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Abstract Metagenomes from uncultured microorganisms are rich resources for novel enzyme

genes. The methods used to screen the metagenomic libraries fall into two categories, which are

based on sequence or function of the enzymes. The sequence-based approaches rely on the known

sequences of the target gene families. In contrast, the function-based approaches do not involve the

incorporation of metagenomic sequencing data and, therefore, may lead to the discovery of novel

gene sequences with desired functions. In this review, we discuss the function-based screening strate-

gies that have been used in the identification of enzymes from metagenomes. Because of its simplic-

ity, agar plate screening is most commonly used in the identification of novel enzymes with diverse

functions. Other screening methods with higher sensitivity are also employed, such as microtiter

plate screening. Furthermore, several ultra-high-throughput methods were developed to deal with

large metagenomic libraries. Among these are the FACS-based screening, droplet-based screening,

and the in vivo reporter-based screening methods. The application of these novel screening strategies

has increased the chance for the discovery of novel enzyme genes.
Introduction

The total number of microbial cells on Earth is estimated to be
around 1030 [1]. The largest proportion of the microbial popu-

lation is made up of prokaryotes that comprise 106–108 sepa-
rate species [2]. It is widely accepted that prokaryotes possess
unique microbial diversity and represent a largely-unexplored

biological and genetic reservoir that can be exploited for novel
enzymes with unique metabolic capabilities [3,4]. However,
conventional techniques used in the laboratory to culture bac-

teria are often inefficient and limited as most of bacteria taken
from environmental samples are currently unculturable [4,5].
This could be attributed to a number of different factors such

as alterations in atmospheric oxygen levels, osmotic condi-
tions, specific nutrients required for survival, as well as pH
and temperature conditions [6]. Hence the routine culture envi-

ronments provided in the laboratory impose a selective pres-
sure that would prevent the majority of microbes from
growing [5,6]. Therefore, a suite of culture-independent tech-

niques is essential to understand the population structure, eco-
logical roles, evolution, and genetic diversity of unculturable
microbes found in natural environments [5–7].

Metagenomics holds great promise for tapping the rich

genetic resources in the uncultured microorganisms, by
nces and
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skipping culturing microorganisms and isolating genomic
DNA directly from an environmental sample [8]. The rich
genetic resource in the resulting metagenomic libraries can

be explored in two ways: sequence-driven and function-
driven screening [3,9]. The sequence-based screening is used
more frequently than the function-based approaches, due to

the easy access to the metagenomics sequencing data and
many software available for data analysis. However,
sequence-based approaches have inherent drawbacks, with

their effectiveness largely affected by the accuracy of genome
annotation and the completeness of the data available [10].
These approaches reply on the algorithms available and
information present in databases to infer the functions of

newly-discovered genes. Thus they may not work well if the
sequence similarity does not correspond to a functional rela-
tionship, or if the novel gene has only a weak similarity to

any genes whose products have been examined biochemically,
or if a particular gene is able to carry out numerous functions
in the cell [10,11]. Therefore, function-driven screening is the

preferred approach when it comes to discovering genes with
novel functions or exploring the sequence diversity of protein
families with certain functions [5]. The basic procedure of the

functional metagenomic screening, which includes the con-
struction of metagenomic libraries and the different assay
techniques employed to identify novel genes with desired
functions, is illustrated in Figure 1.

This review is directed toward a concise synopsis of the dif-
ferent function-driven metagenomics screening techniques that
have recently been used. A variety of novel genes encoding

novel enzymes have been discovered in this way. Nonetheless,
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some inherent limitations of conventional function-driven
screening strategies call for attention, such as high time
consumption, low hit rate, and labor-intensive operations

[3,8]. To cope with these problems, several high-throughput
screening strategies have been developed during the past
two decades, such as microfluidics-based screening and

reporter-based screening [10,12]. The metagenomic studies
and corresponding functional screening strategies discussed
in this review are summarized in Table 1.
Agar plate screening

Agar plate screening for hydrolytic enzymes

Functional screening of metagenomic libraries using agar

plates provides a simple and straightforward approach to iden-
tify novel enzymes that function under diverse conditions.
Numerous novel hydrolytic enzymes, including lipases,

esterases, cellulases, proteases, laccases, glycosylases, nitrilases,
and dehalogenases, have been identified using this method [62].
Assays used to discover these enzymes are based on the pro-

duction of a chromophore or fluorophore in colonies incu-
bated with a chromogenic or fluorogenic substrate. The
throughput of agar plate based assays is usually 105–106 clones
per day [63]. Despite the low throughput, agar plate screening

has led to the successful isolation of a large number of unique
enzymes from various environments. In the following section,
we describe the approaches used to identify novel hydrolytic

enzymes.
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Table 1 Recent examples of functional screening strategies employed to obtain metagenome-derived biocatalysts

Screening approach Target gene Detection method Inducer Source Host, vector Ref.

Agar plate screening Proteases Phenotypical detection 1% skim-milk Goat skin E. coli, plasmid [13]

Agar plate screening Proteases Phenotypical detection 1% skim-milk Desert sands E. coli, plasmid [14]

Agar plate screening Proteases Phenotypical detection AZCL-casein Deciduous forest soil E. coli, plasmid [15]

Agar plate screening Esterases Phenotypical detection 1% Tributyrin Marine mud E. coli, plasmid [16]

Agar plate screening Esterases Phenotypical detection X-caprylate Vegetable soil E. coli, plasmid [17]

Agar plate screening Esterases Phenotypical detection a-Naphtyl-acetate, fast blue RR Salted shrimp E. coli, plasmid [18]

Agar plate screening Esterases Phenotypical detection 1% Tributyrin Alluvial soil E. coli, plasmid [19]

Agar plate screening Esterases Phenotypical detection Dimethyl phthalate Biofilm waste treatment plant E. coli, fosmid [20]

Agar plate screening Lipase Phenotypical detection 1% Tributyrin Cymbastela concentrica, etc. E. coli, fosmid [21]

Agar plate screening Lipase Phenotypical detection 1% Tributyrin Marine sponge (Haliclona simulans) E. coli, fosmid [22]

Agar plate screening Lipase Phenotypical detection 1% Tributyrin Marine sponge (Ircinia sp.) E. coli, plasmid [23]

Agar plate screening Lipase Phenotypical detection 1% Tributyrin Biomass E. coli, cosmid [24]

Agar plate screening Cellulase Phenotypical detection Carboxymethyl cellulose Coral (Siderastrea stellata) E. coli, fosmid [25]

Agar plate screening Cellulase Phenotypical detection AZCL-HE-cellulase Brown alga (Ascophyllum nodosum) Yeast, plasmid [26]

Agar plate screening Starch hydrolyzing enzyme Phenotypical detection Starch, Lugol solution Acid mine drainage E. coli, plasmid [27]

Agar plate screening b-Glycosidases Phenotypical detection X-gal Baltic Sea water E. coli, plasmid [28]

Agar plate screening b-Glycosidases Phenotypical detection 4-Nitorphenyl-b-D-glucoside Alkaline polluted soil (Guangxi) E. coli, plasmid [29]

Agar plate screening b-Glycosidases Phenotypical detection AZCL-xylan, xyloglucan Cow dung E. coli, phage [30]

Agar plate screening Pectinases Phenotypical detection Pectin Forest soil (Western Ghats, India) E. coli, plasmid [31]

Agar plate screening Tannase Phenotypical detection X-caprylate Cotton field soil E. coli, plasmid [32]

Agar plate screening Nuclease Heterologous complementation Hydrogen peroxide Soil (Joao, Brazil) E. coli, plasmid [33]

Agar plate screening RNase H Heterologous complementation Leaf and branch compost E. coli, plasmid [34]

Agar plate screening Dioxygenases Phenotypical detection Indole Aromatic compounds polluted soil P. putida, phage [35]

Agar plate screening Dioxygenases Phenotypical detection Catechol Activated sludge E. coli, plasmid [36]

Agar plate screening Di-chlorophenol hydroxylase Phenotypical detection 3,5-Dichlorocatehol Polychlorinated biphenyl contaminated soil E. coli, plasmid [37]

Agar plate screening Polyhydroxyalkanoate synthase Heterologous complementation Sandy loam surface soil S. meliloti, cosmid [38]

Agar plate screening Laccase Phenotypical detection 2,6-DMP, etc. Mangrove soil E. coli, plasmid [39]

Agar plate screening DNA polymerase Heterologous complementation Cold sensitive mutant strain Glacial ice E. coli, fosmid [40]

Agar plate screening Hydrogenase Heterologous complementation Freshwater enrichment Not stated E. coli, plasmid [41]

Agar plate screening Genes resistant to toxic elements Phenotypical detection pH 1.8 Acidic water (Tinto river) E. coli, plasmid [42]

Agar plate screening Genes resistant to toxic elements Phenotypical detection Different number of antibiotics Human fecal E. coli, fosmid [43]

Agar plate screening Genes resistant to toxic elements Phenotypical detection Different number of antibiotics Soil E. coli, plasmid [44]

Agar plate screening Genes resistant to toxic elements Phenotypical detection Several antibiotics Dairy cow manure E. coli, fosmid [45]

Agar plate screening Genes resistant to toxic elements Phenotypical detection Several antibiotics Cheese food matrix E. coli, fosmid [46]

Agar plate screening Genes resistant to toxic elements Phenotypical detection Chloride salts Surface water (Mississippi River) E. coli, fosmid [47]

Agar plate screening Genes resistant to toxic elements Heterologous complementation Acrylate Wastewater treatment plant E. coli, cosmid [48]

Microtiter plate screening Cellulase Absorbance measurement Dinitrophenol-cellobioside Soil, Buffalo rumen, etc. E. coli, fosmid [49]

(continued on next page)
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Proteases

The catabolism of proteins is catalyzed by proteases via cleav-

ing the peptide bonds that link amino acids within proteins
[64–66]. Screening of protease activity involves incubating
1% skim-milk on LB agar plates and a positive signal for pro-

tease activity is shown as halos due to the degradation of milk
proteins [13,14,65]. A lot of proteases with desirable properties
have been identified using this simple technique [64–67]. For

instance, a metagenomic library containing DNA from bacte-
ria dwelling on goat skin was functionally screened for pro-
tease activity, which leads to the discovery of a serine
protease enzyme with a high alkalinity tolerance [13]. A

metagenomic library containing clones derived from a forest
soil sample was functionally screened for protease activity on
yeast extract and tryptone agar plates supplemented with

azurine-cross-linked casein. The screening result in the discov-
ery of a novel alkaline serine protease with high oxidant stabil-
ity [15]. Similarly, activity screening of metagenome libraries of

soil samples from Death Valley and Gobi deserts revealed two
serine proteases with distinctly thermophilic profiles [14].

Esterases and lipases

Ester bonds can be synthesized and hydrolyzed by enzymes in
carboxylic ester hydrolase class, which contains lipases and
esterases [16,68,69]. Agar plate screening has been used to

identify novel esterases [15,19,65,69–78] and lipases
[67,79,80]. Detection of lipase or esterase activity is usually
performed using tributyrin since hydrolysis of emulsified tribu-

tyrin leads to the formation of halos around positive colonies.
To specifically detect lipase activity, LB agar media containing
olive oil is used [68,81,82], with the addition of a fluorescent
dye Rhodamine B. The orange fluorescence, from a complex

of fatty acids and Rhodamine B, serves as a good indicator
of lipase activity [62,68].

A novel pyrethroid-hydrolyzing esterase enzyme, which has

potential applications in insecticide production, was identified
from a metagenomic library of a soil sample at vegetable gar-
den [17]. A similar screening approach resulted in the identifi-

cation of a highly organic solvent-tolerant and thermostable
esterase [16]. When using fast blue RR staining to identify
clones that exhibited esterase activity from a salted shrimp
derived metagenomic library, a unique salt-tolerant esterase

was identified [18]. Agar plate activity screening of an alluvial
soil metagenomic library revealed the identity of two unique
esterases that exhibited chloramphenicol reactivating activity

[83], whereas two esterase with distinctly cold adapted activity
were identified when activity-based screening was carried out
with an arctic soil derived metagenomic library under low tem-

perature [84]. Additionally, a substrate set, composed of di-
butyl phthalate, di-propyl phthalate, and di-pentyl phthalate,
was utilized to carry out activity-based screening of a

wastewater-derived metagenomic library [20]. As a result, three
novel phthalate esters hydrolase enzymes were discovered,
which exhibited an adaptation to cold activity.

To identify lipases, metagenomic libraries derived from

microbe societies associated with green alga (Ulva australis)
and with a temperate marine sponge (Cymbastela concentrica)
were functionally screened. This leads to the identification of

three unique lipases that exhibited potential antibacterial prop-
erties [21]. Additionally, functional screening of a marine
sponge (Haliclona simulans) derived metagenomic library
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revealed a lipase that adapted to high salinity concentrations
[22]. Similarly, a lipase displaying alkalophilic activity was
identified from the metagenomic library constructed from mar-

ine sponge Ircinia sp [23]. Following functional screening of
metagenomic libraries derived from a cell culture enriched at
hot and high pH condition, a thermo-stable alkaline lipase

was discovered [24].

Cellulases

Cellulases are a group of enzymes which hydrolyze cellulose.

Agar plate activity screening for cellulases and glycosyl hydro-
lases often involves the use of carboxymethyl cellulose as a
substrate and Congo red dye as an indicator [85], with

unstained haloes representing positive clones. Such method
has been used to discover many novel cellulases from different
environments, some of which are from unexpected locations

with no selective pressure for cellulases [65,67,86–89]. For
instance, cellulases are found in a metagenomic library from
coral Siderastrea stellata [25]. The coral is not a place you
would expect to find cellulases, because it contains very little

cellulosic substance. Other cellulases are found to have proper-
ties matching their surrounding environments. For example, a
halo-tolerant and cold-active cellulase was identified in a

metagenomic library constructed with microbial DNA from
a cold-active marine brown alga Ascophyllum nodosum [26].

Xylanases

Xylanases are hydrolytic enzymes that degrade the linear
polysaccharide beta-1,4 xylan into xylose, thus breaking down
hemicellulose. Detection of xylanase activity is done using

birchwood xylan as substrate and Congo Red as indicator
dye, with positive clones identified by unstained halos. Identi-
fication of novel xylanases from metagenomics has been

reported in a number of studies [90–94].

Starch hydrolyzing enzymes

Screening for starch hydrolyzing activity in the metagenomic

library uses starch as substrate and Lugol solution (iodine)
as the indicator dye, with positive clones identified as clear
halo zones around the colonies [27,95]. Agar plate activity

screening for novel starch hydrolyzing enzymes, such as amy-
lases, pullulanases, and glucoamylases, has been reported in
many studies [65,67,95,96]. These starch hydrolyzing enzymes
show special characteristics adapted to the surrounding envi-

ronmental elements, such as coldness and high pH. Some amy-
lases with no sequence homolog to known proteins were
found, which expands the sequence diversity of the amylase

enzyme family. For example, function-based screening of an
acid mine drainage-derived metagenomic library led to the
identification of two amylases containing no known amylolytic

domain [27]. It is noteworthy that these amylases do not share
any sequence similarity with known amylases or glycoside
hydrolase either. Therefore, they represent a new subgroup

of the amylase enzyme family.
b-Glycosidases

b-Glycosidases are enzymes that cleave beta-glycosidic

bonds [97]. Agar plate activity screening for b-glucosidase
activity is carried out using ammonium ferric citrate-esculin,
while p-nitrophenyl-b-D-xyloside (pNPX) is used to identify
b-xylosidase [97,98]. Using agar plate activity screening, novel
b-glycosidase enzymes had been reported in several studies

[29,97–101]. A novel cold-active glycosidase that exhibited
beta-glucosidase, beta-fucosidase, and beta-galactosidase activ-
ities was detected from of a metagenomic library derived from a

marine sample [28]. Another novel b-glucosidase with both gly-
cosidase and lipolytic activity was identified from clones of
metagenomic library derived from an alkaline polluted soil sam-

ple [102]. Similar screening was also used to explore the micro-
biota in animal stomach samples. A screening of genes
encoding fibrolytic enzymes resulted in the discovery of four
protozoan glycoside hydrolases from a bovine ruminal

protozoan-enriched metagenomic library [30].

Pectinases

Screening for pectinolytic activity is based on growing clones
on pectin-containing LB plates using Ruthenium red solution
as indicator, with positive clones shown as clear zones.
Activity-driven analysis of clones from a metagenomic library

obtained from a tropical forest soil sample led to the identifi-
cation of a pectinase active at broad pH and temperature
[31], indicating that metagenomes could be a useful source

for pectinase discovery.
Tannases

Tannases catalyze the hydrolysis of digallate, which is found in

many bacteria, such as those dwelling in rumen. Functional
screening of tannases involves the use of isopropyl-b-D-
thiogalactopyranoside (IPTG) as the inducer and X-caprylate

as the indicator dye, with positive clones showing a distinctive
blue color. Function-driven analysis of clones from a metage-
nomic library constructed with a cotton field soil sample

resulted in the detection of a gene encoding tannase [32]. This
tannase shows excellent resistance to salt concentration as high
as 4 MNaCl. It also has a broad spectrum of substrates, making
it a potential biocatalyst with potential industrial application.
Nucleases

Functional screening was also used to identify novel enzymes

responsible for DNA repair that are vital in preserving the
integrity of DNA [33]. Clones from the metagenomic library
were analyzed through complementation assay using
Escherichia coli strain DH10B, which is sensitive to hydrogen

peroxide due to the lack of DNA repair gene encoding recA.
A positive clone was identified based on the increased
resistance to hydrogen peroxide treatment. The resulting gene

encodes a novel salt-tolerant exo-nuclease with no significant
similarity to any known nuclease.

Similarly, complementary genetic screening was employed

to identify unique RNase H genes from a metagenomic library
constructed from a leaf and branch compost [34]. Twelve
unique genes encoding type 1 RNases H were identified, of

which eleven genes showed 40%–72% protein sequence identi-
ties to those found in the National Centre for Biotechnology
Information (NCBI) database. Interestingly, another enzyme
identified in this study lacks a conserved DEDD/E active site

motif, but still exhibited RNases activity, indicating distinctive
catalytic mechanism.
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Agar plate activity screening for non-hydrolytic enzymes

Typically, the targets for metagenomics screening are various
hydrolytic enzymes, due to the easy detection of the pheno-
types, such as the formation of halos around the colonies.

Occasionally, metagenomics screenings are used to screen
non-hydrolytic enzymes as well.

Dioxygenases

Aimed to identify enzymes that are able to degrade aromatic
compounds, Nagayama et al. performed an indigo-forming
activity analysis on clones from a metagenomic library derived

from an aromaticallypolluted soil sample. In this study, a gene
encoding a multicomponent hydroxylase was found to be
responsible for the phenol degradation [35]. A similar analysis
was also performed to identify the novel enzymes able to carry

out microbial degradation of aromatic compounds from sludge.
Consequently, 38 new genes coding for extradiol dioxygenases
were identified, forming a new subfamily of extradiol dioxyge-

nases [36].

Dichlorophenol hydroxylases

Lu and colleagues collected an environmental sample from an

area contaminated by polychlorinated bi-phenyl compounds
for more than two decades and used it for the construction of
a metagenomic library [37]. They used 3,5-dichlorocatechol to

screen for chlorophenol hydroxylase genes and identified a
2.4-dichlorophenol hydroxylase with a Km of 5 mM for 2,4-
dichlorophenol and 6 mM for NADPH. This was the first

report of identifying a unique TfdB gene using the functional
metagenomic approach.

Polyhydroxyalkanoate synthases

The phenotypic complementation was employed when screen-
ing for novel genes encoding polyhydroxyalkanoate synthases
in a metagenomic library from soil. Several genes with low

identity to known genes that are involved in polyhydroxyalka-
noate synthesis were isolated, which expands the diversity of
this group of genes [38].

Laccases

Based on a metagenomic library constructed from a mangrove
soil sample, function-driven screening resulted in the identifica-
tion of a multi-copper oxidase with laccase activity [39]. This

laccase shows good alkaline activity and good solubility, which
set it apart from other laccases.

DNA polymerases

Complementation assay using E. coli polA mutant was
employed in the screening of glacial ice derived metagenomic
libraries. This mutant strain cannot survive at the temperature

below 20 �C due to a mutation in the DNA polymerase gene.
Therefore, during the screening process, only the cells carrying
the metagenomic clones conferring DNA polymerase activity

can survive at 18 �C. Such screening resulted in the detection
of nine genes encoding DNA polymerases [40].

Hydrogenases

In an activity-based approach to identify an acid-tolerant
hydrogenase from metagenomic libraries, the clones were
transferred via tri-parental mating into a hydrogenase-
deleted mutant Shewanella oneidensis and grown on freshwater
medium [41]. The clones that exhibited hydrogenase activity

were distinguished by the change in color of the media from
yellow to colorless.

Screening for the genes responsible for the resistance to toxic

elements

The agar-plate activity screening method is often used to screen

for the genes responsible for the resistance to the toxic elements
such as antibiotic, extreme salt concentration, extreme pH, and
heavy metals. Function-driven analysis of metagenomic

libraries derived from rhizosphere and planktonic microbial
communities revealed 15 novel genes with the encoded proteins
conferring acid resistance [42]. Most products of these genes are
putative or unknown proteins, which implies the unknown

mechanism for acid resistance. Guazzaroni et al. also identified
nine genes that were expressed at high levels in P. putida
and Bacillus subtilis, which enhanced host cells’ ability to

withstand extreme acidic conditions [42].
In a search for antibiotic resistance genes, seven different

antibiotics were used to screen a fosmid library constructed

from gut microbiota of four healthy humans, which resulted
in the discovery of eight new antibiotic resistance genes [43].
Similarly, functional screening of clones from a soil metage-
nomic library revealed 41 novel genes that encode antibiotic

resistance proteins across eight protein families [44]. In another
study, metagenomic libraries derived from a cow manure sam-
ple were functionally screened for resistance to a number of

antibiotics, resulting in the detection of 80 unique antibiotic
enzymes together with a novel clade of chloramphenicol
acetyl-transferases [45]. Similar screening was also performed

with metagenomic libraries derived from food fermenting
microbiota in the presence of a wide range of antibiotics.
Novel kanamycin and ampicillin resistant clones originating

from Lactobacillus helveticus and Streptococcus salivarius were
reported [46]. Like the antibiotic resistant genes’ (ARGs)
screening, metal resistance activity screening on metagenomic
libraries derived from the Upper Mississippi River showed

the highest frequency of clones with resistance to Mn2+ but
no clone with resistance to Cu2+ [47]. In the quest to find
unique genes that confer bacterial resistance to acrylate, activ-

ity screening of clones from a metagenomic library derived
from a sewage treatment plant revealed three enzyme classes
that conferred an acrylate-resistant (AcrR) phenotype [48].

Microtiter plate screening

Agar plate screening approaches are simple to perform and

provide an easy way to identify active clones. However, they
have major setbacks, with low dynamic range and weak visu-
alization of differences in catalytic rates of enzyme variants,

and, therefore, difficulty in quantification [9,12]. In order to
improve sensitivity, a number of different approaches are
applied. The most commonly applied screening strategy is

based on microtiter plates, which involves incubation of bacte-
rial culture with enzyme substrate in the micro-wells [9,103].
Usually, a single colony or diluted cell culture containing sev-
eral colonies is distributed into each individual well manually

or through a liquid handling station. The cells are grown in
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microtiter plates and assessed in a second plate after cell lysis,
with the original plates stored as back-up [9,104]. With the
occurrence of substrate conversion, a visual signal emerges,

such as color or fluorescence, which is used to identify colonies
expressing an enzyme with desirable properties. The through-
put of microtiter plates has been enhanced through the incor-

poration of robotic technologies [104]. Also, fluorescence-
activated cell sorting (FACS) has been used to distribute single
cells into microtiter plates [105]. However, these kind of exper-

iments require a strong prior knowledge on the best convenient
substrates and also the chemistry on how it works. This pre-
sents a bottleneck and consequently, microtiter plate screening
is not applicable in many occasions [104].

In a study, chromogenic dinitrophenol (DNP)-cellobioside
was used as the substrate to identify cellulase activity [49].
The 384-well microplates allow for quantitative analysis since

the plate reader can be used to measure the absorbance. More-
over, fosmid library was constructed to improve the efficiency
and reliability of the activity-based screening. It was noticed

that adding the inducer L-arabinose in the culturing media
resulted in an increase in the copy number of the fosmid
library by up to 100 folds in the E. coli cells while a single copy

of the fosmid library was maintained during the growth period
for stability [9].

In a metagenomic analysis of an oil reservoir metagenome
sample, E. coli cells containing fosmid library were grown in

microtiter plates. The cells in the duplicate plates were lysed,
and the resulting supernatants were transferred to 384-well
microtiter plates. The enzyme assays for short chain and long

chain esterase activity were performed by adding the crude cell
extracts to microtiter plates containing nitrophenyl acetate and
nitrophenyl palmitate as substrate, respectively. One enzyme

showing the highest activity on short chain ester substrate
was identified as a novel esterase exhibiting high thermo-
stability and high tolerance to metal ions and solvents [50].

A high-throughput screening technique was also developed
for the identification of enzymes involved in starch, hemicellu-
lose, cellulose, chitin, lignin decomposition, protein hydrolysis,
and phosphate mineralization, using the multiple substrate

approach to allow for concurrent identification of diverse
activities essential during the various stages of biomass depoly-
merization [51]. Enzyme assays were performed on microtiter

plates and resulted in the identification of phosphatases, carbo-
hydrate hydrolase, and protease activity. It is noticeable that
such a method requires the extensive use of sophisticated

equipment, such as liquid handling system and automatic col-
ony picker. This may limit its use in the labs without such
setups.

To investigate the functions of microbial communities at

different soil layers, special microtiter plates, Biolog Ecoplates,
were used to study the metabolic profiles of the soil micro-
biome [52]. Uroz et al. analyzed metagenomic libraries derived

from two acidic forest soil samples that were incubated with
different carbon sources on Ecoplate microplates. They
detected positive results by measuring color development at

590 nm on a microplate reader. In addition, functional screen-
ing for laccase, b-glucosidase, xylosidase, cellobiohydrolase
and exochitinase activity were also performed by inoculating

with relevant substrates on regular microtiter plates. It was
found that the substrates that were readily metabolized
differed between the two soil samples, suggesting that the
microbial communities had a specialization in response to
nutritional conditions [52].
FACS-based screening

There are a number of challenges associated with the conven-

tional function-driven screening approaches in the analysis of
metagenomic libraries, such as low throughput, low hit fre-
quency for positive clones, and increased evidence of catalytic

promiscuity [3]. Moreover, these approaches are often labor
intensive and time-consuming [7]. One solution to such prob-
lems is to use FACS to screen the libraries. FACS enables
the selection of cells based on cell size, shape, and fluorescence

[12,59,106–108]. FACS have many advantages: (1) it deposits
single events into a variety of vessels quickly and accurately;
(2) the laminar flow fluidics of FACS prevents disruption of

cells during sorting; and (3) the contamination is limited
because of the small volume of each droplet [105,109,110].
Due to its powerful sorting abilities, FACS is easily coupled

to a number of different high-throughput screening methods
such as droplet sorting and reporter-based screening. The
reporter-based screening method depends on the expression
of the reporter genes, such as GFP genes [12,111]. In these sys-

tems, the metagenomic library is transformed into the host
cells which harbor the reporter genes. Then the gene products
of the metagenomic library activate the expression of reporter

genes through transcriptional regulation or post-translational
modifications [12].

A good example of reporter-based screening system is the

substrate induced gene expression (SIGEX) system which is
coupled with FACS to sort GFP-expressing E. coli cells that
respond to the presence of aromatic compounds [53]. Using

SIGEX, Uchiyama et al. identified numerous transcriptional
regulators which turn on the report gene expression in
response to aromatic compounds, such as salicylate, 3-
methyl catechol, 4-chlorocatechol, and chlorohydroquinone

[54]. In another study, several aromatic hydrocarbon (AH)-
degrading genes were discovered using SIGEX in a metage-
nomic library derived from AH-contaminated soil sample

[53]. Subsequently, the library was sequenced for contig assem-
bly. The AH-degrading genes were mapped to the contigs,
resulting in the identification of several complete operons

involved in the AH metabolism [55]. This approach combines
the SIGEX technique and the next-generation sequencing
(NGS) technology, which is very instrumental in studying

the operons or clusters in the unculturable microorganisms.
Similarly, a genetic circuit termed genetic enzyme screening

system (GESS) was developed for the high-throughput
function-driven analysis of unique phenol-generating enzymes

from metagenomic libraries [56]. Through a phenol-binding
transcriptional activator, phenol generated by these enzymes
can trigger the expression of GFP reporter gene. Three such

enzymes were identified, including alkaline phosphatase, lipase,
and cellulose, with the help of phenolic substrates (phenyl
phosphate, p-nitrophenyl acetate, and p-nitrophenyl-b-D-
cellobioside) respectively [57]. Also, p-nitrophenyl phosphate
(pNPP)-GESS was used to identify a novel psychrophilic alka-
line phosphatase, together with the phenol-recognizing
dimethylphenol regulator (DmpR) as the transcriptional

activator [58].
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Microfluidics-based screening

In addition to the conventional FACS-based screening, a
more advanced high-throughput screening strategy was devel-

oped which use microfluidic chips to generate monodispersed
microdroplets [12,112]. Microdroplets are produced in large
numbers at speeds of thousands of droplets per second and

a single droplet functions as a reaction chamber. Cells, enzyme
variants, substrates and products are confined in the picoliter
volume of the droplets, where reactions take place [9]. Subse-
quently, the droplets are sorted according to fluorescence or

color of the product. The coupling of microfluidics with
FACS results in the ultrahigh-throughput screening of
metagenomic libraries. However this technique has its own

limitation that only fluorogenic substrates not capable of
crossing the oil phase barrier may be used [9]. Sometimes,
agarose is included in the droplets to increase the strength

of structure, which forms the microfluidic gel microdroplets
(GMD) [59].

TheGMD technique was employed to co-encapsulate a fluo-

rogenic substrate together with clones from a metagenomic
library to screen for unique genes with lipolytic activity. Using
this method, a lipolytic enzyme EstT was identified [59].
Additionally, GMD-FACS was also used as an ultrahigh-

throughput screening in the detection of novel antibiotics [60].
Clones of metagenomic library constructed from three strains
of Staphylococcus were co-encapsulated in GMD with target

pathogen Staphylococcus aureus. The GMD was treated with
fluorescent dye SyTox Orange and the fluorescence from the
DNA-bound SyTox Orange indicates the antibiotic activity.

The screening resulted in the discovery of a lytic hydrolase speci-
fic for S. aureus.

In order to overcome the limitations associated with
microfluidics coupled to FACS, efforts were made to

improve the microfluidic devices. To bypass the expensive
FACS operation, an ultrahigh-throughput technique based
on the water-in-oil droplets was developed [61]. The biomi-

metic compartments within the droplets act as a genotype
phenotype linkage in analogy to cells. Such a method was
used to screen for novel hydrolase genes from a large

metagenomic library derived from a wide range of sources,
with sulfate monoester and phosphate tri-ester as fluores-
cence substrates. The resulting hydrolases span three protein

super-families, most of which have very low sequence homo-
log with known proteins.

In another study, expression of alkaline phosphatase was
carried out by encapsulating single E. coli cells in approxi-

mately 800-picoliter droplets. The reaction in the droplets
was monitored by connecting a photomultiplier to a micro-
scope to detect the presence of the fluorescent product. The

catalytic turnover of the substrate was measured at several
locations along the microfluidic channel. The enzyme activities
at different time points were used to provide time-resolved

kinetic measurements [113].
It is noticeable that almost all ultrahigh-throughput micro-

droplet techniques rely on the detection of a fluorescent prod-
uct. In the cases lacking this type of readout, droplet screening

becomes impossible. In order to deal with this unsatisfactory
situation, a microfluidic absorbance activated droplet sorter
(AADS) was developed [114]. AADS is based on the NAD+

dependent deamination of amino acids catalyzed by phenylala-
nine dehydrogenase (PheDH). The reaction does not produce
fluorescence. Instead, it is coupled with a reaction producing
an absorbing dye, which triggers the optical sensor next to

the microfluidic chip and diverge the flow of droplets. Such
method achieved the enrichment of active variants of PheDH
up to 2800 folds. However, due to the low sensitivity of absor-

bance detection, the sorting speed of this method (100 Hz) is
significant lower than those reported for the fluorescent-
based method (2000 Hz) [61].
Conclusion and future perspectives

Metagenomes derived from unculturable microorganisms is a

great reservoir for the genes with unknown functions. A vari-
ety of function-based metagenomic screening methods have
been developed to explore these rich genetic resources, result-

ing in the identification of large number of novel enzymes with
unique metabolic activities. However, there are a number of
challenges that hamper the discovery of genes with novel func-

tions, such as poor expression of target genes in the host cells
and inefficient activity assays for the gene products. The tradi-
tional agar plate screening method suffers from the low sensi-
tivity and low throughput. To overcome such problems, high-

throughput methods such as FACS-driven screening, and
microfluidics-driven screening have been developed. These
methods have greatly expanded toolkits for exploring the vast

sequence diversity in the metagenomes. In particular, the
microfluidics-based screening has shown its potential to screen
over 107 variants per day. When coupled with FACS, the

microfluidic devices can greatly expand the scope of high-
throughput metagenomic screening. The major bottleneck of
such technique is the detection method, which is mostly limited

to fluorescent signal. In the future, other detection methods,
such as mass spectrometry, nuclear magnetic resonance
(NMR) and colorimetric assay, may be combined with
microfluidic devices to accelerate the discovery of novel biocat-

alysts or other genes with important functions in the micro-
biota. On the other hand, most function-based approaches
for metagenomic screening are hindered by the biased and

insufficient expression in E. coli. There is an urgent need to
develop a greater range of alternative hosts with good expres-
sion of foreign genes of metagenomic origins. To this end, it is

essential to develop efficient shuttle vectors that have extended
host ranges so that the metagenomic library carried by these
vectors can be expressed in various hosts. Alternatively, the

translation profiles in E. coli may be altered to accommodate
the foreign genes by engineering the ribosome proteins or
manipulating the factors involved in transcriptional/transla-
tional control.
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