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Simple Summary: Proteoglycans affect multiple molecular and cellular processes during the progres-
sion of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or
limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis,
epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited
as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1,
glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and
proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC
cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies
involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen
receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed
or may be adopted in the near future for the treatment of HCC.

Abstract: Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues,
which are localized within membranes, but more often in the pericellular space and extracellular
matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenviron-
ment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and
cancer. In general, proteoglycans can perform signaling activities and influence a range of physical,
chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients
and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is
observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still
a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is con-
text dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated
for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively
influence cell growth and motility, thus contributing to key events that characterize neoplastic pro-
gression. In this review, we outline the main roles of proteoglycans in the physiology and pathology
of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational
potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.

Keywords: proteoglycans; cancer; HCC; tumor microenvironment

1. Introduction

Proteoglycans are heavily glycosylated proteins consisting of a protein core covalently
linked to one or more anionic glycosaminoglycans (GAGs) chains, which are ubiquitously
represented in the animal extracellular matrix. Generally, their localization is variable and
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can involve the cell membrane, the pericellular space, or the extracellular interstitium. In
some tissues, such as cartilage, proteoglycans represent the dominant component of the ex-
tracellular matrix. Being present in different tissues of multicellular animals, proteoglycans
are likely to perform a great variety of functions. Some of these functions are structural,
as they generally maintain the hydration state of the extracellular milieu, thus helping to
redistribute the mechanical loads. In addition, proteoglycans act as molecular “sieves” to
perform a size-dependent selection of permeable compounds that results in the exclusion
of exceedingly heavy macromolecules [1,2]. In recent decades, more complex functions
of proteoglycans have been described, such as the control of the activity of extracellular
enzymes, the interaction with several growth factors (including FGFs, BMPs, Wnts, IGFs,
etc.) and their related receptors, and the regulation of pathways involving these molecules.
In tissue development and repair, proteoglycans may play a key role in controlling homeo-
static gradients and the availability of potent growth factors, and it is therefore, it is easy to
understand how they can be involved in disease and cancer [3].

Structurally, proteoglycans consist of a central core protein that covalently binds
one or more GAG chains. GAGs are long, unbranched polysaccharide chains composed
of repetitive disaccharide units, which, in turn, include one amino-monosaccharide and
one often acid monosaccharide containing sulfate and/or carboxyl groups. These disac-
charides can involve couplings such as the following: N-acetylglucosamine/glucuronic
acid, N-acetylglucosamine/iduronic acid, N-acetylgalactosamine/glucuronic acid, N-
acetylgalactosamine/iduronic acid, and N-acetylgalactosamine/iduronic acid galactose.
Known GAGs are quite limited in number, and the most relevant include Heparan Sulfate
(HS), Dermatan Sulfate (DS), Chondroitin Sulfate (CS), Hyaluronate (HA), and Keratan
Sulfate (KS) [4]. Although the number of proteins that can be conjugated with GAGs to
form proteoglycans is also small, the resulting macromolecules are classified into large
families and are involved in a surprisingly wide range of processes [5]. Proteoglycans have
been identified primarily as components of the extracellular matrix, although they can
also be localized in the pericellular space, or within the cell membrane. Several GAGs and
proteoglycans have been evidenced at the nuclear level. Although the nuclear localization
of GAGs and proteoglycans has been controversial for years, studies using radiolabeled
[35S] sulfate and confocal microscopy have helped to clarify this uncertainty [6,7]. It has
been shown that heparan sulphate (HS) and several proteoglycans, especially heparan
sulphate proteoglycans (HSPGs), can localize within the nucleus and interact with chro-
matin and multiple transcription factors to regulate cell cycle and gene expression [8]. For
example, a shed form of syndecan 1 (sSDC1), released by cancer cells, can be harvested
from extracellular medium by bone marrow-derived stromal cells and conveyed into the
nucleus where it binds to and inhibits the function of histone acetyl transferase p300 [9];
moreover, heparan sulfates were found to prevent transcription factors, such as AP-1, SP-1,
ETS-1, and nuclear factor κB, from interacting with their consensus DNA sequences in
HepG2 cells of hepatocellular carcinoma (HCC) [10]. The mechanism that mediates nuclear
transfer of proteoglycans is not fully elucidated, but probably requires partial cleavage of
specific domains that would result in the delivery of GAGs into the nucleus [5]. Indeed,
many proteoglycans undergo proteolytic cleavage. For example, syndecans are subjected
to shedding by a variety of matrix proteinases (including metzincins), especially during
physio-pathological processes such as wound healing, and cancer cell proliferation, mi-
gration, and invasion [11]. HSPGs are involved in the clathrin- and caveolin-independent
endocytic degradation of many extracellular ligands, including cationic polymers, lipids,
and polypeptides, by conveying them through lysosomal degradative pathways [12]. The
activity of proteoglycans can be modulated by post-translational modification based on
proteolytic cleavage operated by a variety of enzymes that release extra-, or intra-cellular
fragments endowed with signaling activities. For example, sheddases are matrix metallo-
proteinases (MMPs) that can cleave membrane proteoglycans such as syndecans to release
extracellular ectodomains, whereas heparanases have heparin sulphate as a substrate, and
sulphatases cut 6-O sulfates from heparin sulfate GAGs chains. Soluble ectodomains can
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diffuse within the tissues of origin and paracrinally influence the behavior of neighboring
cells. They are also often released into the bloodstream, thus becoming of some relevance as
circulating biomarkers [13–15]. This level of control is reflected in the biological properties
of cells in normal as well as cells under pathological conditions such as inflammation
and cancer.

A number of growth factors carry binding sites for heparin, suggesting that proteogly-
cans may have a role in facilitating their signaling activities. Jiao and colleagues found that
HSPGs are required in bone morphogenetic processes by virtue of their ability to bind bone
morphogenetic protein BMP2 and permit its internalization into myoblasts, thus enabling
BMP2-mediated osteoblast differentiation [16]. Heparan sulfate present on the cell surface
is essential for the inter- and intracellular signaling pathways, as it interacts with and
mediates the stimulatory function of multiple ligands, such as basic fibroblast growth factor
(bFGF) [17–19]. Not surprisingly, HSPGs play a pivotal role in the development of inverte-
brates and vertebrates. Mutational alteration of the exostosin glycosyltransferase 1 and 2
(EXT1 and EXT2) genes, which encode for enzymes required for HS chain elongation, leads
to lethality in mice and an autosomal hereditary disorder called multiple exostoses in
humans [20–22]. Over the years, therefore, focus has shifted to embryonic stem cells and
their potential for treating a range of diseases. Stem cells are relatively rich in proteogly-
cans and heparan sulfate (HS) has been shown to be essential for differentiation [23,24].
For example, embryonic stem cells derived from Ext1 deficient mice (Ext1−/−) that lack
HS expression and localization at their outer surface, are incapable of differentiation but
can be rescued by exogenous supplementation of heparin or HS [25]. These experiments
underscore the essential nature of heparan sulfate for mammalian development, possibly
because essential growth and differentiation factors require GAG interactions on the cell
surface. A simplified scheme summarizing the structure, localization, and interaction of
proteoglycans with different interactors is shown in Figure 1.
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Figure 1. Proteoglycans generally localize in the cell membrane, pericellular, or extracellular space.
Large complexes can form between extracellular proteoglycans and hyaluronan, which can coordinate
several units of proteoglycans to form a highly hydrated gel-like matrix (not shown). Multiple
interactions occurring between proteoglycans and extracellular ligands, or cell membrane receptors
(shown as orange arrows) may modulate their downstream signaling effects. RTKs, receptor tyrosine
kinases; ITG, integrins; GPI, glycosylphosphatidylinositol.
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2. Proteoglycans Support Cancer Progression by Regulating Cancer Cell Aggressiveness,
Angiogenesis, Stromal Microenvironment, and Inflammation

The function of proteoglycans has been long investigated in relation to the multiple
properties of cancer, including dysregulated cancer cell growth, angiogenesis, and stromal
microenvironment remodeling. Being characterized by various and versatile biochemical
features that make them able to interact with both ligands and receptors, proteoglycans
perform different functions in cancer, also facilitating downstream activities of several
signaling pathways. Whether proteoglycans act as tumor promoting or suppressing factors
is not unequivocally determined, as it depends on the type of proteoglycans, their post-
translational processing forms, as well as the nature and stage of neoplasm [15]. Perlecan
(heparin sulphate proteoglycan 2, HSPG2) is considered as a pro- or anti-angiogenic fac-
tor depending on the post-translational form in which it acts. Aviezer et al. found that
perlecan can promote the development of vasculature by virtue of its ability to increase
the affinity of the pro-angiogenic factor fibroblast growth factor (FGF)-2 for the FGF re-
ceptor on endothelial cells [26]. By contrast, the C-terminal domain V of perlecan, also
called endorepellin, which is produced by perlecan cleavage by catepsin L, was found
to be capable of acting as an anti-angiogenic factor. By forming a complex with vas-
cular endothelial growth factor receptor 2 (VEGFR2) and integrin α2β1 on endothelial
cells, endorepellin induces a downregulated of VEGFR2 signaling activities, thus eliciting
angiogenesis blockage [27,28]. In addition, an alternative anti-angiogenetic path was de-
scribed for endorepellin, wherein this proteoglycan derivative inhibits angiogenesis via
a mechanism that induces authophagy in a VEGFR2-dependent but α2β1-independent
manner [29]. Based on these assumptions, the anti-angiogenic properties of endorepellin
may be exploited in the setting of novel therapeutic strategies against various solid tumors.
Regardless of its role in vascular development, perlecan supports cancer progression in
experimental settings. In a recent study, Vennin et al. demonstrated that pancreatic cancer
cells with hyperactivated p53 can epigenetically reprogram cancer-associated fibroblasts
(CAFs). These so-educated cells, via an NF-κB-dependent pathway, release perlecan, which,
in turn, promotes local invasiveness, metastasis, and chemoresistance to gemcitabine and
Abraxane in various in-vivo models of pancreatic cancer [30]. Syndecan-1 (SDC1) is a
cell surface multifunctional proteoglycan that was found to exert a protective function
against the development of colorectal cancer in a murine model of inflammation and car-
cinogenesis (chemically induced by administering azoxymethane + dextran sodium sulfate,
AOM/DSS). In these animals, the genic depletion of SDC1 led to increased susceptibility
to colitis-associated tumorigenesis and was associated with an increased local level of
interleukin 6 (IL-6) and consistently with more activated status of its receptor STAT3, and
of several tumor-promoting STAT3 downstream genes [31]. Using CD44(+) CD24(−/low)
breast cancer stem cells (CSC) that recapitulate the aggressive phenotype of neoplastic
cells represented in inflammatory breast cancer, Ibrahim and colleagues found that the
expression of SDC1 promotes efficient in vitro CSCs 3D spheroid and colony formation
by maintaining an activated status of Notch signaling. The effects of the activation of this
pathway on CSCs aggressiveness are probably mediated by Notch-induced expression
of IL-6, IL-8, gp130, Hey-1, and EGFR, and Akt phosphorylation [32]. Lumican is a small
leucine-rich keratin sulphate proteoglycan that may enhance or limit tumorigenesis in a
context-dependent mode. While lumican overexpression has been associated with poor
prognosis in some malignancies, such as breast and pancreatic cancers, its tissue level was
found to be increased in osteosarcoma and melanoma patients with better survival [33–36].
Confirmation of the anti-cancer properties of lumican came from studies demonstrating the
capacity of proteoglycan to inhibit in vitro colony formation of melanoma cells transformed
by oncogenes H-ras, v-K-ras, and v-src. Cytostatic effects of lumican have been associated
with the induction of the cyclin-dependent kinase (CDK) inhibitor p21WAF1 [15,37–40].

Aberrant biosynthesis of GAGs occurring in some pathological circumstances, may
play a role in increasing the risk of HCC. It was determined that the loss of the suppressor
gene exostosin-like 2 (Extl2) results in increased production of GAGs acting as damage-
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associated molecular patterns (DAMPs). By activating Toll-like receptor 4 (TLR4), these
GAGs contribute to the inflammatory state and consequently the propensity for HCC
development, especially in the presence of underlying obesity and diabetes [41]. The bio-
logical activity of proteoglycans can be modulated by cleavage by enzymes that can release
fragments with various functional significances. For example, SDC1, which is a membrane
proteoglycan, can be processed by sheddases (such as matrix metalloproteinase 7 or 9) that
produce extracellular as well as membrane and intracellular fragments [42]. The soluble
extracellular fragment, called ectodomain, can diffuse away from the cell surface to signal
at distant targets, while the residual product in the membrane acts to mediate cell-cell or
cell-matrix communications. Importantly, shed ectodomains can be delivered into circula-
tion, and their detection can have a clinical and prognostic value, as reported for the SDC1
ectodomain in lung cancer [43]. The heparan sulfate chains of proteoglycans can be cleaved
by heparanase, an enzyme endowed with endo-glucuronidase activity, which generates
proteoglycan products that are highly active in promoting cancer progression and the dis-
semination of carcinomas, sarcomas, and hematological malignancies. Consistently with its
tumor-supporting activity, heparanase expression is upregulated in carcinomas, sarcomas,
and hematological malignancies [44]. Furthermore, heparin sulfate can be processed by
sulfatases, such as Sulf-1 and Sulf-2. These enzymes are highly overexpressed in pancreatic
cancer and HCC and perform sulfate removal from the 6-O position of proteoglycan on the
outer side of the cell surface. This event results in a reduced interaction affinity between
heparan sulfate proteoglycan (HSPG) and Wnt ligand, which in turn can bind to frizzled
receptors and activate downstream canonical Wnt pro-tumorigenic signaling. Contrari-
wise, Sulfs can also induce the disassembling of tumor-supporting complexes, such as that
involving FGF-2, HSPG, and FGFR1 [45–47].

Remodeling processes involving proteoglycans can have important implications in
pathology as they have been shown to increase the aggressiveness of some cancers (such as
breast carcinoma) by enhancing angiogenesis and cell invasion [15,48]. Versican (VCAN)
is a proteoglycan represented by multiple isoforms (V0, V1, V3, V4) that are often over-
expressed in the stroma of some solid tumors, including colorectal cancer, pancreatic
cancer, and HCC. Regarding these neoplasms, a positive association was found between
the accumulation of this proteoglycan in cancerous tissue and a poorer prognosis [49–51].
VCAN is expressed and secreted by cancer-associated fibroblasts under specific stimuli,
such as the transforming growth factor-β (TGFβ) [52–54]. The contribution of VCAN to
cancer progression is controversial. For example, as far as V0 and V1 isoforms stimulate
migration and proliferation of melanoma cells, V3 isoform can impair tumor growth, while
favoring lung metastases in experimental models of melanoma [55,56]. A possible partially
explanatory mechanism for this behavior may be that the V3 isoform binds to CD44 on the
cell surface of melanoma cells, thus interfering with the interaction involving CD44 and
the EGFR-ErbB2 complex, ultimately attenuating downstream oncogenic signals [57].

Various carcinomas are characterized by a highly desmoplastic stromal reaction, con-
sisting of massive deposition of extracellular matrix proteoglycans that are implicated in
the remodeling of the cancer stromal milieu and, consequently, influence the progression
of disease. SDC1 exemplifies the impact that proteoglycans can have on the architecture
of the cancer stromal microenvironment, which in turn influences the behavior of cancer
cells. Yang et al. found that SDC1 expressed by human or murine mammary fibroblasts, in
cooperation with integrin ανβ3, promotes the assembly of ECM fibers in parallel arrays,
which in turn can favor directional migration and invasion of breast cancer cells [58,59].

Decorin is a member of the small leucine-rich proteoglycan that was early reported to
attenuate gromerulonephritis by binding TGFβ and thus preventing the contribution of
this cytokine to tissue damage due to excessive ECM deposition [60]. A similar effect due
to the presence of this proteoglycan was reported in liver fibrosis/cirrhosis, where decorin
is believed to “refrain” the pro-fibrogenic activity of TGFβ [61]. Decorin was reported to
suppress tumor growth and angiogenesis. The anti-tumor and anti-angiogenic functions of
this proteoglycan can be attributable to its capacity to bind to several growth factors and
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receptors (including the already mentioned TGFβ, PDGF, activin C, CTGF, EGFR, c-Met,
IGF-IR, VEGFR2, TLR2, and TLR4), thus promoting their degradation or inactivating their
downstream signaling activity. Furthermore, as decorin expression is downregulated in
many aggressive carcinomas, its tissue expression score is being exploited as a prognostic
predictor [62,63]. Similarly, the small leucine-rich proteoglycan osteoglycin (OGN) was
recently reported to be down-regulated in colorectal cancer patients with a worse prognosis.
OGN has the ability to reduce proliferation and invasion of colorectal cancer cells by
binding EGFR and promoting its internalization, resulting in the impairment of pro-mitotic
signaling and EMT driven by the EGFR/AKT/Zeb-1 axis [64].

A simplified overview of the localization and functional relations between proteo-
glycans and cellular and other non-cellular elements of the cancer microenvironment is
illustrated in Figure 2.
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Figure 2. Localization of proteoglycans and some of their interactive partners within the stromal
microenvironment of cancers. Three of the major cell type that produce and respond to proteoglycans
stimulations are represented.

3. Proteoglycans and Liver Fibrosis, Cirrhosis and Non-Alcoholic Fatty Liver Disease

Cirrhosis, which is the most advanced stage of fibrotic processes that can occur during
chronic liver disease, represents a major risk factor for the subsequent development of
HCC, as suggested by the fact that 80–90% of HCC patients are cirrhotic. Liver fibrosis
often results from the persistence of various etiologic factors (including HBV, HCV, alcohol,
and NAFLD) that trigger and perpetuate liver parenchymal injury, inflammation, remod-
eling of the extracellular matrix, and regenerative nodules as compensatory mechanisms
to replace necrotic hepatocytes [65,66]. Chronic hepatocyte damage and the continuous
regenerative stimulus represent the main substrate for the development of fibrosis and
subsequent cirrhosis. Dysregulated accumulation of extracellular matrix generally results
from a concomitant increase in synthesis/deposition and a reduction in the degradation of
the components of the hepatic extracellular matrix, including collagen proteins (collagen I,
III, and IV), non-collagen proteins (fibronectin, laminin), and proteoglycans (such as those
bearing HA, HS, and CS) [67]. Although a number of proteoglycans, along with other
abnormally expressed ECM proteins, participate in building up the aberrant stromal envi-
ronment of the chronically injured liver, their individual contributions can be supportive
or counteractive to fibrosis. Parenchymal degeneration that occurs during the cirrhotic
process is associated with changes in the expression and localization of some proteoglycans.
Expression of VCAN was shown to be significantly upregulated in the livers of cirrhotic
patients and from animal models of hepatic fibrosis. Silencing of VCANexpression in
hepatic stellate cells (a major source of this proteoglycan) resulted in an attenuation of the
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pro-fibrotic phenotype of these cells, as evidenced by reduced expression of the myofibrob-
last marker alpha-smooth muscle actin (αSMA) and TGFβ, suggesting a role for VCAN as a
modulator of liver fibrosis [68]. The immunostaining of SDC1 in liver specimens of patients
with chronic liver disease was found to be positively correlated with the severity of fibrosis,
thus suggesting its possible role as a driver of fibrogenesis [69]. Moreover, the immunore-
action of this proteoglycan switches from a faint basolateral localization in hepatocytes of a
normal liver to a stronger circumferential appearance in cirrhotic samples [70]. Although
this evidence suggests a causal link between SDC1 upregulation and the development of
liver fibrosis, a recent study established that this proteoglycan could counteract the fibro-
genic process. Regős and colleagues demonstrated that, during early stages of fibrogenesis
experimentally induced in mice, a shed form of SDC1 that is produced as a result of the
activity of MMP14 can interfere with the pro-fibrogenic activity of TGFβ by at least the
following two modes: (1) by sequestering the cytokine, thus preventing its downstream
effects; (2) by binding and downregulating thrombospondin-1, a glycoprotein that converts
latent TGFβ into its active form [71,72]. Perlecan is physiologically present in the liver as
a component of the basal membrane lining the peri-sinusoidal sub-endothelial space of
Disse [73]. During fibrosis, hepatic stellate cells (HSCs) stand out as a major source of ECM
molecules, including type XVIII collagen, perlecan, and, together with other cells (such
as Kupffer cells), ECM remodeling enzymes (mainly MMP2, 3, and 9) [74,75]. Perlecan
was found to localize in reactive bile ducts in patients with chronic cholestatic disease [76].
Despite this evidence, the actual contribution of this proteoglycan to the pathogenesis of
this disease and, in general, of chronic liver disease is not yet fully elucidated. On the
contrary, a compelling role as a modulator of hepatic fibrogenesis was demonstrated for
decorin, as previously stated. Decorin was found to be produced by HSCs under TGFβ1
stimulus and appears histologically coexpressed and colocalized with this cytokine in a
spectrum of liver diseases, including chronic hepatitis, fibrosis, and cirrhosis. This evidence
suggests that decorin may have a protective action, offsetting pro-fibrotic TGFβ1 activity.
To support this hypothesis, more rigorous approaches were employed both in vitro and
in vivo, which clearly demonstrated that decorin can hinder the activity of TGFβ1 in induc-
ing ECM protein synthesis and fibrosis. Further anti-fibrotic actions of this proteoglycan
have been attributed to its ability to sequester receptors for growth factors, such as EGFR,
IGFR, and Met, in addition to TGFβ [61,77,78].

Nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) are condi-
tions framed in the more general context of nonalcoholic fatty liver disease (NAFLD) that
can arise in association with obesity, metabolic syndrome, and type 2 diabetes [79]. Some
proteoglycans have proved promising as biomarkers of NAFLD. Serum endocan levels
resulted significantly lower in patients with NAFLD than in healthy controls. Furthermore,
serum values of this proteoglycan showed a negative correlation with body mass index
in the same subjects [80]. Contrariwise, serum syndecan-1 levels were significantly in-
creased in NAFLD patients compared to controls, even if no significant correlation between
serum values and immunohistochemical score of related liver biopsies was found [81].
In a 2009 study by Charlton and colleagues, extensive mass spectrometry analysis of the
hepatic proteome of liver samples encompassing the entire histologic spectrum of NAFLD
was performed. Among all the proteins screened, lumican turned out to be overexpressed
in progressive NAFLD [82]. Although evaluation of tissue or circulating levels of disease-
specific proteoglycans may be advantageous for diagnostic purposes or for monitoring
the disease stage, many aspects of the molecular mechanisms in which they are involved
require further investigation.

4. Proteoglycans and Liver Regeneration

Liver regeneration usually occurs when pathological, surgical, or traumatic events
lead to the depletion of hepatic mass. The capacity of the liver to replace the missing
tissue relies on the compensatory proliferative expansion of quiescent hepatocytes adja-
cent to the lesion, which results in the restoration of its original size, architecture, and
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functional status [83,84]. A multitude of growth factors and cytokines ligands and recep-
tors contribute to same extent to the reparative hepatocyte proliferation. These include
tumor necrosis factor (TNF-α), interleukin-6 (IL-6), hepatic growth factor (HGF), epidermal
growth factor (EGF), fibroblast growth factors (FGFs), vascular endothelial growth factor
(VEGF), insulin-like growth factors (IGFs), Wnt proteins, Notch receptors and relative
ligands (Notch1-4, Jagged, Delta), members of transforming growth factor β superfamily,
including TGFβ, activins, and bone morphogenetic proteins (BMPs) [85]. Spatial and tem-
poral patterns of deposition of different components of the extracellular matrix, including
collagen, fibronectin, laminin, and proteoglycans (perlecan, decorin, chondroitin-sulphate,
and heparin-sulphate), have been investigated in the livers of humans affected by chronic
liver diseases or animal models subjected to partial hepatectomy or acute liver injury. In a
1996 study, Gallai et al. monitored the expression kinetics of syndecan, perlecan, fibrogly-
can, and decorin after partial hepatectomy in rats by Northern blot analysis. A strong early
upregulation at 30 min in decorin expression was observed, followed by the first peaks of
syndecan and perlecan at 2 and 4 h after hepatectomy. At 24 h post hepatectomy, all three
of these proteoglycans had a high level of transcription at steady state. Contrary to the
above-mentioned proteoglycans, fibroglycan expression dropped after partial hepatectomy,
reaching a constant minimum level over time [86]. In another report, condroitin sulphate
deposition was also detected within a few hours, reaching a peak level in regenerating
tissue at 24 h after hepatectomy, followed by a gradual declination [87]. Increased collagen
synthesis combined with reduced activity of cathepsin L, which generates endostatin by
clivating collagens (such as collagen XVIII), were observed in rat livers within 7 days of hep-
atectomy [88,89]. This early evidence suggests that coordinated modulation of expression
of specific proteoglycans may have a functional meaning in hepatic regeneration.

Glypican 3 (GPC3) is a cell surface HSPG that is highly expressed in embryonic tissues
but not detectable in the normal liver [90]. The function of GPC3 was suspected to be
relevant in liver regeneration, as a loss-of-function mutation of its related gene leads to a
X-linked disorder called Simpson–Golabi–Behmel syndrome, which is characterized by
the pre- and post-natal liver overgrowth and a considerable risk of developing embryonic
tumors during childhood [91]. Liu et al. investigated its role in normal liver regeneration
and hepatocyte proliferation. They found that GPC3 mRNA and protein levels begin to
increase following partial hepatectomy, reaching a maximum and plateau at day 5, whereas
the hepatocyte proliferation rate decreases in a temporally coordinated way. Consistently,
in in vitro studies, GPC3 was found to prevent hepatocyte overgrowth, probably by a
mechanism involving the interaction with the member of the tetraspanin family CD81,
the expression of which results also elevated upon hepatectomy [92]. The same group
has demonstrated that, when transgenically overexpressed in mice, GPC3 slows down
hepatocyte proliferation and liver regeneration after hepatectomy [93].

Heparan sulfates (HS) are probably the major GAGs present on the surface of hepa-
tocytes under normal conditions. Nevertheless, HSPGs expression increases during liver
regeneration. Using [35S] sulfuric acid incorporation, Otsu et al. showed that, in the hepatic
regeneration phase after hepatectomy, the synthesis of heparin sulfate proteoglycans, and
to a lesser extent, of chondroitin/dermatan sulfate proteoglycans, increases up to 3–5 days
and is temporally shifted compared to the stage of maximum mitosis that occurs 1–2 days
following the surgical procedure [94]. However, Kimura et al. have reported that heparan
sulfate appears just hours after hepatectomy, suggesting a possible role of this GAG as an
initiator of hepatocyte proliferation [95].

In a 1996 study, Yada et al. reported changes in the pattern of expression of ECM
components in hepatic tissue during rat liver regeneration after partial hepatectomy. In
the regenerative phase, starting 24 h after partial hepatectomy, type I and III collagen
displayed a more marked and continuous accumulation pattern throughout the hepatic
lobule, while antibodies against type IV collagen, fibronectin, and perlecan yielded stronger
immunoreactivity in sinusoid regions, compared to sham operated controls [87].
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5. Proteoglycans Involved in HCC Progression

HCC is a leading cause of cancer-related mortality worldwide. The high inter- and
intra-tumor heterogeneity due to the underlying pathology, on which HCC arises (fre-
quently chronic inflammation and/or cirrhosis), associated with the poor knowledge of
the molecular mechanisms underlying the progression of this neoplasm, makes it difficult
to develop treatment strategies based on precision medicine approaches [96,97]. The com-
plexity of the HCC microenvironment amply accounts for the difficulty of deciphering the
functional significance of multiple interactions involving cellular elements, mainly can-
cer, stromal, endothelial, and immune cells, and an extraordinarily enriched extracellular
milieu. GAGs and proteoglycans certainly play a significant role within this complexity.

There is a significant quantitative and qualitative change in hepatic GAGs during the
development and progression of HCC. For example, the levels of chondroitin sulfate, low
molecular weight GAGs, as well as nonsulfated and disulfated chondroitin sulfate disac-
charide units increase, while heparan sulfate concertedly decreases during the worsening
of HCC [98].

Heparan sulphate (HS) was not found to be differently expressed or significantly
modified in total sulfation degree in HCC compared to normal liver tissue [99]. However, it
has been shown that this GAG, in the form bound to the plasma membrane heparan sulfate
proteoglycan syndecan-4 (SDC4), can bind and enhance the signaling activity of stromal
derived factor-1 (SDF-1/CXCL12), resulting in increased growth and invasion of hepatoma
cells in response to interaction between this ligand and its receptor, CXCR4 [100]. Syndecan-
1 (SDC1) is a transmembrane proteoglycan, the expression of which is higher in cirrhotic
than in HCC tissue. It was found that an extracellular segment of SDC1 can be shed from
the cell surface and consistently detected in serum. Although circulating levels of SDC1
have been positively correlated with HCC progression, it is unclear to what extent this
evidence reflects its actual contribution to the disease. SDC1 may affect key features of HCC
progression, such as cell migration, EMT, and stemness. Indeed, it was shown that SDC1, in
functionally coupling with TGFβ1, is required for HCC cells to undergo EMT in response to
sphingosine-1-phosphate (S1P) and that SDC1 maintains the expression of cancer stemness
markers CD13 and CD44 in tumor-spheres made from HCC cells. Nevertheless, how this
proteoglycan influences cellular and molecular aspects of HCC progression in vivo is yet
to be determined [101–104]. Among membrane-anchored proteoglycans, glypicans are
of particular interest in liver neoplasms. One member of these proteoglycans, GPC3, has
been extensively investigated and related to the development of HCC, for which it has a
diagnostic and prognostic value [105]. GPC3 is virtually absent in the normal liver but
is highly expressed in the tumor tissues of HCC patients and is detected at an elevated
concentration in the serum of the same subjects, whereas it is less represented in the tissues
of benign liver disorders [106,107]. More specifically, GPC3 is expressed only in embryonic
tissues but reappears during malignant hepatocyte transformation as an oncofetal pro-
tein [108]. Shirakawa et al. found that higher levels of GPC3 in HCC tissues are correlated
with a poorer prognosis [109,110]. A role for GPC3 in the cancerogenesis of HCC has been
described in reference to its ability to promote epithelial-to-mesenchymal transition via
ERK signaling and to stimulate cell proliferation through enhancing oncogenetic pathways
such as the Wnt/Frizzled and IGF signaling axis [111–113]. Based on these results, the
potential of GPC3 as an immunotherapeutic target in proteoglycan-overexpressing tumors
is being tested in clinical trials [114]. Agrin, a pericellular HSPG present in the basal lamina
of normal tissues, was found to be upregulated in cirrhotic and HCC microenvironments.
Of interest, it appears to be localized in the proximity of bile ductules of cirrhotic livers and
newly formed microvessels of malignant tumors [115]. Agrin expression was found to be
positively related to the progression of HCC and was proposed as a prognostic marker of
disease outcome [116]. Importantly, agrin was shown to be secreted by HCC cells, endothe-
lial and hepatic stellate cells, and to generate oncogenic signaling that enhances cancer cell
proliferation, migration, and EMT through a mechanism that is Arp2/3-dependent [117].
In addition, a neoangiogenetic function of this proteoglycan has been described in solid
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tumors, including HCC. More specifically, in mouse models of liver cancer, it was re-
ported that a complex interaction involving agrin, LDL receptor-related protein 4 (Lrp4),
β1 integrin, and focal adhesion kinase (FAK) mediates the adhesion of endothelial cells
to cancer cells, thus promoting the sprouting of new microvessels, and that depletion of
this proteoglycan results in suppressed tumor growth and metastasis to the lungs [118].
Endostatin is the C-terminal domain of Collagen XVIII and is released following elastase ac-
tivity. This proteoglycan was found to counteract VEGF- and bFGF-induced endothelial cell
proliferation and migration, besides promoting the apoptosis of these cells, thus ultimately
acting as an anti-angiogenic factor [119–121]. Biglycan belongs to the small leucine-rich
proteoglycans (SLRP) family and may have a relevant role in HCC progression as it can
interact with surface receptors such as toll-like receptors (TLRs) 2 and 4, CD14, and CD44,
which in turn influence processes such as production of inflammatory cytokines (espe-
cially in macrophages), autophagy, angiogenesis, cell growth, and migration, to eventually
promote tumor progression or suppression [122,123]. Hyaluronate and VCAN have been
found to promote tumor cell proliferation and metastatic capacity by binding to the same
receptors [124,125]. The expression of VCAN and biglycan is upregulated by TGFβ in cells
of mesenchymal origin both in normal and pathological conditions, such as HCC, wherein
stromal cells, mainly cancer associated fibroblasts (CAFs), display a sustained secretion of
extracellular matrix (ECM) proteins, including proteoglycans [53,126–128].

Extensive crosstalk between HCC cells and stromal cells is a requisite for produc-
tive tumor progression. This interaction is mediated by a plethora of structural ECM
proteins and soluble factors, including hormones, growth factors, proteolytic enzymes,
inflammatory cytokines, lipids, but also peptides and glycoproteins derived by proteolytic
cleavage of membrane receptors and proteoglycans [129,130]. A large contribution to HCC
ECM accumulation derives from the activity of CAFs. The mutual interaction between
these stromal elements and epithelial tumor cells is believed to play a decisive role in the
progression of HCC and, consequently, in the clinical progression of the disease [131,132].
CAFs can be phenotypically programmed by adjacent malignant cells and, in turn, in-
crease the proliferation and spread of HCC cells, possibly through the secretion of several
molecules, including extracellular matrix (ECM) proteins [133,134]. CAFs deliver ECM
components including type I and III fibrillar collagen and non-collagen glycoproteins, such
as fibronectin, laminin, hyaluronate, elastin and proteoglycans [135]. CAFs from ovarian
cancer can secrete the VCAN in response to TGFβ. This proteoglycan, in turn, promotes
the motility and invasion of ovarian cancer cells by a mechanism involving activation of
the NF-κB signaling pathway and overexpression of matrix metalloproteinase-9 (MMP9)
and CD44 [52]. It was also found that HCC CAFs increased VCANmRNA expression upon
exposure to TGFβ [53]. VCAN (especially the versicanV1 isoform) has been involved in the
metastatic progression of HCC. Specifically, this proteoglycan promotes the secretion of the
chemokine (C-C motif) ligand 2 (CCL2) from HCC cells. CCL2 is a potent chemoattractive
stimulus for macrophage infiltration within tumors, a process that turns out to be important
as a promoter of dissemination [136]. More recently, Zhangyuan et al. found that expression
of VersicanV1 is significantly increased in tumors of HCC patients and is related to worse
prognosis. Importantly, the same authors describe an interaction between the VersicanV1
and the EGFR-PI3K-AKT axis, which, in turn, enhances the Warburg effect of HCC cells,
ultimately leading to proliferation, invasion, and metastasis [50].

CD44 was already well known as a widely recognized receptor for several ligands,
including hyaluronate, osteopontin, and matrix metalloproteinases [137]. In light of this
recently acquired knowledge, it is increasingly regarded as a radical marker in HCC [138].
The overexpression of CD44 in this tumor is an early event during the onset of carcino-
genesis, which is responsible for the acquisition of a phenotype resistant to senescence
and the accumulation of mutations by the transforming hepatocytes [139]. It was found
that HCC CAFs secrete proteoglycan 4 (PRG4), a high molecular weight proteoglycan
previously characterized as an important constituent of the joints synovium, wherein it
works as a lubricant factor to prevent frictional degeneration of cartilage [140]. Al-Sharif
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et al. reported that PRG4 can interact with CD44, in competition with hyaluronan that also
binds this surface receptor. Moreover, these authors demonstrated that PRG4, by binding to
CD44 can counteract CD44-dependent downstream signaling that leads to growth induced
by pro-inflammatory interleukin-1β (IL-1b) stimulation [141]. We have recently demon-
strated that PRG4, upon binding to CD44, interferes with the capacity of this receptor to
mediate resistance to sorafenib and regorafenib, both drugs employed as HCC treatment
options [53].

6. Proteoglycans as Circulating Biomarkers for the Detection and Staging of HCC

As with other HCC markers, the aberrant expression of specific proteoglycans in HCC
tissues often results in their effusion into the bloodstream, thus providing the opportunity
to evaluate their use as circulating biomarkers. Unfortunately, only a limited number
of proteoglycans have proved reliable enough for early detection of HCC, recurrence, or
assessment of staging.

A serum measurement of SDC1 proved useful for HCC detection and assessing the
staging of the disease. By comparing patients with liver cirrhosis and with HCC, Metwaly
et al. found that SDC1 levels were significantly increased in the sera of HCC subjects as
compared with the cirrhotic group. Moreover, SDC1 serum levels also resulted positively
correlated with the stage as assessed by the Barcelona-Clinic Liver Cancer (BCLC) staging
system [102]. In another study, high circulating values of SDC1 and endocan were found
to be significantly associated with an increased risk of relapse in patients with early HCC
who had received radiofrequency ablation treatment [142].

Soluble GPC3 is detected in the serum of 40–53% of patients with HCC but is not
present in the serum of healthy individuals [106]. In a meta-analysis study, measurement
of serum GPC3 displayed a sensitivity and specificity of 55.1% and 97.0% in diagnosing
early-stage HCC, respectively. The sensitivity increased up to 76% for tumors < 3 cm in size
when GPC3 and alpha-fetoprotein were combined [143,144]. By quantifying serum GPC3
levels in patients with virus-related cirrhosis as a surveillance approach to predict or detect
HCC, Caviglia and colleagues found moderate diagnostic accuracy (area under the curve,
AUC = 0.637) for this proteoglycan [145]. However, a more powerful predictive approach
based on the measurement of circulating biomarkers to assess the risk of developing
HCC in nonalcoholic fatty liver disease (NAFLD) affected livers has been tuned through
stratification of patients by age, gender, and the levels of protein induced by vitamin K
absence or antagonist-II (PIVKA-II), GPC-3, and adiponectin (AUC = 0.948) [146].

7. Proteoglycans as Therapeutic Targets or Agents in HCC

Due to the dysregulated expression and involvement of some proteoglycans as sup-
porters or antagonists in the progression of liver cancers, they are exploitable as potential
targets or therapeutic tools. In particular, with regard to HSPGs, the expression of GPC3,
perlecan, and agrin is increased, while that of SDC1 is reduced in HCC, compared to
normal liver [147]. By binding to a large array of receptors and ligands, HSPGs are able
to perform both structural and signaling functions in solid tumors, including HCC [47].
Some enzymes involved in the remodeling of the stromal microenvironment can hydrolyze
HSPGs. These include MMP9, heparanase, and sulfatase-2 [148–151]. Hydrolysis of HSPGs
substrates delivers at least the following three products: the above-mentioned SDC1 and
GPC3, and fascin that can promote HCC cell invasion [152]. The inhibition of the activity
of these proteoglycans is considered attractive as a therapeutic tool for the treatment of
HCC. For example, the inhibitor of SDC1, synstatin, was proven to reduce the expression
of pro-angiogenetic factors VEGF and FGF-2 through promoting the downregulation of
αVβ3 integrin in thioacetamide-induced HCC in rats [153]. The interest in targeting GPC3
is heightened by the fact that this proteoglycan is expressed uniquely in HCC but not in
the normal liver [106,154]. Monoclonal antibodies against GPC3 have been developed
and show antitumor potential in diverse HCC models [155]. In particular, a fully hu-
manized monoclonal antibody was found to evoke antibody-dependent cell-mediated
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cytotoxicity when administered in both in vitro and in vivo experimental models employ-
ing GPC3 positive HCC cells [156,157]. Moreover, administration of anti-GPC3 antibodies
in a phase I clinical trial resulted in some tumor limiting capacity [158,159]. In a recent
study by Li et al. (2020), engineered T cells that express chimeric antigen receptors (CARs)
consisting of humanized antibodies targeting GPC3 were administered to mice bearing
xenografted tumors obtained through injecting Hep3B and HepG2 HCC cells. Notewor-
thy, this treatment resulted in a complete ablation of GPC3 cells, likely via a mechanism
involving perforin- and granzyme-mediated apoptosis or impaired Wnt signaling [160].

As far as some proteoglycans are being considered as targets due to their cancer-
promoting activity, other proteoglycans turned out to represent possible pharmacological
agents, as they were reported to play anti-angiogenic or drug-enhancing functions. The
proteolytic fragment of the heparan sulfate proteoglycan collagen XVIII called endostatin
was found to work as an anti-angiogenic factor, as it counteracts the action of VEGF and
bFGF/FGF-2 [161–163]. To exploit the potential of endostatin as a novel therapeutic tool, a
recombinant human form was developed (Endostar) [164]. This agent was demonstrated
to inhibit endothelial HUVEC cell proliferation, migration, invasion, and tubulogenesis per
se, or as a result of interaction with HCC cells in vitro, probably via the impairment of the
Wnt/β-catenin signaling pathway [165,166]. Proteoglycan 4 (PRG4 or also called lubricin), a
high molecular weight proteoglycan, is abundantly present in the synovium of joints, where
it plays a role as a lubricant, thus contributing to maintaining their physiologic homeostatic
state [167]. This proteoglycan turned out to mitigate the severity of osteoarthritis and
other inflammatory or degenerative illnesses of joint cartilage, as demonstrated in studies
using animal models, wherein it is exogenously administered in the diseased sites, or
its expression is transgenically modulated [168,169]. PRG4 was recently demonstrated
to impair the in vitro motility and invasion of breast cancer cells in response to TGFβ
pro-migratory stimulation. More specifically, PRG4 competes with hyaluronan for binding
to CD44, and once bound to this receptor, inhibits its downstream signaling. In addition,
PRG4 inhibits hyaluronan biosynthesis and TGFβ-induced CD44 up-regulation [170]. It
was recently found that PRG4 is expressed in liver and HCC tissues and is able to enhance
sorafenib and regorafenib effectiveness in slowing down the in vitro proliferation of HCC
cells expressing the PRG4 receptor CD44 [53]. Based on this evidence, PRG4, like endostatin,
may be of interest as a novel, naturally occurring factor in the treatment of HCC.

An overview of treatment options (potential, tested in animal models, or in use in
clinical practice) that involve targeting proteoglycans as targets or curative agents for the
treatment of HCC is shown in Table 1 and Figure 3.

Table 1. Physiopathological and clinical value of proteoglycans in HCC.

Proteoglycan Relevance in HCC Therapeutic Options References

GPC3

- Is upregulated in HCC compared to
normal liver tissue (prognostic value)

- Promotes EMT (via ERK signaling)
- Promotes cell proliferation (via

Wnt/Frizzled and IGF signaling)

Monoclonal targeting antibodies [106,154–160]

CAR-T cells

HS proteoglycan
collagen XVIII

- Endostatin (proteolytic fragment):
anti-angiogenic

Endostar (recombinant endostatin):
inhibits endothelial cell proliferation,
migration, invasion, tubulogenesis

[87,88,119–121,161–166]

Proteoglycan 4 (PRG4)

- Variable expression in HCC tissues
- Expression correlated with

better prognosis
- Enhances drug’s effectiveness

PRG4 fragments binding CD44 (?) [53]
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Table 1. Cont.

Proteoglycan Relevance in HCC Therapeutic Options References

SDC1

- Cooperates with TGFβ to promote
S1P-induced EMT

- Maintains the expression of cancer
stemness markers (CD13, CD44)

Synstatin (inhibitor): counteracts
angiogenesis (reduces the

expression of VEGF and FGF-2
in a HCC rat model)

[101–104,155]

VersicanV1

- Expression positively correlated with
worse prognosis

- Promotes the secretion of
macrophage-attracting CCL2

- Enhances Warburg effect, cell
proliferation and invasion

None to date [50,136]

Agrin

- Expression positively correlated with
progression (prognostic value)

- Enhances cancer cell proliferation,
migration, and EMT (via
Arp2/3-dependent signaling)

- Promotes sprouting of new
microvessels (via interaction with
Lrp4, β1 ITG and FAK)

None to date [115–118]
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8. Conclusions

The field of knowledge of proteoglycans and GAGs in physiology and cancer is
constantly evolving, as novel biochemical properties of these macromolecules are being
uncovered. Due to their involvement in all the cellular processes participating in disease
progression, such as angiogenesis, growth factor-mediated signaling, drug resistance, along
with beneficial or detrimental effects of their upregulation or deficiency, proteoglycans can
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be intended as targets for anti-tumor therapies or curative agents. HCC is a tumor where
a typically dense and abundant extracellular matrix is often observed. Unsurprisingly,
proteoglycans are noteworthy as HCC progression players, as they are highly expressed
and affect HCC cell proliferation, invasion, and angiogenesis. Obviously, further research
will be necessary to clarify several aspects of the interactive biochemical network occurring
between proteoglycans and other factors and define the pattern of expression and function
of proteoglycans within the HCC tumor microenvironment, ultimately, to identify specific
patient subsets and, consequently, better address the design of proteoglycans-based or
proteoglycans-targeting therapies.

So far, a number of biophysical and biochemical properties of GAGs and proteoglycans
in various physiological and pathological contexts have been investigated across a large
body of research covering at least three decades. This characterization has revealed the
multitude of functions that proteoglycans perform by complexing with soluble ligands
and/or cell membrane receptors (growth factor receptors, integrins, etc.). As an integral
part of the cancer stromal microenvironment, proteoglycans have been intensely studied
regarding their involvement in the progression of solid tumors, especially HCC, since this
is a cancer with an extracellular milieu usually enriched with ECM molecules. The expres-
sion of some proteoglycans, or the presence of specific fragments derived from enzymatic
proteoglycans cleavage, such as the processed products of HSPG, SDC1, GPC3 and fascin,
was found to be related to the progression of HCC. Contrariwise, the presence in HCC
of other proteolytic products of proteoglycans or full-length proteoglycans, such as endo-
statin and PRG4, is potentially beneficial due to their anti-angiogenic and drug-enhancing
abilities. The development of therapies based on compounds to target detrimental pro-
teoglycans or on recombinant proteoglycans that limit tumor progression represents a
concrete opportunity to improve the prognostic perspective of HCC patients. The main
pitfalls arising when designing novel inhibitors, as for many small-molecule drugs, lie in
the risk of general toxicity and/or low selectivity. Humanized monoclonal antibodies, such
as those targeting GPC3, may offer some advantages more than simply blocking the critical
functional domain of the proteoglycan. Indeed, GPC3-targeted Chimeric Antigen Receptor
(CAR)-T cells-based therapies have been registered for HCC and related phase I and II
trials are ongoing [171]. Employing proteoglycans in native, recombinant, or tampered
forms for curative purposes in HCC is a reasonably pursuable route. An example is the
aforementioned recombinant endostatin, which is currently being tested in two clinical
trials (according to ClinicalTrials.gov, accessed on 7 April 2022). PRG4 is a possible novel
agent to be addressed by virtue of preliminary evidence that can enhance sorafenib and
regorafenib effectiveness in inhibiting HCC cell proliferation [53]. A major issue with
using PRG4 as an anti-tumor agent stems from the very high molecular weight of this
molecule (>300 kDa). Therefore, its bioavailability would be seriously impaired if the mode
of administration employed the typical routes. A possible strategy to bypass this problem
would consist of processing the entire molecule to obtain a much smaller fragment while
still retaining the domains or portions that are critical for the biological effects of interest.
As the interaction of PRG4 with its best-known receptor, CD44, that is expressed in most
invasive HCC cell lines, is required for PRG4-mediated enhancement of drug effects, the
mapping of CD44-binding sites on PRG4 would be a preliminary step to guide the design
of specific PRG4-derived bioactive fragments.
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