
survival outcomes. 
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Figure 4. Correlation analysis between the MGPM and clinicopathological features in low- and high-risk CC patients. (A) A 
heatmap showed the correlation between the MGPM-based risk score and tumor microenvironment (ESTIMATEScore) or clinicopathological 
parameters using the Chi-square test. There were statistically significant differences in ESTIMATEScore, survival status and tumor node 
metastasis classification (T, N and M stages) of low- and high-risk groups. (B–E) The distribution of risk scores based on MGPM stratified 
according to (B) stage (stages I–II vs. stages III–IV), (C) T stage (T1-2 vs. T3-4), (D) M stage (M0 vs. M1) and (E) N stage (N0 vs. N1-2). 

 

 
 

Figure 5. Cox regression and Kaplan-Meier survival analysis of risk score and clinicopathological parameters. (A) Cox 

regression analysis of risk score and clinicopathological parameters, which indicate the MPGM could as an independent prognostic factor. 
(B) Patients stratified by ages (age ≤ 65 and > 65), (C) Patients stratified by stage (stage I-II and stage III/IV), (D) Patients stratified by T stage 
(T1-2 and T3-4), (E) Patients stratified by M stage (M0 and M1) and (F) Patients stratified by N stage (N0 and N1). 
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components in the tumor, respectively. 

ESTIMATEScore was considered as the summation of 

them, and the tumor purity of each subject was 

calculated based on all three scores. The overall 

survival of patients was positively correlated with 

ESTIMATEScore (P = 0.0026, Figure 6A), while not 

significantly with StromalScore and ImmuneScore 

(Supplementary Figure 2). Then, the data combined 

with the clinical information and ESTIMATEScore of 

CC patients were analyzed to discover the difference 

between them, showing that ESTIMATEScore were 

notably declined in M1 group compared to M0 group 

with a statistical significantly difference (Wilcoxon 

signed-rank test, P = 0.041, Figure 6B). These findings 

indicated that the components of immune and stromal 

were involved in the progression of CC, especially in 

metastasis. In the constructed MGPM, the 

ESTIMATEScore was higher in the low-risk group than 

 

 
 

Figure 6. The relationship between the MGPM-based risk score and tumor microenvironment and immune cell infiltration. 
(A) Kaplan-Meier survival curve was utilized to evaluate the prognosis of the tumor microenvironment, the result showed low-
ESTIMATEScore had a shorter OS. (B) The distribution of ESTIMATEScore according to clinicopathological features (M). (C) The difference of 
ESTIMATEScore in low- and high-risk groups. (D) Kaplan-Meier survival analysis of ESTIMATEScore in combined with a risk score. (E) Violin 
plot showed the ratio differentiation of 21 types of immune cells between CC tumor samples in low- or high-risk groups, and Wilcoxon 
rank-sum was applied for the significance test. (F) Prognosis-related immune-infiltrating cells. (G) The correlation analysis between 21 types 
of immune-infiltrating cells and risk score, ESTIMATEScore and MGPM-based risk signature genes. (H) Immunotherapy score of low- and 
high-risk groups based on TCIA database. 
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the high-risk group with a statistically significant 

difference, indicating a better prognosis in CC patients 

(Wilcoxon signed-rank test, P = 3E-05, Figure 6C). In 

addition, the Kaplan–Meier survival curves suggested 

the patients with low-ESTIMATEScore and high-risk 

score (based on the MGPM) had a shorter survival time 

and a higher incidence of death (P < 0.001, Figure 6D). 

 

Relationship between the MGPM and the proportion 

of tumor-infiltrating immune cells 

 

The proportion of tumor-infiltrating immune subtypes 

was analyzed by CIBERSORT method in CC cases 

(Supplementary Figure 3). Subsequently, we evaluated 

the important tumor-infiltrating immune cell differences 

in low- and high-risk groups through the Wilcoxon 

rank-sum test (Figure 6E). There are ten types of tumor-

infiltrating immune cells with statistically significant 

differences, including T cells CD8 (P < 0.001), T cells 

memory activated (P = 0.010), T cells regulatory 

(Tregs) (P = 0.008), Macrophages M0 (P < 0.001), 

Macrophages M1 (P = 0.018), Dendritic cell activated 

(P = 0.005), Mast cells resting (P < 0.001), Mast cells 

activated (P < 0.001), Eosinophils (P = 0.007) and 

Neutrophils (P = 0.006). Among them, T cells CD8 (P 

= 0.011), T cells memory activated (P = 0.011), Mast 

cells resting (P = 0.029) and Mast cells activated (P < 

0.001) were correlated prognosis in CC patients (Figure 

6F). The co-expression analysis of twenty-one tumor-

infiltrating immune cells and the MGPM-based risk 

signature was performed (Figure 6G). The results 

indicated T cells CD8 (R = −0.25, P = 2.37E-05), 

Macrophages M0 (R = 0.27, P = 2.24E-06), Mast cells 

resting (R = −0.29, P = 4.05E-07) and Mast cells 

activated (R = 0.35, P = 8.23E-10) were correlated with 

MGPM-based risk signature with statistically 

significant differences. 

 

The co-expression analysis of twenty-one tumor-

infiltrating immune cells and the MGPM-based risk 

signature and tumor microenvironment was then 

performed (Figure 6G). The results indicated T cell 

CD8 had a positive correlation with ESTIMATEScore 

(R = 0.34, P = 1.51E-09), PLA2G (R = 0.29, P = 2.8E-

07) and GNG8 (R = 0.17, P = 0.003) expressions, a 

negative correlation with risk score of MGPM (R = 

−0.18, P = 0.002), LIPG (R = −0.21, P = 0.0003) and 

MSMO1 (R = −0.21, P = 0.00024) expressions. T cells 

regulatory (Tregs) had a positive correlation with the 

expressions of PGK1 (R = −0.17, P = 0.003), MSMO1 

(R = −0.14, P = 0.014), LIPG (R = −0.16, P = 0.004), 

ALOX12B (R = −0.12, P = 0.041) and HCCS (R 

=−0.12, P = 0.045). Mast cells resting had a positive 

correlation with the LDHC expression (R = 0.15, P = 

0.009), and a negative correlation with risk score (R = 

−0.19, P = 0.0012), LIPG (R = −0.19, P = 0.001) and 

PGK1 (R = −0.23, P = 4.25E-05) expressions. Mast 

cells activated had a positive correlation with risk score 

(R = 0.36, P = 1.2E−10), LIPG (R = 0.34, P = 2.32E-

09) and PGK1 (R = 0.17, P = 0.003) expressions, a 

negative correlation with ESTIMATEScore (R = −0.16, 

P = 0.0049). 

 

Correlation of MGPM with the response of immune 

checkpoint inhibitors 

 

To assess the relationship between MGPM and 

immunotherapy responses, we explored the correlation 

of MGPM-based risk score with common immune 

checkpoint inhibitors based on the TCIA database, 

including cytotoxic T lymphocyte antigen 4 (CTLA4) 

and programmed cell death 1 (PD1). The results 

indicated that patients in low-risk group had better 

responses to immunotherapy (Wilcoxon signed-rank 

test, P < 0.05, Figure 6H). 

 

DISCUSSION 
 

Cervical cancer is the most common gynecological 

malignancy, which can be primary tumors that derived 

either from the genitalia or the products of conception, 

or secondary tumors impacted by other cancerous 

organs with metastasis [12]. Metabolism plays a 

crucial role in the process of tumor initiation, 

development, and recurrent [13, 14]. Metabolic 

reprogramming was utilized by cancer cells to achieve 

limited nutrient resources for proliferation, growth, 

survival, and long-term maintenance when competing 

with normal cells [15]. 

 

In this study, we identified 495 DEMGs according to 

transcriptome data analysis of tumor and normal 

cervical tissues from the TCGA database. KEGG 

functional enrichment analysis suggested that these 

DEMGs are mainly involved in pathways such as purine 

metabolism, biosynthesis of amino acids, pyrimidine 

metabolism, biosynthesis of cofactors and carbon 

metabolism. These pathways are all associated with 

metabolic-related alterations and can interfere with the 

development of CC patients. The data set was then 

analyzed through Cox- and Lasso regression analyses to 

identify the prognostic DEMGs and construct a MGPM. 

This model exhibited a favored prognosis ability, and 

which was verified in the training and testing data sets. 

Patients with high-risk score had worse overall survival 

compared with those with low-risk score. The ROC 

curve of this model suggests a favorable competence in 

forecasting 1-year OS (AUC = 0.842), 3-year OS (AUC 

= 0.861), and 5-year OS (AUC = 0.849). A nomogram 

was developed based on the MGPM-based risk 

signatures to assess the reliability and feasibility of the 

model and determine the best treatment strategies for 
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CC patients. The calibration plot exhibited predicted 

value was virtually coincided with the actual value in 

MGPM. Nine out of fifteen genes (HCCS, LDHC, 

PGK1, MSMO1, PLA2G7, LIPG, TUBB4B, AGPAT4 

and GNG8) of MGPM-based risk signature genes had 

statistically significant differences, meaning these genes 

were independent prognostic factors related to 

prognosis. Kaplan-Meier survival curve analysis 

indicated that low expression of GNG8, HCCS, LDHC, 

PLA2G7 and TUBB4B genes and high expression of 

AGPAT4, LIPG, MSMO1 and PGK1 genes were 

relevant to shorter survival time of CC patients. 

 

MGPM-based risk signature genes have been reported 

in previous studies. Some of them play an essential role 

in tumor development or can independently serve as 

prognostic markers for tumor patients. Yet, the 

underlying mechanism of most of them in 

tumorigenesis, development and metastasis of CC 

patients remains unclear. For example, Lactate 

dehydrogenase C (LDHC) is re-expressed in sorts of 

tissues of malignancy, while its expression is rigidly 

suppressed and controlled in normal somatic tissues, 

making it has a highly tumor-specific [16]. Studies have 

shown LDHC promotes tumor cell invasion and 

migration by inducing epithelial-mesenchymal 

transition and the expression of matrix 

metalloproteinase-9 (MMP9), and this leads to a poor 

prognosis for tumor patients [17, 18]. Additionally, 

LDHA participates in tumor immunity by promoting 

upregulation of PD-L1 on tumor cells to impede 

effector T cell activity [19]. Moreover, serum LDHA 

levels are related to burthen of tumor and poor clinical 

outcomes to immune checkpoint (such as PD1 and 

CTLA4) blockade therapy [20]. Phosphoglycerate 

kinase 1 (PGK1) is one of the key enzymes in the 

Warburg effect (also known as aerobic glycolysis), and 

involved in energy metabolism of tumor cells [21, 22]. 

Many studies reported that PGK1 is highly expressed in 

various cancers, and its aberrant expression is 

associated with the poor prognosis of tumor patients 

[23–25]. Lipoprotein-associated phospholipase A2 

(PLA2G7) silencing was recently reported that could as 

a novel therapy involving in anti-proliferative, anti-

migratory and pro-apoptotic in tumor cells. Meanwhile, 

it's a novel biomarker and associated with tumor 

aggressiveness [26, 27]. Changes in tubulin-β4 

(TUBB4B) and acylglycerophosphate acyltransferase 

(AGPAT) expressions have been reported with respect 

to tumor progression and clinic outcomes of cancer 

patients [28–31]. Endothelial lipase G (LIPG) is an 

important hydrolase involving in lipid metabolism, and 

it also plays a pivotal role in the tumorigenesis and 

development of various tumors [32–35]. Although there 

is currently little research data on these signature genes 

in cervical cancer, their aberrant expressions could be 

closely associated with maintaining the energy 

metabolism and improving the tumor microenvironment 

in tumor cells. Combined with our findings, metabolic 

differences are valuable factors in the tumorigenesis and 

development of CC patients, which are involved in 

remodeling of the immune microenvironment and 

cancer immunotherapy. Therefore, it’s a very feasible 

method and an unexplored area of research to a great 

extent that remodeling the tumor microenvironment and 

reestablishing anti-tumor immunity by targeting key 

players of metabolism. 

 

Subsequently, we evaluated the effect of the risk model 

(MGPM) on the common clinicopathological features to 

authenticate its clinical feasibility. And the results 

indicated that the MGPM could precisely predict the 

clinical survival outcomes of CC patients and were 

notably associated with their clinicopathological traits 

including stage, T and M classifications. Univariate- 

and multivariate Cox regression analyses demonstrated 

that this risk model could as an independent index for 

prognosis in CC patients, and which clearly 

discriminated the patients between early- and advanced-

stage through clinical symptoms. Besides, mounting 

evidence shows that stromal and immune components, 

and tumor-infiltrating immune cells have a close tie 

with the progress of CC [36, 37]. Another important 

finding of this study that there was a negative 

correlation between risk score originating from the 

MGPM and ESTIMATEScore evaluating tumor 

microenvironment, which could be combined to 

precisely predict the prognosis. Additionally, the risk 

score also correlated with the level of immune 

infiltration in CC. Among the immune infiltration cells 

that are differentially expressed in the high- and low-

risk groups and have associated with prognosis, the 

MGPM-based risk score was positive correlated with 

the expression of T cells CD8 and mast cells resting, 

and negatively related to mast cells activated. The 

model polarized macrophages to an M1-like phenotype, 

and this M1 activation increased proinflammatory 

cytokines, promoting the infiltration and activation of 

CD4- and CD8 T cells in the tumor microenvironment. 

All these finding further confirmed that the metabolic 

pathways regulated by MGPM are closely related to the 

tumor microenvironment and immunity, making it can 

more accurately predict the patient's survival outcome 

and anti-tumor immune response effect. 

 

Our research still has obvious deficiencies. Firstly, the 

construction and verification of the metabolic gene-

associated prognostic model was more reliant on the 

data gathered and analyzed from the public databases. 

Thus, our findings are urgently needed to verify with 

more experimental and larger clinical investigations. 

Secondly, some specific signaling pathways on tumor 
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growth and progress have failed to identify. Finally, we 

applied multiple bioinformatics methods to assess the 

prognostic evaluation and discriminatory ability of 

several MGPM-based risk signature genes in CC, while 

the specific functions and mechanisms of them have not 

been well characterized in the tumorigenesis and 

progression of CC patients. 

 

Taken together, we thoroughly explored the potential 

biological function and prognostic ability of DEMGs in 

CC by a variety of bioinformatics approaches. Then, a 

risk model named MGPM comprising fifteen metabolic 

genes was constructed, nine out of them were 

substantiated to be independent prognostic factors that 

could accurately distinguish the CC patients with poor 

prognosis. MGPM exhibited a favorable prognostic 

significance and was markedly associated with the 

common clinicopathological parameters and immune 

microenvironment. These findings will be of momentous 

significance in revealing the etiopathogenesis of CC and 

developing novel and feasible targets for clinical 

treatment and prognostic evaluation from the perspective 

of metabolic reprogramming. 

 

MATERIALS AND METHODS 
 

Data selection and extraction of differentially 

expressed genes 

 

RNA profiles comprising HTseq-count and fragments 

per kilobase per million reads (FPKM) of 306 primary 

CCs and 3 normal subjects were downloaded from 

the cancer genome atlas database (TCGA, 

https://portal.gdc.cancer.gov/, Supplementary Table 2). 

The corresponding clinical information, including 

general information (age, race, ect), survival outcome 

(survival status and days to the last follow-up) and 

tumor feature (stage, lymph nodes, metastases, etc) 

were also downloaded. After filtering the non-CC 

specific expression genes, the edgeR package 

(http://www.bioconductor.org/packages/release/bioc/ht

ml/edgeR.html) was applied to obtain differentially 

expressed metabolic-related genes using Padj < 0.05 

and |logFC| > 1 as screening criteria. 

 

Function and pathway enrichment analysis of the 

DEMGs 

 

A rounded enrichment analysis concerning the functions 

and pathways of the DEMGs was performed in CC by 

the clusterProfiler packages. The cellular components 

(CC), biological processes (BP), and molecular 

functions (MF), as well as the KEGG signaling 

pathways. GO terms and KEGG pathways were 

presented by the bubble chart using the P-value < 0.05 

as a screening criterion. 

Identification of prognosis-associated metabolic 

genes and construction of risk model 

 

The mRNA expression data of normal and para-

carcinoma tissue samples, and with incomplete clinical 

information were deleted by using the Limma package. 

Univariate Cox and lasso regression analyses were 

identified the potential prognostic metabolic-related 

genes, and then multivariate Cox regression analysis 

was performed to construct metabolic gene-associated 

prognostic models (MGPM) and to assure that the 

multi-factor models were not overfitted. And the risk 

score of each sample was calculated through the 

following formula: risk score = [Coefi1] × Exp1 + 

[Coefi2] × Exp2 + ... [Coefin] × Expn, Coefi is the risk 

coefficient of each subject deduced from the LASSO-

Cox mode, Exp is the expression of consensus genes. 

the receiver operating characteristic (ROC) curve was 

utilized to measure the discriminative ability of 

MGPM. A nomogram was formulated to present the 

risk score of each individual and the calibration plot 

was applied to evaluate the performance of the 

MGPM. 

 

CIBERSORT estimation 

 

The CIBERSORT algorithm was utilized to evaluate the 

expression abundance of 22 tumor-infiltrating immune 

cells (TICs) in CC using P < 0.05 as a cut off. And then, 

Wilcoxon rank-sum test was executed to calculate 

significant differences of the TICs in the proportion 

between low- and high-risk groups in MGPM. Kaplan–

Meier survival analysis was then applied to explore the 

prognosis of all TICs using P < 0.05 as a threshold. 

 

Statistical analysis 

 

Statistical analyses were carried out by R software, with 

version number v3.5.2 (Package: GDCRNATools, 

Limma, ggplot2, rms, preprocessCore, glmnet, 

survminer, timeROC). All tests were two-tailed and P < 

0.05 was supposed to have a statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. 72 differentially expressed metabolic genes with prognostic ability. 

 

 

 
 

Supplementary Figure 2. Kaplan-Meier survival curve analysis of StromalScore (left) and ImmuneScore (right). 
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Supplementary Figure 3. Barplot shows the proportion of 21 types of tumor infiltrating cells in CC tumor samples. The 
column names of the plot were sample ID. 
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Supplementary Tables 
 

Supplementary Table 1. Univariate and multivariate cox regression analysis to identify prognosis-related metabolic 
genes. 

ID 
Univariate Cox regression analysis Multivariate Cox regression analysis 

HR (95%CI) P-value coef HR (95%CI) P-value 

AGPAT4 1.2452 (1.0732, 1.4448) 0.0038  0.2777  1.3201 (1.0961, 1.5899) 0.0034  

ALOX12B 0.8876 (0.7987, 0.9864) 0.0269  −0.0964  0.9081 (0.8144, 1.0126) 0.0828  

GNG8 0.5753 (0.3771, 0.8778) 0.0103  −0.5325  0.5871 (0.3823, 0.9017) 0.0150  

HCCS 0.9420 (0.8981, 0.9882) 0.0144  −0.1019  0.9031 (0.8516, 0.9577) 0.0007  

LDHC 0.5612 (0.3923, 0.8028) 0.0016  −0.5540  0.5746 (0.4091, 0.8071) 0.0014  

LIPG 1.2120 (1.1059, 1.3282) 0.0000  0.1157  1.1227 (1.0139, 1.2431) 0.0260  

MSMO1 1.0256 (1.0127, 1.0386) 0.0001  0.0205  1.0207 (1.0063, 1.0353) 0.0047  

NPR2 1.1327 (1.0222, 1.2552) 0.0174  0.1074  1.1134 (0.9877, 1.2551) 0.0788  

PGK1 1.0048 (1.0023, 1.0072) 0.0001  0.0032  1.0032 (1.0004, 1.0060) 0.0258  

PLA2G7 0.8987 (0.8259, 0.9778) 0.0131  −0.1140  0.8923 (0.8088, 0.9844) 0.0229  

PTGDS 0.9824 (0.9670, 0.9981) 0.0286  −0.0118  0.9883 (0.9717, 1.0051) 0.1705  

SULT1A3 0.0002 (0.0000, 0.2583) 0.0195  −6.7515  0.0012 (0.0000, 1.0095) 0.0503  

SULT1E1 0.8769 (0.7756, 0.9915) 0.0360  −0.1188  0.8880 (0.7811, 1.0096) 0.0697  

TUBB4B 0.9970 (0.9945, 0.9995) 0.0190  −0.0039  0.9961 (0.9930, 0.9993) 0.0182  

TYMS 0.9796 (0.9622, 0.9973) 0.0242  −0.0134  0.9867 (0.9682, 1.0055) 0.1635  

Abbreviations: HR: hazard ratio; CI: confidence interval. 

 

 

Supplementary Table 2. Clinicopathological characteristics statistics of CC patients. 

Characteristics No. of patients (%) 
Risk group (No. of patients) 

Low (N = 147) High (N = 146) 

Age (years) 
≤65 260 (88.7%) 134 (91.2%) 126 (86.3%) 

>65 33 (11.3%) 13 (8.8%) 20 (13.7%) 

Stage 

I 159 (54.3%) 84 (57.1%) 75 (51.4%) 

II 64 (21.8%) 36 (24.5%) 28 (19.2%) 

III 42 (14.3%) 19 (12.9%) 23 (15.8%) 

IV 22 (7.5%) 6 (4.1%) 16 (11.0%) 

Unknown 6 (2.05%) 2 (1.4%) 4 (2.7%) 

T stage T1 137 (46.8%) 80 (54.4%) 57 (39.0) 
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T2 68 (23.2%) 40 (27.2%) 28 (19.2%) 

T3 17 (5.8%) 5 (3.4%) 12 (8.2%) 

T4 10 (3.4%) 2 (1.4%) 8 (5.5%) 

Unknown 61 (6.1%) 20 (13.6%) 41 (28.1%) 

M stage 

M0 107 (36.5%) 66 (44.9%) 41 (28.1%) 

M1 11 (3.8%) 5 (3.4%) 6 (4.1%) 

Unknown 175 (59.7%) 66 (44.9%) 99 (67.8%) 

N stage 

N0 129 (44.0%) 78 (53.1%) 51 (34.9%) 

N1 56 (19.1%) 30 (20.4%) 26 (17.8%) 

Unknown 108 (36.9%) 39 (26.5%) 69 (47.3%) 

Survival status 
Alive 220 (75.1%) 135 (91.8%) 85 (58.2%) 

Dead 73 (24.9%) 12 (8.2%) 61 (41.8%) 

Survival time  1072.9 ± 1145.6 1247.4 ± 1282.4 897.3 ± 957.4 

 

 

Supplementary Table 3. Univariate and multivariate cox regression analysis of clinical parameters. 

ID 
Univariate Cox regression analysis Multivariate Cox regression analysis 

HR (95%CI) P-value HR (95%CI) P-value 

TCGA dataset (N = 293) 

Age 1.8986 (1.0407, 3.4639) 0.03661443 1.4242 (0.7599, 2.6692) 0.26988095 

Stage 1.3209 (1.0834, 1.6109) 0.005903701 1.2284 (0.9726, 1.5514) 0.084245145 

T 1.2524 (1.0968, 1.4300) 0.00088526 1.0215 (0.8279, 1.2605) 0.842492879 

M 1.3454 (1.0393, 1.7417) 0.024323173 1.1211 (0.7997, 1.5717) 0.507094822 

N 1.6765 (1.2814, 2.1934) 0.000164465 1.3432 (0.8721, 2.0688) 0.180549318 

riskScore 1.0704 (1.0539, 1.0871) 7.85E-18 1.0785 (1.0584, 1.0990) 3.62E-15 

 

 


