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ABSTRACT

BLM, one of the human RecQ helicases, plays a fun-
damental role in homologous recombination-based
error-free DNA repair pathways, which require
its translocation and DNA unwinding activities.
Although translocation is essential in vivo during
DNA repair processes and it provides a framework
for more complex activities of helicases, including
strand separation and nucleoprotein displacement,
its mechanism has not been resolved for any human
DNA helicase. Here, we present a quantitative
model for the translocation of a monomeric form
of BLM along ssDNA. We show that BLM performs
translocation at a low adenosine triphosphate (ATP)
coupling ratio (1 ATP consumed/1 nucleotide
traveled) and moderate processivity (with a mean
number of 50 nucleotides traveled in a single run).
We also show that the rate-limiting step of the
translocation cycle is a transition between two
ADP-bound enzyme states. Via opening of the
helicase core, this structural change may drive the
stepping of BLM along the DNA track by a directed
inchworm mechanism. The data also support the
conclusion that BLM performs double-stranded
DNA unwinding by fully active duplex
destabilization.

INTRODUCTION

DNA and RNA helicases are nucleotide triphosphate
(NTP)-consuming motor enzymes generating single-
stranded (ss) forms of nucleic acids during fundamental
cellular processes including replication, recombination
and genome repair. RecQ-family DNA helicases are
members of helicase superfamily 2 (SF2) involved
in homologous recombination (HR)-based error-free

DNA repair of double-stranded (ds) DNA breaks
(DSBs) (1–4). Loss of function of BLM, one of the
human RecQ helicases, causes Bloom’s syndrome, a
severe autosomal genetic disease leading to high cancer
predisposition (5,6). BLM was recently proposed to
suppress or promote HR depending on cellular conditions
(7). BLM exerts its anti-recombinogenic activity by pre-
venting premature initiation of HR via dissociation of
Rad51 nucleoprotein filaments. This anti-recombination
role of BLM is reflected in the hyperrecombination
phenotype of Bloom’s syndrome cells (5,8). On the other
hand, BLM has also been proposed to be a key player in
the synthesis-dependent strand annealing (SDSA)
pathway of HR-based DSB repair (9). BLM can dissolve
double Holliday junctions (10,11) and D-loops (12,13),
and also stimulates DNA synthesis on model replica-
tion forks resembling one end of the D-loop by unwinding
the displaced strand (7). In these processes, BLM must
be able to perform adenosine triphosphate (ATP)-driven
translocase, DNA helicase and branch migration
activities.

Despite the fact that the biological functions of RecQ
helicases have been widely investigated (14), their mecha-
nisms of action are poorly understood. ATP-dependent
translocation along ssDNA is the basis for the separation
of the strands of dsDNA. Mechanistic knowledge about
translocation thus provides a framework for more
complex activities of DNA helicases, including dsDNA
unwinding, branch migration and dissolution of double
Holliday junctions (15). Moreover, ssDNA translocation
itself is likely essential in vivo in DNA repair. At the initial
phase of HR-based DSB repair, the BLM-induced disrup-
tion of Rad51 nucleoprotein filaments requires ssDNA
translocation activity of BLM (7). Similarly, the trans-
location activity of the yeast Srs2 helicase is necessary
for the catalysis of Rad51 nucleoprotein filament
disassembly (16). ssDNA translocation-based unwinding
of model replication forks also stimulates DNA synthesis
by g polymerase, which role was reported in DSB repair
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(17), supporting a proposed key function of BLM in
SDSA (9). SDSA also involves facilitated annealing of
complementary ssDNA stretches that form after D-loop
disruption (2,18). The capability of translocation along
ssDNA is likely essential in vivo for efficient strand
annealing.

In biochemical and genetic studies and crystal structures
of UvrD, there remains a controversy whether the
monomeric form of this enzyme is capable of unwinding
dsDNA (19–23). Studies on PcrA and Rep demonstrated
that these SF1 helicases are able to perform translocation
but are unable to unwind dsDNA substrates in their
monomeric forms (24,25). By contrast, N-terminal trun-
cation of BLM abolishes oligomerization, while the
monomeric enzyme form retains its ATPase and DNA
unwinding activities (26,27). These findings suggest a
different mode of coupling between translocation and
strand separation activities of BLM from those of the bac-
terial SF1 helicases.

Translocation along ssDNA requires processive
movement of the helicase: the motor must be able to
perform multiple enzymatic cycles and coupled mechani-
cal steps before dissociating from its track. To date, three
different models have been proposed to explain
the translocation mechanisms of SF1 and SF2 helicases:
(i) The ‘inchworm’ stepping mechanism for the monomer
form of PcrA (28) and UvrD (19); (ii) the ‘Brownian
motor’ (thermal ratchet) for hepatitis C virus NS3
helicase (29); and (iii) a ‘non-uniform stepping model’
for UvrD (30) and RecBCD DNA helicases (31) and
NS3 helicase (32). The inchworm and Brownian models
assume the hydrolysis of a single ATP molecule per kinetic
step, dictated by the rate-limiting step of the cycle, which
also defines the DNA-activated steady-state ATPase
activity. The inchworm mechanism supports unidirec-
tional processive stepping, while a Brownian motor oscil-
lates between weakly and tightly DNA-bound states
with diffusion-driven movements occurring in the weakly
bound states. Therefore, enzymes using the inchworm
stepping mechanism perform processive translocation at
a low ATP coupling ratio [�1 ATP hydrolyzed/nucleotide
(nt) traveled], while those using the Brownian ratchet
model generally translocate at a higher ATP coupling
ratio.

In this study, we determined all key parameters of the
ATP-driven translocation of BLM along ssDNA, using
signals directly monitoring ATP consumption as well as
the interaction of the enzyme with ATP and DNA at high
temporal resolution (Figure 1, Table 1). We demonstrate
that the monomeric form of BLM is a moderately
processive DNA translocase (on average, performing
50 ATPase cycles during a processive run) with a low
ATP coupling ratio (1 ATP consumed/1 nt traveled).
During translocation, neither the ATP hydrolysis step
nor any product release steps are rate limiting in the
kinetic cycle. We propose that BLM translocates along
ssDNA using an active, probably inchworm-like mecha-
nism in which the rate-limiting step is a structural transi-
tion between two ADP-bound states, which may directly
lead to stepping along ssDNA. Our results also show that
the rate of ssDNA translocation matches that of dsDNA

unwinding (27), which supports a model in which BLM
actively destabilizes the DNA duplex to perform rapid and
efficient strand separation.

MATERIALS AND METHODS

Cloning and purification of BLMHM as well as prepara-
tion of materials are described in Supplementary Data. All
measurements were done at 25�C. DNA concentrations
are expressed as those of oligo- or polynucleotide mole-
cules (as opposed to those of constituent nucleotides).

Figure 1. Model for BLMHM translocation along ssDNA. (A) Scheme
illustrating key translocation parameters. (Line 1) BLMHM (RecA folds
and C-terminal regions shown in dark and light gray, respectively)
binds to ssDNA (L nucleotides in length) at a random location,
occupying an ssDNA stretch of b nucleotides (binding site size).
(Line 2) One DNA-bound ATP hydrolysis cycle (occurring at rate
constant ktrans) displaces BLMHM by s nucleotides (step size) toward
the 50-end. The mean number of cycles BLMHM must undergo before
reaching the terminus is thus (L-b)/2s. (Line 3) BLMHM bound to
ssDNA at the 50-end has an ATPase turnover rate constant kend.
BLMHM dissociates from internal sites of ssDNA and from the
50-end at rate constants koff, int and koff, end, respectively.
(B) Dissection of the ATPase cycle of ssDNA-bound BLMHM (D.B)
during translocation (occurring at a net cycling rate ktrans). ATP
binding (k1) is followed by ATP hydrolysis (k2) and Pi release (k3). A
structural transition between a closed (BC) and an open (BO)
ADP-bound BLMHM state (k4) precedes ADP release (k5). Table 1
shows parameters determined in this study.

Nucleic Acids Research, 2010, Vol. 38, No. 13 4405



Fluorescence emission spectra were recorded in a
SPEX FluoroMax spectrofluorometer in SF-50 buffer
(50mM Tris–HCl pH 7.5, 50mM NaCl, 1mM DTT,
5mM MgCl2) plus 10% glycerol. Fluorescein (FLU) and
hexachlorofluorescein (HEX) emission was detected at
500–550 and 542–580 nm, with 494-nm and 538-nm exci-
tation, respectively.
Transient kinetic measurements were carried out in

a KinTek SF-2004 stopped-flow apparatus. Post-mix
concentrations are stated in the text. Pi release measure-
ments were performed in SF-150 buffer (SF-50 buffer plus
NaCl to 150mM). A Pi mop (150mM 7-methylguanosine,
0.1U/ml purine nucleoside phosphorylase) was present
in all solutions. MDCC-PBP fluorescence was excited
at 436 nm, and emission was followed through a 455-nm
cutoff filter. Single-round translocation experiments
were performed in the presence of heparin (see
also Supplementary Data) in SF-50 buffer. 30-(N-methyl-
anthraniloyl)-20-deoxy-ATP (mdATP) binding and release
were measured in SF-50 buffer and mant fluorescence
was detected through a 400-nm cutoff filter using
280-nm excitation, utilizing Förster resonance
energy transfer (FRET) from BLMHM’s aromatic
residues. Trp fluorescence was excited at 297 nM, and
emission was detected through a 340-nm interference
filter.
Steady-state ATPase activities of BLMHM (35 nM)

were measured using a pyruvate kinase/lactate dehydro-
genase (PK/LDH) coupled assay (14U/ml PK, 20U/ml
LDH, 1mM ATP, 1mM phosphoenol pyruvate, 200 mM
NADH) in SF-50 buffer plus 50 mg/ml BSA. Time courses
of NADH absorbance (e340 nm=6220M–1 cm–1) were fol-
lowed in a Shimadzu UV-2101PC spectrophotometer.
Oligonucleotide sequences are shown in Supplementary
Data.

Data analysis, fitting and simulations were performed
using OriginLab 7.5, KinTek SF-2004, and Gepasi v3.30
(www.gepasi.org). If not otherwise stated, reported
uncertainties are standard errors of NLLS fits.

RESULTS

BLMHM binds to ssDNA at random locations

In this study, we used BLMHM (amino acids 642–1290), a
fully active monomeric form of BLM that retains
all activities and substrate specificities of the full-length
enzyme (26). Fluorescence titration of 54-mer ssDNA
molecules labeled either at the 30-end or at the 50-end
with BLMHM showed very similar hyperbolic bind-
ing profiles and apparent dissociation constants
(Supplementary Figure S1A), demonstrating that nucleo-
tide-free BLMHM binds randomly and non-cooperatively
along ssDNA with no end preference. To further
assess DNA-binding properties, BLMHM was mixed with
equimolar amounts or 4-fold excess of 50-labeled oligo-dT
substrates of different lengths. The dependence of fluores-
cence change amplitudes on oligo-dT length corroborated
random binding (Supplementary Figure S1B).

ATP binding to BLM
HM

is uncoupled to ssDNA binding

ATP binding to BLMHM was directly monitored
in stopped-flow experiments using mdATP, a fluorescent
ATP analogue (Supplementary Figure S1C). The mdATP
concentration dependence of the observed rate constants
(kobs) of single-exponential binding transients indicated
that ATP binding (step 1 in Figure 1B) is an apparently
single-step, rapid and reversible process (Table 1). mdATP
binding transients were practically uninfluenced by the
presence of ssDNA, showing that ssDNA and ATP

Table 1. Kinetic parameters of BLMHM translocation along ssDNA

Method of determination Value

ATP hydrolysis cycle
k1 (mM�1 s�1) mdATP 6.9±0.7
k�1 (��1) mdATP 120±10
k2 (s�1) MDCC-PBP >100
k3 (s�1) MDCC-PBP >100
k4 (s�1) mdADP chasing 5.3±0.6
k�4 (s�1) mdADP chasing �2
k5 (s�1) mdADP chasing 270±30

mdADP binding 110±30
k�5 (mM�1 s�1) mdADP binding 10±1

ssDNA translocation
ktrans (steady-state ATP hydrolysis rate constant during translocation, s�1) PK/LDH assay, modeling 33±2

MDCC-PBP 27±2
kend (steady-state ATP hydrolysis rate constant at 50-end, s�1) PK/LDH assay, modeling 5.6±0.5
koff, int (dissociation from ssDNA during translocation, s�1) Trp fluorescence �0.2
koff, end (dissociation from 50-end, s�1) Trp fluorescence, PK/LDH assay, modeling 2.7±0.3
P (processivity: probability of taking the next translocation step)a Calculated 0.98
b (binding site size in nucleotides) HEX fluorescence, mdADP, PK/LDH assay 14

MDCC-PBP 12.4±0.1
s (translocation step size in nucleotides) MDCC-PBP 1.1±0.1
ATP coupling ratio (ATP consumed/nucleotide traveled) MDCC-PBP 0.87±0.08

aThe mean number of translocation steps taken in a single run is P/(1�P)=50.
Nomenclature refers to Figure 1. Means±SEM values are shown for n=3.
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binding to BLMHM are uncoupled, similarly to that
observed recently with forked dsDNA substrate (27) and
that for DbpA RNA helicase (33).

ATP hydrolysis is rapid and favorable only in the
DNA-bound form of BLMHM

The kinetics of release of Pi produced during ATP hydro-
lysis were followed using MDCC-PBP, a fluorescently-
labeled Pi binding protein (34). When BLMHM plus dT54

was mixed with different concentrations of ATP in the
stopped-flow, MDCC-PBP fluorescence transients con-
sisted of an exponential burst followed by a linear
steady-state phase (Figure 2A). The kobs of the exponen-
tial burst (67±6 s–1, SD for n=7) was independent of
ATP concentration. This rate constant was limited by Pi

binding to MDCC-PBP, in concert with earlier reports
(34) and our MDCC-PBP Pi binding calibration transients
(Supplementary Data, Supplementary Figure S2). The
amplitude of the burst showed hyperbolic dependence on
ATP concentration (Figure 2B). The released Pi/BLM

HM

molar ratio saturated at around unity, which indicates
that the ATP hydrolysis and Pi release steps (k2 and k3
in Figure 1B, Table 1) are practically irreversible, and the
rate-limiting step of the enzymatic cycle during
translocation occurs after Pi release. Steady-state kcat
(maximal steady-state turnover rate constant) and KATP

(half-saturating ATP concentration) values were

determined from slopes of the linear phase of
MDCC-PBP fluorescence transients (Figure 2B inset).
KATP (20 mM) was close to the ATP binding Kd (17mM)
calculated from mdATP binding kinetics (Figure 2B inset,
Supplementary Figure S1C, Table 1), indicating that KATP

is dictated by reversible ATP binding.
In another set of experiments, BLMHM was

preincubated with different concentrations of dT54 and
then rapidly mixed with ATP (at saturating concentration)
in the stopped flow. In the absence of dT54, a low-
amplitude Pi burst (Aburst=0.05mol Pi/mol BLMHM)
was observed with a kobs similar to those in the presence
of dT54 (Figure 2C). This behavior implies that in
DNA-free BLMHM, ATP hydrolysis and Pi release occur
rapidly but ATP hydrolysis is unfavorable with an appar-
ent equilibrium constant of 0.05 (=Aburst/(1 – Aburst)).
(Pi release is quasi-irreversible in the presence of
MDCC-PBP.) Traces in the absence and presence of
dT54 at different concentrations consisted of exponential
burst and linear steady-state phases (Figure 2C). The kobs
of the exponential burst was independent of dT54 concen-
tration and was identical to that in the experiments of
Figure 2A. The released Pi/BLM

HM molar ratio calculated
from the Pi burst amplitudes saturated at around unity
(Figure 2D), again corresponding to rapid pre-steady-
state ATP hydrolysis before the steady-state phase. The
steady-state ATPase activity of BLMHM, calculated from

Figure 2. Dependence of transient Pi production on ATP and ssDNA concentration. (A) Kinetics of Pi production from ATP upon mixing 0.25mM
BLMHM plus 2 mM dT54 with ATP (concentrations in mM indicated) in the stopped-flow, as monitored by MDCC-PBP fluorescence (2 mM in all
syringes). Traces were fitted with exponential plus linear functions. Conversion of MDCC-PBP fluorescence to mol Pi/mol BLMHM ratio was based
on the calibration curve shown in Supplementary Figure S2. In the absence of ATP, no change in MDCC-PBP fluorescence was detected.
(B) Dependence of the amplitudes of the rapid exponential burst (main panel; maximal burst=1.1±0.1mol Pi/mol BLMHM) and steady-state
ATP consumption rates (inset; calculated from the slope of the linear phase) on ATP concentration (kcat=21 s–1, KATP=20 mM). (C) Kinetics of Pi

production upon mixing 0.25mM BLMHM plus dT54 (concentrations in nM indicated) with 500 mM ATP. (D) Dependence of the amplitudes of the
exponential burst (main panel; maximal burst=1.2±0.2mol Pi/mol BLMHM) and steady-state ATP consumption rates (inset) on dT54 concentra-
tion (kcat=16 s–1, KDNA=44nM).
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the slope of the linear phase, was markedly activated by
dT54 (Figure 2D inset, cf. Figure 2B inset).
The ssDNA length-dependence of the Pi release profile

was determined by preincubating 0.25 mM BLMHM with
2 mM oligo-dT substrates of different length (dT18, dT36

and dT54), followed by rapid mixing with 500 mM ATP in
the stopped flow. The amplitude of the rapid exponential
burst of the MDCC-PBP fluorescence transients was prac-
tically identical in dT18, dT36 and dT54 (the released Pi/
BLM molar ratio was 1.2±0.5, SD for n=3), again
indicating pre-steady-state ATP hydrolysis (cf. Figure 2B
and D).

ADP release experiments identify the rate-limiting
step and indicate that BLMHM occupies a ssDNA
stretch of 14 nt

We followed the transient kinetics of mdADP release from
BLMHM in ‘chasing’ experiments in which we rapidly
mixed a premixture of BLMHM, mdADP and varying con-
centrations of oligo-dT substrates of different length
(dT18, dT36 and dT54) with excess unlabeled ATP in the
stopped flow. In the absence of DNA, the dissociation of
mdADP from BLMHM resulted in a biphasic fluorescence
decrease with kobs values of 29 s–1 and 0.38 s–1, with the
rapid phase having a fractional amplitude of 72%
(Figure 3A). This result indicates that the BLMHM.ADP
complex adopts two states in solution: the rapid phase
corresponds to an ‘open’ state from which ADP can
freely dissociate, whereas the slow phase indicates a
‘closed’ subpopulation that must first slowly convert to
the open state to release ADP (step 4 in Figure 1B).
This conclusion is in line with previous implications that
the stimulatory effect of DNA on the BLMHM ATPase
activity is brought about by an enhancement of the rate
of the ADP dissociation process (27). Importantly,
however, here we directly show that it is not the ADP
dissociation step itself but a conformation change preced-
ing ADP release that is rate limiting during the
translocation cycle. In line with this, mdADP binding to
apo-BLMHM resulted in biphasic transients; the presence

of the slow phase (with a kobs �0.4 s
–1) confirmed the slow

isomerization reaction from the closed to open state of
BLMHM (Supplementary Figure S3). In the presence of
increasing concentrations of oligo-dT, the kobs of the
rapid and slow phases in the ‘chasing’ experiments
increased to 270±30 s–1 and 5.3±0.6 s–1, respectively
(Figure 3A). In the presence of DNA, mdADP binding
was also biphasic with a slow phase kobs of 8.1±0.3 s–1

[corresponding to (k4+ k–4) in Figure 1B], which again
corroborates that the closed-open transition (represented
in the slow phase) is the rate-limiting step during the
steady-state translocation cycle (Figure 1B, Table 1).
The rate constants of the isomerization phase were
somewhat lower than the maximal DNA-activated
ATPase activity of BLMHM in Pi release experiments
(Figure 2D inset). This difference can possibly result
from the presence of the fluorescent label in mdADP.
[Besides several studies on cytoskeletal motor proteins
(35–37), it was recently reported that mantADP binds
with a >40-fold higher affinity to PcrA than unlabeled
ADP (38).]

The presence of ssDNA had a marked effect on the
magnitude of total fluorescence changes upon mdADP
release. The dependence of this parameter on oligo-dT
concentration turned out to be a highly useful indicator
of the stoichiometry of BLMHM binding to oligo-dT
substrates of different length (Figure 3B). In contrast to
recent results (27), the BLMHM.ADP complex exhibited
high-affinity oligo-dT binding profiles, from which we
deduced BLMHM/oligo-dT molar ratios of 0.95±0.17,
2.0±0.2, and 3.8±0.6 for dT18, dT36 and dT54, respec-
tively (Figure 3B). The result for dT54, which is the least
affected by DNA end-effects, indicates that a single
BLMHM molecule occupies an ssDNA stretch of
about 14 nt (parameter b in Figure 1A, Table 1). This
binding site size was confirmed in other experiments
(see below).

In the experiments of Figure 3, the kobs of mdADP flu-
orescence transients and the fractional amplitudes of the
two phases were independent of mdADP concentration
(10–100 mM) in all cases. [The rapid phase had a fractional

Figure 3. Kinetics of mdADP release and stoichiometry of BLMHM binding to ssDNA. (A) mdADP fluorescence transients recorded upon mixing a
premixture of 1 mM BLMHM, 20 mM mdADP plus dT36 (concentrations in nM indicated) with 2.5mM ATP in the stopped flow. Double exponen-
tial fits to the data are shown. Fitted parameters are discussed in the text. (B) Dependence of relative amplitudes of mdADP fluorescence
transients (A) on the concentration of oligo-dT substrates of different length. (Total amplitudes in the absence of oligo-dT were taken as unity.)
Solid lines indicate fits based on a quadratic equation for the binding of BLMHM to oligo-dT described in Supplementary Data. Binding
stoichiometries obtained from the fits are discussed in the text. Fits produced DNA binding Kd values <0.1 mM.
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amplitude of 79±4% (SD for n=10) at 10 mM mdADP
and 71±5% at 100 mM mdADP.] These results, together
with those of Supplementary Figure S3, indicate that the
experiments of Figure 3A truly report on the process of
multistep mdADP dissociation instead of phenomena
related to multiple binding sites or binding modes.

BLMHM consumes one ATP per nucleotide traveled

Heparin has been used as a protein trap to generate
single-round conditions in which the helicase cannot
rebind to the DNA track after dissociation (20,30,39).
Heparin has no ATPase activity, and accelerates
DNA-free BLMHM ATPase activity only 2.5-fold
(Supplementary Figure S4). When BLMHM was prein-
cubated with saturating concentrations of oligo-dT
substrates of different length and then rapidly mixed in
the stopped-flow with ATP plus heparin, the MDCC-
PBP fluorescence transients showed a multiphasic Pi

release profile (Figure 4A). Traces with substrates longer
than the binding site size consisted of a rapid exponential
burst and two distinct linear phases, while in those with
dT12 the first, more rapid linear phase was lacking
(Figure 4A, inset). The amplitude of the exponential
burst was practically equivalent to the pre-steady-state

hydrolysis of one ATP per enzyme molecule
(Aburst=1.1±0.1mol Pi/mol BLMHM) as previously
seen in the absence of heparin (Figure 2), and its kobs
(55±12 s–1, SD for n=12) was also similar to those
obtained in the absence of heparin. This exponential
phase therefore represents the first round of ATP hydro-
lysis by DNA-bound BLMHM. The ATP turnover rates
calculated from the first linear phase were independent
of oligo-dT length above 12 nt (27±2 s–1, SD for
n=12). The amplitudes of this phase increased with
oligo-dT length (Figure 4B), indicating that they represent
ATP consumption during translocation of BLMHM along
ssDNA. Based on our recently published analytical
method (40), the amplitude data revealed that the
presence of heparin decreased the processivity of
BLMHM (Figure 4B; see also Supplementary Data). The
processivity at zero heparin concentration was P=0.98
(expressed as the probability of a translocation step), cor-
responding to a mean run length (P/(1 – P)) of 50 steps
(Figure 4C, see also Supplementary Data) (40). The step
size (s=1.1±0.1 nt traveled per ATP hydrolyzed, corre-
sponding to an ATP coupling ratio of 0.87 ATP/nt) and
binding site size (b=12.4±0.1 nt) were independent of
heparin concentration (Figures 4B and 1A, Table 1). The

Figure 4. Single-round translocation experiments. (A) Transient kinetics of Pi production from ATP upon mixing 0.1 mM BLMHM plus 2.5 mM
oligo-dT with 500 mM ATP plus 1mg/ml heparin in the stopped flow, as monitored by MDCC-PBP fluorescence (2mM in all syringes). Traces
consisted of an exponential burst and two distinct linear phases. Oligo-dT lengths were (bottom to top) 15, 18, 23, 36, 45 and 54 nt. The inset shows
the reaction with dT12. Conversion of MDCC-PBP fluorescence to mol Pi/mol BLMHM ratio was based on a calibration curve (Supplementary
Figure S2). (B) Oligo-dT length-dependence of Pi production (mol Pi/mol BLMHM) occurring before the end of the first linear phase (corresponding
to BLMHM translocation along oligo-dT). The fit to the data indicated a coupling ratio of 0.87±0.08ATP/nucleotide traveled (independent of
heparin concentration). Note that Pi production values include Pi produced during the initial exponential burst, and data points only above the
binding site size were used in the fit. Binding site size was also left to float and resulted very similar values (b=12.4±0.13 nt) to those determined in
other experiments (Figures 3B and 5B). (C) Dependence of the determined processivities of BLMHM translocation along oligo-dT on heparin
concentration. The processivity extrapolated to zero heparin concentration was 0.98. Equations for NLLS fits used in (B) and (C) are described
in Supplementary Data and in Ref. 40.
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binding site size was very similar to that determined in the
experiments of Figure 3B. The ATP consumption rate
during the second linear phase (0.14±0.08 s–1,
SD for n=12) was similar to the steady-state ATPase
rate of heparin-bound BLMHM (Supplementary Figure
S4), indicating that this phase mainly corresponds
to steady-state ATP hydrolysis by heparin-bound
BLMHM after it has dissociated from DNA. In line
with this, this value also matches the ATPase rate in
the linear phase in experiments with dT12 where the
lack of a more rapid linear phase indicated the lack
of translocation due to the short length of DNA
(Figure 4A).
To corroborate the translocation parameters described

above, we also performed experiments monitoring
Pi release during single-round translocation of BLMHM

on m13 circular ssDNA (Supplementary Figure S5),
as well as Trp fluorescence experiments monitoring the
dissociation of BLMHM from ssDNA (Supplementary
Figure S6).

Dependence of steady-state ATP consumption on
ssDNA length corroborates the kinetic model of
translocation

The steady-state ATPase activity of DNA-free BLMHM,
determined using a PK/LDH coupled
assay (kcat=0.081±0.007 s–1, SD for n=8,
KATP=26±3 mM), was strongly activated by
non-repetitive sequence oligonucleotides (kcat,
DNA_54mer=13 s–1), oligo-dT (dT5 – dT90) (Figures 2
and 5) and m13mp18 circular ssDNA (kcat, m13=13 s–1).
From these data, it is obvious that oligo-dT activated the
ATPase activity slightly more (within a factor of two) than
non-repetitive sequence oligonucleotides of the same
length and m13 phage ssDNA. Moreover, oligo-dT90

substrate with phosphorothioate (PTO) modification
also stimulated the ATPase activity of BLMHM with

similar degree as the unmodified dT90 (kcat,
PTO-dT90=20 s�1) (Figure 5).

We titrated BLMHM with increasing oligo-dT concen-
trations to determine the DNA concentration necessary
for half-maximal ATPase activation (KDNA) at saturating
ATP concentration. KDNA steeply decreased with
increasing oligo-dT length until the length exceeded the
binding site size (b=14nt) (Figure 5A (inset); cf.
Figures 3B and 4B). At longer lengths, the shallow
decrease in KDNA was mostly dictated by the binding
stoichiometry of BLMHM to oligo-dT substrates of differ-
ent length (cf. Figure 3B). This was even more apparent
when the KDNA data were converted into the molar excess
of DNA binding sites over BLMHM (Figure 5A).

Importantly, the maximal ssDNA-activated ATPase
turnover rates (kcat) showed a characteristic length-
dependent profile (Figure 5B). The kcat values using
longer oligo-dT substrates are in good agreement with
those measured recently with full-length BLM (7)
indicating that the monomeric form of BLM utilizes the
same translocation mechanism as the full-length form. kcat
stagnated in the length range of 7–12 nt (�5 s–1, corre-
sponding to kend in Figure 1A, Table 1), then steeply
increased to a maximal value of �25 s–1 (confirming that
the first linear phase in Figure 4A corresponds to the ATP
consumption rate during translocation along ssDNA),
already reaching quasi-saturation at a length of �60 nt.
This profile matches the predictions expected from the
kinetic model of BLMHM translocation based on the
presented experiments (Figure 5B legend, Table 1,
‘Discussion’ section and Supplementary Data).

The KDNA values of Figure 5A also support that, in
kinetic experiments performed at a single DNA concen-
tration (Figures 2A and B, 4, 5B, S1C, S3 and S5 and 6),
the applied DNA concentration (typically micromolar)
was quasi-saturating and high enough to rule out the
possibility that the results were influenced by

Figure 5. ssDNA length-dependence of steady-state parameters. (A) Molar excess of DNA binding sites over BLMHM required for half-maximal
ATPase activation (K*) at different oligo-dT lengths. K* values were calculated using b=14nt and DNA concentrations required for half-maximal
ATPase activation (KDNA at 35 nM BLMHM, inset). (B) Dependence of the maximal DNA-activated ATPase activity (kcat) on oligo-dT length
[(ATP)=1mM]. Oligo-dT concentrations used to determine kcat at different lengths were 40 mM for dT7, 1mM for dT12–18, 0.5 mM for dT23, 100 nM
for dT30–90 and PTO-modified dT90. Open circles show the KDNA and kcat values obtained with PTO-modified dT90 substrate in (A) and (B),
respectively. Uncertainties are standard deviations of replicate trials with three different BLMHM preparations. The solid line in (B) is a fit based on
the model shown in Figure 1A. (Fits using the equation described in Supplementary Data produced very similar results to global kinetic simulations
based on the determined kinetic parameters.) The best fit (solid line) was obtained at values shown in Table 1. The robustness of the fit is indicated
by the dotted lines representing simulations at koff, end values twice as high/low as the best fit.
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simultaneous binding of multiple BLMHM molecules to
the same DNA molecule.

DISCUSSION

Dissection of the BLMHM ATP hydrolysis cycle leading
to ssDNA translocation

During an enzymatic cycle leading to translocation along
ssDNA (occurring at a net turnover rate ktrans in
Figure 1A), ATP binding is followed by hydrolysis and
product release steps (Figure 1B, Table 1). Our results
reveal the following salient features of this cycle: (i) ATP
binding is rapid, reversible, and unaffected by ssDNA
(Figure 2 and Supplementary Figure S1C). (ii) In
ssDNA-bound BLMHM, ATP hydrolysis and Pi release
are rapid, quasi-irreversible, and precede the rate-limiting
step (Figures 2 and 4A). (iii) The rate-limiting step
(probably a conformational transition) occurs between
two ADP-bound BLMHM states (Figure 3A). This step
is markedly accelerated by ssDNA (Figure 3A).

Key parameters and distinctive features of the BLMHM

translocation mechanism

Processive translocation along DNA requires multiple
ATP hydrolysis-coupled DNA-bound translocation
steps. Figure 1A and Table 1 summarize the proposed
translocation mechanism of BLMHM, exhibiting the fol-
lowing key features: (i) DNA binding occurs randomly
along ssDNA (Supplementary Figure S1A and B).
(ii) The binding site size (b) is about 14 nt (Figures 3B,
4A and B and 5). (This is not necessarily equivalent to
the contact site size of the BLMHM–ssDNA complex; it
is defined as the number of occluded nucleotides by a
BLMHM molecule.) This binding site size is somewhat
larger than that reported recently (27). However,
contrary to the results presented here, in that study the
binding site size was determined only from the fit to
anisotropy titration data, without confirmatory indepen-
dent results. (iii) During one ATP hydrolysis cycle
(occurring at a net rate ktrans), BLMHM travels 1 nt
along ssDNA (s) (Figure 4A and B). (iv) On reaching
the 50-end (where the ATPase cycle slows down to kend),
BLMHM rapidly dissociates from ssDNA (koff, end)
(Figure 5B). (v) The rate constant of BLMHM dissociation
from ssDNA during translocation (koff, int) is relatively
low, resulting in a moderate translocation processivity
(with a mean of 50 nt traveled in a single run)
(Figure 4C, Table 1).

BLM can unwind dsDNA regions shorter than 100 nt in
the absence of binding partners (6). BLMHM was recently
shown to unwind forked DNA substrates with low
processivity (27), indicating that its unwinding pro-
cessivity is somewhat lower than the translocation
processivity determined in this study. However, the differ-
ence may at least partially result from the fact that the
dependence of unwinding processivity on trap concentra-
tion was not determined (27). Interestingly, the unwinding
step size of Escherichia coli RecQ helicase was 4 nt (41), a
value that greatly differs from the unwinding step size of
BLMHM (27) and the translocation step size reported here.

However, a direct measurement of ATP consumption
during unwinding is still lacking. The available data high-
light the necessity of precise measurements of enzymatic
parameters during dsDNA unwinding.
The kinetic mechanism of BLM translocation along

ssDNA described here, the first one for a human
helicase, displays several features that are different from
those of other helicases. The key difference between the
previously described translocation mechanisms of PcrA
and UvrD (SF1) (30,42), RecG and Isw2 (SF2) (43,44)
and that of BLM is that BLM performs DNA
length-independent rapid pre-steady-state ATP hydrolysis
before steady-state translocation (Figures 2 and 4A). This
behavior is due to rapid, non-rate-limiting ATP binding,
hydrolysis and Pi release (Table 1). In SF1 helicases,
steady-state translocation was not preceded by a pre-
steady-state burst in Pi production, indicating that the
rate-limiting step precedes Pi release (30,42).
Another key property of the BLM mechanism is the low

ATP coupling ratio (Figure 4B, Table 1). In line with PcrA
and UvrD in which the hydrolysis of one ATP was
observed per one translocated nucleotide on ssDNA
(based on both solution measurements and on crystal
structures), BLM also travels 1 nt per ATP hydrolysis.
Although RecG was recently shown to exhibit a low
ATP coupling ratio (1 ATP/3 nt), this indirect measure-
ment was based on translocation rate during unwinding
(44), which might significantly differ from that during
ssDNA translocation.
A third important feature is that, after completing

translocation, BLM does not perform multiple rounds of
‘futile’ ATP hydrolysis at the 50 end. The characteristic
ssDNA length-dependence of the ATPase activity
(Figure 5B) indicates that BLM relatively rapidly dissoci-
ates from the 50-end (at koff, end) where its ATPase cycling
rate (kend) is lower than that during translocation (ktrans)
(Figure 1A, Table 1). Although PcrA had been proposed
to remain bound at the 50-end and perform several slow
enzymatic cycles before dissociation (very slow koff, end),
which resulting in a ssDNA length-independent steady-
state ATPase activity governed by kend (42), using longer
DNA substrates PcrA also showed DNA length depen-
dence of steady-state kcat (38), indicating a mechanism
similar to the one proposed in the current study. On the
other hand, the ssDNA length-independent ATPase
activity of UvrD (22) results from a different set of
features, namely that the ATPase rates during
translocation and at the ssDNA end are practically iden-
tical (ktrans = 42 s–1, kend = 40 s–1) (20,30).

Implications of the proposed translocation model:
enzyme–DNA interactions

The translocation mechanisms of PcrA, UvrD and Rep
(SF1) have revealed an inchworm mechanism in which
nucleotide bases of ssDNA form hydrophobic stacking
interactions with aromatic residues of the enzyme, and
nucleotide-induced conformational changes displace the
ssDNA strand along the DNA-binding cavity (19,28,45).
In contrast, recent studies on SF2 helicases (hepatitis
C virus NS3, archaeal Hel308) support a translocation
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mechanism based on protein-DNA backbone interactions
(15,46,47). BLM contains the tryptophan (Trp803) that,
based on its interaction with DNA nucleotide bases, has
been identified as a key residue for the hydrophobic
stacking-based mechanism and is conserved through SF1
and SF2 helicases (sequence alignments of the correspond-
ing region of SF1 and SF2 helicases are shown in
Supplementary Data, Table S1).
On the other hand, BLM also contains key structural

elements proposed for a translocation mechanism based
on enzyme-DNA backbone interactions. In existing
atomic structures of DNA-bound viral NS3, Drosophila
VASA and eIF4AIII (SF2) enzymes, two conserved
threonines have been shown to play fundamental roles
in helicase-DNA backbone interactions (47–51). One of
these threonines is located in motif V, which is conserved
among SF1 and SF2 enzymes. Structural and/or sequence
similarities between motif V of NS3, Swi2/Snf2, RecQ and
BLM suggest that this conserved threonine (Thr946 in
BLM) may play a similar role in BLM translocation as
in NS3. The recently published atomic structure of
DNA-bound RecQL1 (PDB code 2WWY) also reveals
that this threonine (Thr371 in RecQL1) is in direct
contact with the backbone of the ssDNA strand
spanning the surface of the RecA fold domains. The
other conserved threonine is located in motif Ib of NS3,
a region missing from RecQ helicases. Further structural
similarities between NS3, Hel308, RecQ, and RecQL1
support the hypothesis that ssDNA binds to the large
cleft formed by the two RecA fold domains and the
RecQCt domain and that BLM residues may form
contacts to the sugar-phosphate backbone of ssDNA.
Another possible mechanism for BLM translocation is a

‘mixed mechanism’, which was recently published for an
SF1B helicase (52). In this case, both hydrophobic
stacking and backbone interactions determine the
translocation with 1 nt per one ATP hydrolysis (though
in the 50-30 direction). This assumption is corroborated
by the fact that in our experiments, PTO-modified
oligo-dT90 activated BLMHM to a similar degree as the
unmodified oligo and KDNA was also only slightly
altered (Figure 5). This result indicates that BLM can
translocate on DNA substrates with modified sugar phos-
phate backbone, but the translocation is somewhat slower.

Implications of the proposed translocation model:
rate-limiting step and active dsDNA unwinding

The slow, rate-limiting conformational transition in
ADP-bound BLMHM identified in this work may repre-
sent the opening of the nucleotide-binding cleft formed by
the two RecA-folds of the helicase module, which could
result in a physical step along ssDNA. By contrast, a
rate-limiting Pi release step was proposed to drive the
power stroke used for unwinding by YxiN and NS3
RNA helicases (53,54).
It was recently proposed that DNA weakens the affinity

of BLMHM for ADP, thus accelerating the steady-state
ATPase rate. Our present study points out that ADP
release itself occurs rapidly, and the allosteric activation
of the BLMHM ATPase by DNA is brought about

specifically via the acceleration of the slow structural tran-
sition preceding ADP release, presumably by the interac-
tion of DNA with the large cleft spanning the whole
length of the RecA domains. Crystal structures and
homology modeling of SF1 and SF2 helicases
(19,28,47,55,56) support that this structural change may
enable ADP dissociation and stepping along the DNA
track in an inchworm-like manner.

The present general framework for unwinding activities
discriminates between two catalytic strategies: a ‘passive’
one in which the helicase moves forward and unwinds the
substrate by exploiting the thermal fraying of DNA base
pairs, in contrast to ‘active’ unwinding whereby the
enzyme facilitates the destabilization of the duplex ahead
of it (15,57–59). Based on this model, enzymes using a
passive mechanism unwind double-stranded nucleic acid
segments at significantly reduced rates compared to that
of translocation along single-stranded nucleic acids. In
contrast, optimally active enzymes can separate the two
strands at the same rate as the translocation rate.
Importantly, the ssDNA translocation rate of BLMHM

determined in this study is very similar to that reported
for dsDNA unwinding by the same construct (27), which
supports a fully active model for the dsDNA unwinding
mechanism of BLM.

SUPPLEMENTARY DATA
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