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Abstract: Recently, multistep-ahead prediction has attracted much attention in electric load forecast-
ing because it can deal with sudden changes in power consumption caused by various events such
as fire and heat wave for a day from the present time. On the other hand, recurrent neural networks
(RNNs), including long short-term memory and gated recurrent unit (GRU) networks, can reflect the
previous point well to predict the current point. Due to this property, they have been widely used for
multistep-ahead prediction. The GRU model is simple and easy to implement; however, its prediction
performance is limited because it considers all input variables equally. In this paper, we propose
a short-term load forecasting model using an attention based GRU to focus more on the crucial
variables and demonstrate that this can achieve significant performance improvements, especially
when the input sequence of RNN is long. Through extensive experiments, we show that the proposed
model outperforms other recent multistep-ahead prediction models in the building-level power
consumption forecasting.

Keywords: short-term load forecasting; multistep-ahead forecasting; building electrical energy
consumption forecasting; gated recurrent unit; attention mechanism

1. Introduction

Smart grid technologies have attracted much attention because of their potential to
cope with climate change and energy crises [1]. A smart grid optimizes energy efficiency
through bidirectional interaction between suppliers and consumers and employs renewable
energy (i.e., solar and wind power), combined cooling, heating, and power, and energy
storage systems (ESSs) [1–3]. As a result, greenhouse gases can also be reduced during
electricity generation. Short-term load forecasting (STLF) should be performed to determine
the power supply required for the power system to establish an operational plan of the
smart grid [3,4]. The STLF plays a crucial role in deciding when to run the power generation
system from the next hour to one week [4]. Diverse STLF models include daily peak
load forecasting, total daily load forecasting, hourly electrical load forecasting, and very
STLF (e.g., 10-min and 15-min interval electrical load forecasting). Particularly, hourly
electrical load forecasting and very STLF are popularly used for performing demand-side
management or operating ESSs from the next hour up to one day [5].

STLF is a challenging task because electrical energy consumption exhibits complicated
patterns and fluctuations due to diverse unexpected external factors [6]. Thus, effectively
learning the relationship between electrical load and external factors when constructing
a forecasting model is essential. Many studies have been done to construct STLF mod-
els using artificial intelligence (AI) techniques. For instance, support vector regression
(SVR) [7], random forest (RF) [8], and extreme gradient boosting (XGB) [9] have demon-
strated excellent prediction performance by considering the nonlinear relationship between
input and output variables. However, these STLF models focus on the day-ahead point
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forecasting; they cannot easily and properly cope with various unexpected events that
could affect electrical energy consumption for a day from the present time. Moreover,
if the time difference between the training and testing sets is extensive, their prediction
performance could deteriorate because they do not adequately reflect recent electrical load
trends [10].

Recently, a gated recurrent unit (GRU) was used for STLF to solve these problems be-
cause it is simple and easy to implement and can carry out multistep-ahead forecasting [11].
However, the GRU has the disadvantage that its forecasting accuracy may deteriorate for
a long input sequence because it concentrates on all variables equally. In this paper, we
propose a GRU-based multistep-ahead STLF model and augment it using an attention
mechanism to improve the forecasting performance by focusing more on crucial variables.
To do this, we first collected hourly power consumption data of three office buildings. Then,
we carried out preprocessing and exploratory data analysis to verify the relationship be-
tween various factors and the power consumption of buildings for model training. Lastly,
we constructed an attention-augmented GRU network for multistep-ahead (24 points)
forecasting for a day from the current time.

The main contributions of this paper are as follows:

1. We conducted multistep-ahead forecasting for the hourly power consumption of
buildings to adequately cope with sudden changes in power consumption caused
by various unexpected events, such as peak and blackout, instead of day-ahead
point STLF.

2. We constructed an attention-based multilayered GRU model to achieve faster and
more stable multistep-ahead STLF than other deep learning (DL) architectures.

3. We verified the superiority of the proposed model through extensive comparisons
with several state-of-the-art forecasting models using the power consumption data of
three office buildings.

The remainder of this paper is organized as follows. In Section 2, we review several
related studies. Section 3 describes the input variable configuration. Section 4 presents the
steps for constructing our attention based GRU model. Section 5 shows the experimental
results to demonstrate the superiority of the model. Finally, we conclude the study and
present the directions for future research in Section 6.

2. Related Studies

Many STLF models have been proposed to accurately predict energy consumption
based on diverse AI techniques. In this section, we briefly introduce some recent STLF
approaches based on machine learning (ML) and DL-based methods and summarize them
in Table 1.

Lahouar and Slama [12] proposed a day-ahead hourly electrical load forecasting model
based on the RF. They configured input variables by considering two cases: (1) exogenous
and relative to the predicted day and (2) endogenous and relative to the previous days.
They used the RF model’s variable importance to explain the relationship between the
input variables and electrical load. They demonstrated the superiority of the proposed
model by comparing it with the persistence analysis, artificial neural network, and SVR.
Moon et al. [13] developed an RF-based total daily load forecasting model for university
campuses. They first used a moving average method to consider the electrical load patterns
on the days of the week. They built an RF model using several input variables, such as
the timestamp, temperature, academic year, historical load, and prediction value from the
moving average method. They demonstrated that their proposed model outperformed
other popular ML methods, such as the decision tree, MLR, gradient boosting machine,
SVR, and artificial neural network. Park et al. [14] proposed a two-stage hourly electrical
load forecasting model. In the first stage, they constructed two forecasting models using the
XGB and RF methods. Then, they combined their prediction values using a sliding window-
based multiple linear regression (MLR) model in the second stage. They demonstrated that
their proposed model outperforms several single ML methods.
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Ryu et al. [15] proposed two deep neural network-based STLF models for apply-
ing a demand-side empirical load database. They compared these STLF models with
the shallow neural network, double-seasonal holt-winters, and autoregressive integrated
moving average (ARIMA) and demonstrated that their STLF models exhibited excellent
performance. Izonin et al. [16] used non-iterative approaches based on a successive geo-
metric transformation model (SGTM) to predict the net hourly electrical energy output of a
combined cycle power plant. The SGTM neural-like structure showed a better prediction
performance than MLR, SVR, and general regression neural networks. Motepe et al. [17] de-
veloped an improved load forecasting process using hybrid AI and deep learning methods.
They determined the optimal hyperparameters through several experiments to enhance
the performance of long short-term memory (LSTM) networks. They demonstrated that
their proposed model, the LSTM network, had lower prediction errors than an adaptive
neuro-fuzzy inference system and optimally pruned extreme learning machine.

Kuan et al. [18] constructed a multilayered self-normalizing GRU model for STLF.
They demonstrated that the multilayered self-normalizing technology could improve
the prediction performance of the GRU and LSTM models through several experiments.
Chitalia et al. [19] presented a short-term load forecasting framework that is robust re-
gardless of building types or locations. They collected five commercial buildings of five
different building types located at five different locations. They explored nine different
deep learning models and determined the best model for load forecasting in each cluster
by considering unsupervised k-mean clustering. Sehovac and Grolinger [20] proposed a
recurrent neural network (RNN) with attention for load forecasting. Their RNN had the
ability to model time dependencies. They used sequence to sequence (S2S) approach to
strengthen the ability by using encoder and decoder. Moreover, they added an attention
mechanism to ease the connection between encoder and decoder to further improve the
performance. They proved the superiority of their S2S approach and attention mechanism
through comparison with a non S2S model and vanilla RNN.

Table 1. Summary of related works (RF, random forest; TSCV, time-series cross-validation; XGB, extreme gradient boosting;
MLR, multiple linear regression; KEPCO, Korea Electric Power Corporation; DNN, deep neural network, DBN, deep belief
network; SBTM, successive geometric transformations model; OP-ELM, optimally pruned extreme learning machines; LSTM,
long short-term memory; GRU, gated recurrent unit; BiLSTM, bidirectional long short-term memory; CNN, convolution
neural network; S2S, sequence to sequence; RNN, recurrent neural network).

Reference Datasets AI Methods Granularity Characteristics

Lahouar and Slama [12] Tunisian Company of Electricity
and Gas RF with TSCV Hourly Model interpretation via

variable importance

Moon et al. [13] Private university in Seoul, Korea RF with TSCV Daily Reflecting recent power
consumption trends

Park et al. [14] Commercial and industrial
buildings in Korea

Stage 1: RF, XGB
Stage 2: MLR with sliding

window
Hourly Performance

reinforcement

Ryu et al. [15] Demand side load data provided
by KEPCO DNN and DBN Hourly Multistep-ahead load

forecasting

Izonin et al. [16] Combined cycle power plant
dataset SGTM Hourly Less time consuming

Motepe et al. [17] South African power utility system OP-ELM and LSTM 30-min Performance
reinforcement

Kuan et al. [18] Electricity load from Junan,
Shanhong province GRU 15-min Multistep-ahead load

forecasting

Chitalia et al. [19]

Commercial buildings of five
different types, in Bangkok,

Hyderabad, Virginia, New York,
and Massachusetts.

LSTM/BiLSTM,
LSTM/BiLSTM with attention,
CNN+LSTM, CNN+BiLSTM,
and convLSTM/convBiLSTM

15-min Robust regardless of
building types or locations

Sehovac and Grolinger [20] Commercial building S2S RNN with attention 5-min Performance
reinforcement
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3. Data Preprocessing
3.1. Data Collection

This section describes the data preprocessing and input variable configuration for the
STLF model. For model construction and testing, we used one publicly available dataset
and one confidential dataset. The former represents electrical energy consumption data
collected from two office buildings in Richland, Washington, USA, from 2 January 2009 to
31 December 2011 [21]. The datasets consist of the timestamp information, temperature in
Fahrenheit, and hourly electrical energy consumption. For the three missing values (e.g.,
2009/04/05/02:00, 2010/04/04/02:00, and 2011/04/03/02:00) and some anomalous data
in the datasets, we handled them properly using a linear interpolation method. The latter
represents hourly electrical energy consumption data collected from the headquarters of a
midsized company in Seoul, South Korea from 1 January 2015 to 31 December 2017 [10].
We also collected the holiday information in Washington and South Korea at ‘Time and
Date [22]’ that can confirm national public holiday information in many countries.

Table 2 lists the simple building information with some statistical analyses on the
collected electrical energy consumption data. Holiday includes Saturday, Sunday, and
national holidays in the table. The minimum and count in the table represent the lowest
electrical energy consumption and the number of data points, respectively. In addition, the
first quartile, median, and third quartile represent the values of the lower 25%, 50%, and
75% points, respectively, in the energy consumption. Figure 1 shows the box plots for the
energy consumption of three buildings by weekday, holiday, and total.

Table 2. Energy consumption statistics of three buildings.

Statistical
Building 1 Building 2 Building 3

Weekdays Holidays Total Weekdays Holidays Total Weekdays Holidays Total

Minimum 8.30 7.60 7.60 10.10 9.40 9.40 80.45 80.47 80.45
1st quartile 17.40 12.90 14.70 20.80 17.00 19.10 124.11 109.53 117.22

Median 33.90 17.70 23.50 41.20 20.90 32.20 199.72 131.14 157.82
Mean 34.43 20.06 29.98 40.10 25.37 35.53 231.46 138.17 201.24

3rd quartile 47.50 23.30 42.50 53.40 31.12 48.80 293.38 157.44 255.41
Maximum 141.10 77.30 141.10 135.00 92.30 135.00 702.53 336.77 702.53

Standard deviation 17.99 9.45 17.18 18.96 12.19 18.45 128.12 35.99 115.86
Count 18,120 8136 26,256 18,120 8136 26,256 17,784 8520 26,304

Location Richland, Washington Richland, Washington Seoul, South Korea
Public access Yes Yes No
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3.2. Feature Extraction

We considered the temperature, timestamp information, and historical load data to
build the model and performed feature extraction for the given datasets to train the model
as represented in Table 3.

Table 3. List of input variables.

No. Input Variable Variable Type

1 Monthx Continuous [−1:1]
2 Monthy Continuous [−1:1]
3 Dayx Continuous [−1:1]
4 Dayy Continuous [−1:1]
5 Hourx Continuous [−1:1]
6 Houry Continuous [−1:1]
7 Day of the weekx Continuous [−1:1]
8 Day of the weeky Continuous [−1:1]
9 Holiday Binary [1: holiday, 0: weekday]

10 Temperature Continuous
11 Historical loadD−7 Continuous
12 Historical loadD−6 Continuous
13 Historical loadD−5 Continuous
14 Historical loadD−4 Continuous
15 Historical loadD−3 Continuous
16 Historical loadD−2 Continuous
17 Historical loadD−1 Continuous
18 Average load Continuous

In particular, as electrical energy consumption tends to vary with date and time, we
considered all variables that represent date and time such as month, day, hour, day of
the week, and holiday. Month, day, and hour have a sequence format. When data with
a sequence format are used directly in the AI techniques, it is difficult to reflect their
periodicity [23]. For instance, 11 p.m. and midnight are temporally contiguous; however,
the data difference in sequence format is 23.

Hence, we represented the month, day, hour, and day of the week into two-dimensional
data using Equations (1) to (8) to reflect their periodicity [23,24]. In Equations (3) and (4),
LDM represents the last day of the month. For instance, if the month of the prediction
is March, its LDM becomes 31. In addition, we used a variable indicating whether it
is a holiday to consider different electrical energy consumption patterns on weekdays
and holidays:

Monthx = sin((360◦/12)×Month) (1)

Monthy = cos((360◦/12)×Month) (2)

Dayx = sin((360◦/LDM)×Day) (3)

Dayy = cos((360◦/LDM)×Day) (4)

Hourx = sin((360◦/24)×Hour) (5)

Houry = cos((360◦/24)×Hour) (6)

Day of the weekx = sin((360◦/7)×Day of the week) (7)

Day of the weeky = cos((360◦/7)×Day of the week) (8)

The temperature, which is closely related to power consumption, is also used for the
model training [13]. The datasets of Building 1 and Building 2 included outdoor temper-
ature in Fahrenheit, while the dataset of Building 3 only included power consumption
data according to the timestamp information. Hence, we collected the temperature near
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the Building 3 provided by the Korea Meteorological Administration (KMA) [25] and
converted them from Celsius to Fahrenheit.

We also considered the historical electricity load data comprising the electricity load
simultaneously from one day to one week ago as the input variables to reflect the recent
electricity consumption pattern [26,27]. In addition, we added a new historical electricity
load value as an input variable to reflect different electricity load patterns of holidays and
weekdays [13]. When the prediction point was a weekday, we used the weekday electricity
consumption average of the past week. Likewise, when the prediction point is a holiday,
we used the average of the past week’s holiday electricity consumption.

3.3. Correlation Analysis

We configured various input variables, such as the timestamp, temperature, and
historical load to construct the forecasting model. We calculated the Pearson correlation
coefficients with p-values for each dataset to confirm their relevance to the actual electrical
energy consumption. Table 4 illustrates the results.

Table 4. Pearson correlation coefficients (PCCs) and p-values for each dataset.

Input Variable
Building 1 Building 2 Building 3

PCC p-Value PCC p-Value PCC p-Value

Monthx 0.042 *** 0.118 *** −0.156 ***
Monthy 0.117 *** 0.218 *** −0.177 ***

Dayx 0.015 ** 0.018 * −0.009 ***
Dayy 0.002 *** 0.008 *** 0.001 ***

Hourx 0.134 *** 0.139 *** −0.153 ***
Houry −0.541 *** −0.471 *** −0.640 ***

Day of the weekx 0.333 0.322 0.110 ***
Day of the weeky −0.048 *** −0.053 *** −0.255 ***

Holiday −0.387 *** −0.369 *** −0.377 ***
Temperature 0.014 *** −0.129 *** 0.319 ***

Historical loadD−7 0.841 * 0.819 *** 0.901 **
Historical loadD−6 0.657 *** 0.642 *** 0.726 ***
Historical loadD−5 0.441 *** 0.432 *** 0.554 **
Historical loadD−4 0.409 *** 0.403 *** 0.560 ***
Historical loadD−3 0.424 *** 0.421 *** 0.564 ***
Historical loadD−2 0.483 *** 0.481 *** 0.573 ***
Historical loadD−1 0.741 *** 0.740 *** 0.763 ***

Average load 0.903 *** 0.885 *** 0.959 ***
(p-values: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1).

In the table, the average load considering the weekdays/holidays, historical load
one day before, and historical load one week before exhibit a strong correlation with the
actual electrical energy consumption. We also verified that the electric load pattern differs
depending on the hour, day of the week, and holiday because Houry, Day of the weeky,
and Holiday present a negative correlation with the actual electrical energy consumption.

The remaining variables are positively related to the building electrical energy con-
sumption. Although they exhibited a nonlinear relationship, we can adequately handle
this by applying a deep learning method, such as the LSTM and GRU networks. Overall,
most input variables exhibit a meaningful correlation with the building electrical energy
consumption because the p-values are less than 0.01.

4. Forecasting Model Construction
4.1. Gated Recurrent Unit Model

An artificial neural network (ANN), also known as a multilayer perceptron (MLP), is
a popular AI technique implemented based on human biological neurons that can process
large amounts of data in parallel and learn efficiently [24,28]. The ANN is a static input-
output mapping model that only considers the input and output and does not consider time.
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It usually represents input, weights, output, etc., in vector form and the output is calculated
internally from the input and weight vectors. The decision boundary is orthogonal to the
weight vector [29]. In addition, the ANN presents various decision boundaries because an
activation function determines the perceptron’s response to its input [23].

In contrast, a recurrent neural network (RNN), although it is a kind of ANN, is
dynamic input-output mapping model that considers the input of all time. RNNs are well-
suited to time-series data because they can process a time-series step-by-step, maintaining
an internal state from time step to time step [30]. The LSTM is the most successful and
widely used RNN [31]. The LSTM preserves the differential values of old inputs during
backpropagation to solve the long-term dependency problem of the RNN. As a variant of
the RNN architecture, GRU has the advantage of simplifying the LSTM structure by reduc-
ing the computation to update the hidden state while solving the long-term dependency
problem and maintaining the performance of the LSTM [11,32].

Figure 2 illustrates a GRU cell architecture. In the figure, the GRU cell has input and
forget gates. A gate controller, z, controls both the input and forget gates. When z is 1, the
forget gate is closed, and the input gate is open. When z is 0, the forget gate is open, and
the input gate is closed. At each step, the previous (t− 1) memory is saved, and the input
of the time step is cleared. The GRU cell is controlled according to Equations (9)–(12):

rt = σ(Wrht−1 + Urxt) (9)

zt = σ(Wzht−1 + Uzxt) (10)

ct = tan h
(

Wc

(
ht−1

⊗
r
)
+ Ucxt

)
(11)

hc =
(

z
⊗

c
)
+
(
(1− z)

⊗
ht−1

)
(12)
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Figure 2. Gated recurrent unit (GRU) cell architecture.

We used a GRU network to predict the building electrical energy consumption at 24
points in time (from one hour later to one day later) and considered several hyperparame-
ters to construct our GRU model. We set the number of hidden layers in the GRU model to
two. The input layer of the GRU model consists of 18 nodes, and the hidden layer consists
of 13 nodes per layer by applying two-thirds of the input layer, plus the size of the output
layer [10,23].

We used the scaled exponential linear unit (SELU) as an activation function [33,34],
defined by Equation (13), where α is a stochastic variable sampled from a uniform dis-
tribution at training time and is fixed to 1.67326, which is the expectation value of the
distribution at testing time. Moreover, λ is an extra parameter for determining the slope
and is set to 1.0507. This is because SELU can effectively train DL models due to its superior
self-normalization quality and no vanishing gradient problem [23,34].

In addition, we used the Huber loss [35] and adaptive moment estimation (Adam) [34]
as a loss function and optimization algorithm, respectively. The Huber loss is calculated
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using Equation (14) with δ = 1. We set the learning rate and learning epoch to 0.001 and
500, respectively.

f(α, λ, x) =
{

λ(αex − α) for x < 0
λx for x ≥ 0

(13)

Lδ(y, f(x)) =

{
1
2 (y− f(x))2 for |y− f(x)| ≤ 0
δ|y− f(x)| − 1

2 δ2 otherwise
(14)

4.2. Attention Mechanism

A more extended input sequence in the GRU network results in a worse prediction
accuracy of the output sequence because it focuses on all input variables equally, even
though they could have different correlations to the forecasting. An attention mechanism
can be used to alleviate this problem by focusing on more relevant input variables.

An attention mechanism [36] consists of an encoder that generates an attention vector
from the input and a decoder that generates a hidden state by taking the encoder output as
input. The hidden states are divided by a view, and the encoder assigns an attention score
to the hidden state of each step using the hidden state of the previous view decoder. An
attention vector is created by performing a soft-max operation on the created attention score.
In this way, whenever the decoder predicts the output value, the encoder concentrates on
the input variables similar to the predicted value.

For instance, Kwon et al. [37] developed an attention mechanism based RNN model
on electronic medical records. Hence, we constructed an attention mechanism to focus
on input variables with high correlation to improve the model accuracy. We set the
size of the attention window to 96. Figure 3 presents the overall attention based GRU
model architecture.
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5. Experimental Results
5.1. Experimental Design

In the experiments, we used an Intel (R) Core (TM) i7-8700 CPU (Santa Clara, CA,
USA), Samsung 32G DDR4 memory (Suwon, Korea), NVIDIA Geforce GTX 1080ti (Santa
Clara, CA, USA) and the operating system is Windows 10 version. For multistep-ahead
hourly electricity load forecasting, we performed the experiments in Python 3.7.6, and the
RNN-based models were constructed using TensorFlow 1.13.1 [38]. Table 5 presents the
entire collection, training set, and testing set period for each building.
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Table 5. Dataset period configuration.

Dataset Period Buildings 1 and 2 Building 3

Entire collection period 2009/01/09–2011/12/31 2015/01/08–2017/12/31
Training set 2009/01/09–2010/12/31 2015/01/08–2016/12/31
Testing set 2011/01/01–2011/12/31 2017/01/01–2017/12/31

In AI-based STLF model training, normalization is usually conducted to prevent
large-scale features from having too much influence by adjusting all the input variables
within a close range. For this, we applied the min-max normalization for all input variables
using Equation (15). By doing so, we transformed all input variables of the training set and
then applied the Xnorm values obtained from the training set on the testing set. Hence, the
minimum and maximum values of an input variable could be 0 and 1, respectively.

Xnorm =
X− Xmin

Xmax − Xmin
(15)

We used the mean absolute percentage error (MAPE) and coefficient of variation of
the root mean squared error (CVRMSE) to compare the forecasting performance, which
can be calculated using Equations (16) and (17), respectively. Both metrics represent the
accuracy as a percentage error. Hence, they are more intuitive and easier to understand
than other well-known metrics, such as the root mean squared error and mean squared
error [23,26]. A lower value for these metrics indicates better prediction performance.

MAPE =
100
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (16)

CVRMSE =
100
A

√
∑n

t=1(At − Ft)
2

n
(17)

Here, A is an average of the actual values, and At and Ft are the actual and predicted
values at time t, respectively.

5.2. Experimental Results and Discussion

We compared it with other state-of-the-art models, such as multivariate RF (MRF),
DNN, LSTM, ATT-LSTM, GRU, and ensemble models to evaluate the validity of the pro-
posed model. We considered two ensemble models: Park’s stacking ensemble model [14]
and Moon’s stacking ensemble model, called COSMOS [10]. We considered all the input
variables using each input variable for the prediction time point to construct the MRF
and DNN models. Therefore, we used 432 input variables, that is, 18 (number of input
variables) × 24 (number of prediction time points), for the multistep-ahead STLF [39]. The
two stacking ensemble models consist of two stages, and the second-stage model used
the prediction results of the first stage and demonstrated better forecasting performance
than many single ML models and existing forecasting models. We also compared the
prediction performance of the proposed model with that of Kuan’s GRU model [18]. We
implemented an RF-based STLF model using MRF [40] in R packages and the two stacking
ensemble models using xgboost 1.3.0 [41] and scikit-learn [42] in the Python environment.
The selected hyperparameters for each model are listed in Table 6.
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Table 6. Selected hyperparameters for each model.

Models Package or Module Selected Hyperparameters

MRF MultivariateRandomForest No. of trees: 128 [39]
No. of features: 144 [39]

DNN TensorFlow

No. of hidden nodes: 289 [23]
No. of hidden layers: 5 [23]

Activation function: SELU [23]
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 150

Batch size: 24

Park’s [14]
Stage 1: RF, XGB

Stage 2: MLR

scikit-learn
xgboost

RF
No. of estimators: 256

XGB
No. of estimators: 256

Max depth: 4

MLR
Sliding window size: 24

COSMOS [10]
Stage 1: DNNs
Stage 2: PCR

scikit-learn

DNN
No. of hidden nodes: 13

No. of hidden layers: 2, 3, 4, 5
Activation function: ReLU

Optimizer: Adam
Learning rate: 0.001
No. of epochs: 150

Batch size: 24

PCR
Principal components: 1
Sliding window size: 168

Kuan’s [18] TensorFlow

GRU
No. of cells: 100 [18]

No. of hidden layers: 5 [18]
Activation function: SELU [18]

Time step: 12 [18]
Batch size: 15 [18]

LSTM
ATT-LSTM

GRU,
ATT-GRU (Ours)

TensorFlow

LSTM, GRU
No. of hidden nodes: 13
No. of hidden layers: 2

Activation function: SELU
Optimizer: Adam

Learning rate: 0.001
No. of epochs: 150

Batch size: 24

Tables 7–9 and Tables 10–12 present the MAPE and CVRMSE comparison of the three
buildings by month and date type, respectively. The values in bold font indicate the best
performance for the month (or date type). When comparing MAPE (CVRMSE) by month,
the MAPE (CVRMSE) values from April to September, which corresponds to the summer,
showed the lowest values. When comparing the forecasting performance of weekdays
and holidays, the forecasting performance for weekdays was generally better than that for
the weekend.
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Table 7. MAPE (CVRMSE) comparison by months for Building 1.

Month MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Jan. 21.79 (27.40) 20.36 (27.48) 22.27 (30.62) 13.89 (18.83) 17.34 (26.21) 14.10 (18.31) 13.44 (18.06) 13.86 (18.18) 13.16 (17.77)
Feb. 21.32 (29.31) 21.60 (28.55) 18.49 (27.67) 16.46 (20.55) 17.38 (27.93) 16.68 (20.82) 15.67 (20.44) 16.45 (20.55) 14.51 (19.63)
Mar. 22.25 (32.89) 22.16 (33.61) 23.24 (32.71) 14.85 (23.00) 18.12 (32.12) 15.24 (22.67) 14.91 (20.61) 14.88 (22.57) 14.66 (21.33)
Apr. 14.24 (19.97) 13.26 (21.43) 20.82 (37.57) 8.71 (14.62) 11.11 (18.92) 10.72 (16.90) 10.77 (15.81) 10.77 (15.99) 9.12 (13.37)
May 7.97 (13.88) 14.67 (22.25) 16.06 (41.02) 6.44 (11.71) 12.13 (20.70) 6.82 (12.97) 7.12 (12.13) 6.47 (13.51) 6.39 (12.08)
Jun. 12.54 (13.33) 18.19 (24.70) 20.99 (39.29) 12.56 (12.08) 15.72 (24.11) 12.66 (14.94) 14.14 (18.67) 12.69 (15.48) 12.18 (14.11)
Jul. 14.22 (16.42) 16.70 (27.32) 19.21 (35.39) 8.38 (11.37) 16.10 (28.63) 9.04 (16.11) 7.76 (12.51) 8.44 (15.07) 7.67 (12.02)

Aug. 14.22 (15.51) 19.40 (28.45) 13.39 (22.53) 7.52 (9.47) 17.30 (28.49) 9.73 (11.11) 8.24 (10.91) 9.44 (11.74) 7.01 (8.74)
Sep. 14.20 (15.40) 18.85 (26.70) 28.65 (54.11) 9.66 (13.12) 17.18 (28.55) 10.32 (12.44) 11.41 (13.69) 9.78 (12.54) 8.96 (11.04)
Oct. 18.84 (22.80) 15.14 (23.40) 17.94 (28.88) 12.13 (16.54) 17.20 (23.46) 12.40 (14.14) 13.67 (17.76) 12.12 (13.82) 11.26 (13.51)
Nov. 31.33 (45.73) 27.22 (42.51) 44.11 (61.05) 24.49 (40.11) 32.57 (39.30) 24.89 (35.82) 20.88 (37.53) 24.47 (35.22) 20.76 (26.78)
Dec. 45.11 (47.95) 41.43 (43.57) 41.43 (45.24) 36.64 (38.13) 43.11 (42.18) 37.28 (39.63) 31.76 (41.74) 36.71 (37.88) 29.12 (31.31)

Table 8. MAPE (CVRMSE) comparison by months for Building 2.

Month MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Jan. 15.81 (18.50) 14.56 (20.43) 13.95 (23.85) 9.10 (11.80) 13.35 (19.99) 8.81 (12.64) 7.64 (10.44) 9.16 (12.12) 7.16 (9.18)
Feb. 14.68 (18.83) 17.12 (21.76) 13.05 (20.24) 10.37 (13.99) 14.25 (18.86) 12.73 (15.03) 10.66 (13.61) 10.37 (14.06) 9.58 (12.27)
Mar. 12.58 (13.81) 14.60 (17.78) 13.32 (15.77) 9.02 (11.30) 14.56 (18.57) 10.86 (9.19) 9.81 (12.46) 9.16 (11.98) 9.09 (11.85)
Apr. 15.82 (16.17) 16.86 (21.08) 20.23 (27.87) 10.60 (13.39) 17.90 (21.28) 12.93 (13.98) 10.32 (13.38) 10.70 (12.40) 10.88 (12.56)
May 17.60 (16.80) 17.62 (25.27) 24.98 (34.07) 7.92 (13.20) 20.04 (24.90) 8.70 (12.22) 7.88 (11.99) 9.08 (12.29) 7.58 (11.44)
Jun. 25.31 (18.22) 22.32 (26.79) 33.24 (37.19) 10.31 (11.19) 22.16 (30.44) 10.17 (13.99) 10.12 (13.45) 10.39 (13.91) 9.56 (12.60)
Jul. 29.20 (21.19) 27.35 (30.80) 39.94 (46.91) 7.63 (9.57) 28.40 (37.39) 8.82 (8.28) 7.37 (9.67) 8.69 (10.24) 6.14 (8.15)

Aug. 28.13 (19.27) 29.73 (30.13) 30.88 (30.37) 7.74 (8.63) 24.06 (34.45) 10.42 (11.48) 7.61 (10.10) 11.31 (13.25) 6.88 (9.55)
Sep. 34.78 (23.66) 27.71 (30.75) 43.38 (55.64) 9.56 (11.22) 24.40 (34.78) 9.90 (10.52) 7.96 (10.43) 8.67 (10.63) 6.97 (9.56)
Oct. 34.34 (28.69) 19.98 (27.05) 31.51 (34.68) 10.18 (13.62) 21.81 (30.59) 10.23 (9.79) 8.48 (8.20) 9.44 (10.27) 8.67 (8.37)
Nov. 36.29 (37.48) 33.78 (37.00) 65.14 (62.40) 21.93 (31.58) 31.25 (48.13) 19.78 (31.98) 19.41 (28.97) 20.75 (30.00) 18.98 (26.88)
Dec. 45.07 (39.50) 42.15 (39.32) 38.69 (39.17) 32.50 (34.73) 32.29 (38.27) 32.17 (37.40) 28.80 (36.18) 33.89 (38.71) 26.77 (33.10)

Table 9. MAPE (CVRMSE) comparison by months for Building 3.

Month MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Jan. 9.02 (12.02) 14.95 (19.29) 9.62 (11.71) 9.38 (11.49) 10.75 (12.37) 9.19 (12.12) 8.71 (11.16) 9.33 (12.41) 8.05 (10.81)
Feb. 7.60 (8.94) 13.83 (16.95) 14.74 (33.66) 7.65 (9.18) 9.28 (15.61) 10.02 (13.94) 6.94 (8.32) 9.03 (11.69) 6.04 (7.66)
Mar. 5.87 (8.89) 11.28 (15.17) 6.54 (8.93) 4.53 (6.58) 7.52 (10.48) 5.76 (8.44) 4.86 (7.16) 7.61 (9.70) 4.95 (7.70)
Apr. 4.28 (5.83) 8.93 (12.83) 5.51 (7.62) 2.99 (4.03) 7.00 (8.93) 4.07 (6.55) 3.17 (5.49) 7.59 (9.29) 2.38 (3.50)
May 6.06 (12.31) 11.49 (16.55) 8.26 (14.06) 6.30 (11.95) 7.84 (11.36) 6.85 (8.91) 5.23 (8.71) 7.26 (9.72) 5.11 (8.45)
Jun. 7.17 (13.10) 14.76 (23.38) 6.75 (13.84) 5.74 (10.89) 10.05 (17.63) 5.23 (7.19) 5.09 (8.84) 9.77 (11.90) 4.48 (6.92)
Jul. 10.18 (15.36) 15.46 (26.38) 9.33 (14.34) 5.89 (8.63) 12.26 (22.42) 5.49 (9.54) 5.63 (8.92) 6.21 (8.14) 5.33 (8.06)

Aug. 11.54 (17.38) 16.03 (26.11) 9.51 (15.32) 6.00 (8.95) 10.09 (19.16) 7.14 (9.16) 6.22 (10.21) 7.62 (8.87) 5.57 (8.48)
Sep. 6.26 (12.97) 13.33 (19.38) 9.24 (17.82) 5.85 (12.00) 9.26 (15.24) 4.99 (6.19) 4.38 (5.95) 5.10 (6.00) 3.57 (5.12)
Oct. 8.08 (13.18) 13.17 (18.16) 7.64 (11.87) 7.97 (14.05) 8.04 (10.92) 7.43 (11.92) 7.51 (10.17) 7.53 (10.55) 7.20 (9.72)
Nov. 7.50 (11.15) 13.55 (18.28) 8.76 (13.24) 8.87 (12.67) 9.32 (13.10) 9.10 (14.75) 8.52 (12.72) 9.50 (13.99) 8.10 (11.20)
Dec. 10.37 (16.75) 16.39 (23.36) 11.81 (17.74) 9.81 (17.04) 12.88 (19.98) 11.20 (17.59) 9.96 (16.77) 11.02 (17.36) 9.79 (15.96)

Table 10. MAPE (CVRMSE) comparison by date types for Building 1. WD and HD denote weekdays and holidays, respectively.

Type MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Mon. 18.75 (33.39) 21.78 (33.81) 21.76 (31.80) 13.77 (25.03) 15.47 (29.76) 14.24 (27.35) 13.47 (24.88) 14.15 (26.12) 12.86 (23.87)
Tue. 17.57 (25.52) 18.86 (33.85) 32.52 (58.81) 13.08 (21.53) 14.22 (29.76) 13.47 (21.61) 12.31 (20.50) 13.41 (21.41) 12.06 (20.09)
Wed. 18.06 (27.77) 21.84 (33.14) 18.63 (33.08) 12.79 (19.81) 17.79 (36.35) 12.56 (19.70) 12.23 (19.12) 12.47 (20.23) 11.23 (18.40)
Thu. 18.77 (28.41) 22.08 (30.76) 16.27 (26.51) 12.96 (19.89) 19.17 (38.47) 12.29 (19.36) 10.52 (16.45) 11.75 (18.31) 9.93 (14.95)
Fri. 21.20 (29.09) 17.18 (27.93) 17.18 (25.76) 12.66 (23.02) 17.05 (34.21) 12.97 (19.08) 12.66 (18.79) 12.61 (19.51) 11.43 (18.76)
Sat. 25.21 (39.61) 21.22 (31.65) 33.97 (45.92) 19.31 (33.02) 13.90 (28.41) 15.03 (28.16) 13.02 (19.00) 14.43 (26.45) 12.41 (19.82)
Sun. 19.30 (29.84) 21.62 (32.29) 26.92 (40.74) 15.57 (29.39) 14.88 (27.88) 16.49 (29.22) 15.48 (28.33) 16.07 (29.54) 14.66 (27.42)

WD 18.18 (28.46) 20.16 (31.98) 20.22 (37.28) 12.46 (21.32) 15.61 (31.17) 13.43 (19.10) 12.37 (19.27) 13.06 (19.16) 11.86 (18.56)
HD 23.58 (36.96) 21.41 (32.04) 32.20 (45.39) 18.45 (33.35) 14.39 (28.14) 16.01 (28.57) 14.26 (24.30) 15.20 (27.96) 13.93 (23.69)

Table 11. MAPE (CVRMSE) comparison by date types for Building 2. WD and HD denote weekdays and holidays, respectively.

Type MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Mon. 23.20 (24.79) 24.56 (30.73) 26.13 (28.65) 12.56 (19.32) 17.96 (27.26) 13.59 (20.18) 12.64 (19.15) 13.48 (20.29) 12.44 (18.28)
Tue. 22.42 (20.78) 20.60 (25.60) 33.89 (48.70) 11.57 (17.54) 12.57 (21.73) 12.09 (18.19) 11.53 (17.59) 12.41 (18.86) 11.12 (16.70)
Wed. 21.02 (20.81) 24.28 (30.05) 24.85 (32.74) 9.66 (14.90) 12.05 (20.06) 10.24 (15.24) 9.24 (14.52) 10.25 (15.28) 9.01 (13.56)
Thu. 21.71 (21.49) 26.38 (31.33) 24.63 (25.98) 11.04 (16.95) 16.75 (25.80) 11.07 (16.50) 10.06 (15.89) 11.33 (16.42) 9.67 (13.32)
Fri. 25.72 (24.44) 20.61 (25.22) 26.50 (28.33) 11.40 (21.24) 18.92 (29.06) 12.84 (20.86) 10.96 (16.15) 11.85 (19.37) 10.11 (16.01)
Sat. 36.37 (44.15) 23.71 (28.44) 43.78 (52.58) 16.51 (28.31) 21.34 (35.08) 17.17 (26.07) 15.60 (25.91) 17.09 (26.47) 14.58 (25.27)
Sun. 30.82 (34.81) 24.76 (31.16) 36.05 (42.14) 13.45 (26.88) 22.66 (33.83) 13.91 (23.52) 12.91 (21.09) 13.55 (23.84) 12.69 (20.56)

WD 22.12 (21.96) 22.42 (28.97) 25.62 (33.14) 10.53 (17.13) 18.85 (26.94) 12.01 (19.08) 10.45 (17.24) 11.80 (19.14) 10.15 (16.51)
HD 34.39 (40.14) 24.55 (30.86) 42.61 (51.59) 16.31 (30.69) 21.80 (33.77) 16.84 (32.83) 15.98 (30.24) 16.55 (31.92) 13.98 (27.80)
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Table 12. MAPE (CVRMSE) comparison by date types for Building 3. WD and HD denote weekdays and holidays, respectively.

Type MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Mon. 7.89 (13.79) 14.35 (23.50) 8.24 (13.39) 6.95 (11.24) 9.65 (14.17) 6.88 (11.61) 6.47 (11.31) 6.74 (11.64) 6.20 (10.90)
Tue. 7.60 (8.94) 13.13 (21.35) 9.79 (16.18) 7.08 (11.41) 8.05 (13.17) 7.69 (12.51) 7.42 (12.11) 7.61 (12.40) 6.79 (11.74)
Wed. 5.87 (8.89) 13.08 (20.18) 8.85 (17.34) 6.64 (10.23) 6.32 (10.52) 6.93 (10.25) 6.61 (9.83) 6.86 (10.13) 6.05 (8.69)
Thu. 4.28 (5.83) 13.87 (23.24) 7.19 (12.32) 5.25 (8.91) 7.47 (13.16) 6.16 (9.97) 4.70 (8.10) 5.82 (9.13) 4.40 (8.16)
Fri. 6.06 (12.31) 14.17 (23.64) 10.43 (21.75) 7.78 (12.44) 8.12 (15.97) 7.80 (12.84) 7.01 (12.33) 7.65 (12.67) 6.54 (11.87)
Sat. 7.17 (13.10) 12.74 (18.25) 9.27 (13.94) 6.81 (10.23) 8.15 (16.48) 6.45 (10.90) 6.10 (9.39) 6.37 (10.21) 5.93 (8.87)
Sun. 10.18 (15.36) 13.72 (22.04) 8.81 (12.14) 6.34 (8.88) 8.08 (16.30) 6.23 (8.58) 5.99 (8.07) 6.08 (8.93) 5.17 (7.71)

WD 6.89 (12.16) 13.27 (22.67) 8.48 (16.24) 6.02 (10.30) 8.52 (16.99) 6.60 (10.99) 5.43 (10.25) 6.33 (10.67) 5.52 (9.84)
HD 9.79 (19.05) 13.40 (21.09) 9.88 (14.72) 8.07 (12.68) 8.51 (16.46) 8.47 (12.89) 7.78 (12.01) 8.29 (12.70) 7.95 (11.01)

As listed in Table 2, the scale of power consumption of Building 3 is larger than that of
Buildings 1 and 2, so the MAPE and CVRMSE values of Building 3 are generally smaller
than Buildings 1 and 2. Tables 7–12 indicate that the proposed model (ATT-GRU) showed
the lowest MAPE among most STLF models in the comparisons by month and date type.
In addition, from the results of ATT-LSTM and ATT-GRU, the attention mechanism could
improve the prediction performance of the general LSTM and GRU models by 10% or more.

Although the GRU model performed better than LSTM in most experiments, the GRU
model took less time to construct because it was a lighter model than the LSTM model.
The average elapsed times for LSTM and GRU-based models are 10,937, 11,581, 7074,
and 7263 s for LSTM, ATT-LSTM, GRU, and ATT-GRU, respectively. Also, their training
time is depicted in Table 13. In terms of multistep-ahead STLF, the prediction accuracy
of the ATT-GRU model did not reveal any significant decrease, even for the rear points.
Moreover, our model exhibits the lowest MAPE and CVRMSE values point by point. The
point-by-point forecasting results are depicted in the Appendix A. This is because the
attention mechanism calculates the weights of the points and focuses on the points with
large weights.

Table 13. Training time of each model.

Training Time MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

Building 1 361 503 274 1345 10,745 10,952 11,581 6974 7108
Building 2 372 498 281 1426 10,769 11,761 12,169 7362 7658
Building 3 364 500 282 1388 10,693 10,097 10,992 6885 7023

Average 367 500 279 1386 10,736 10,937 11,581 7074 7263

Figures 4–6 represent scatter plots for the power consumption and temperature of
the three buildings. According to the plots, the average power consumption of Buildings
1 and 2 tended to increase similarly as the temperature approached 0 or 100 degrees
Fahrenheit and Building 3 showed an increase in power consumption as the temperature
approached 100 degrees Fahrenheit. On the contrary, Buildings 1 and 2 showed frequent
power consumption peaks when the temperature got close to 0 degrees Fahrenheit. The
power forecast accuracy for Buildings 1 and 2 in November and December deteriorated
due to unexpected peaks at low temperatures. Our proposed multi-step ahead forecasting
method can be used to predict such unexpected peaks and handle them.
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output like any other deep learning models. To overcome this, we plan to extract feature
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Appendix A

Tables A1–A6 present the MAPE and CVRMSE values of the forecasting methods for
24 forecasting points.

Table A1. Mean absolute percentage error comparison for Building 1.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 17.44 14.70 23.21 13.56 15.67 14.89 13.58 13.54 13.41
2 17.43 15.44 23.39 13.67 14.89 14.27 13.51 13.58 13.44
3 17.48 15.87 23.65 13.77 15.39 14.34 13.89 14.39 13.49
4 17.59 16.37 23.92 13.85 15.55 14.33 13.70 14.45 13.51
5 17.57 16.37 24.19 13.91 15.82 14.40 13.74 14.42 13.52
6 17.70 17.03 24.49 13.96 15.98 14.49 13.81 14.40 13.61
7 17.90 17.03 24.67 14.01 15.90 14.58 13.78 14.34 13.59
8 18.03 17.03 24.89 14.04 15.84 14.66 13.73 14.25 13.62
9 18.03 16.85 25.09 14.07 15.83 14.76 13.67 14.19 13.64
10 18.27 17.24 25.26 14.10 15.88 14.76 13.66 14.16 13.64
11 18.35 17.19 25.43 14.11 15.93 14.94 13.67 14.30 13.64
12 18.58 17.19 25.54 14.13 15.95 14.96 13.68 14.11 13.64
13 18.67 17.40 25.50 14.14 15.96 14.99 13.69 14.10 13.65
14 18.47 17.29 25.43 14.16 15.96 15.03 13.70 14.12 13.65
15 18.40 17.17 25.30 14.16 15.96 15.06 13.73 14.14 13.67
16 18.40 17.08 25.10 14.17 15.99 15.09 13.75 14.15 13.67
17 18.42 17.41 24.96 14.18 16.01 15.10 13.79 14.18 13.68
18 18.49 17.01 24.76 14.19 16.02 15.11 13.83 14.20 13.68
19 18.46 17.16 24.48 14.20 16.02 15.11 13.85 14.20 13.69
20 18.42 17.22 24.30 14.22 16.03 15.10 13.89 14.20 13.71
21 18.35 17.21 24.14 14.24 16.02 15.09 13.91 14.22 13.72
22 18.75 17.28 24.02 14.26 16.03 15.09 13.93 14.23 13.73
23 19.11 16.98 23.92 14.28 16.04 15.07 13.98 14.23 13.76
24 19.84 17.45 23.88 14.31 16.06 15.06 14.01 14.24 13.78

Avg. 18.26 16.87 24.56 14.07 15.86 14.85 13.77 14.18 13.63

Table A2. Mean absolute percentage error comparison for Building 2.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 20.62 15.96 29.23 11.82 18.89 12.10 11.91 11.53 11.56
2 21.51 16.67 29.40 11.91 19.44 12.10 11.94 12.88 11.73
3 22.16 16.79 29.67 11.98 21.39 12.73 11.96 12.93 11.74
4 22.83 17.15 29.94 12.04 22.99 13.06 11.97 13.62 11.75
5 23.37 18.42 30.15 12.08 23.72 13.25 11.97 13.55 11.77
6 23.87 18.69 30.40 12.11 23.94 13.30 11.98 13.83 11.80
7 24.14 18.29 30.65 12.14 24.03 13.26 11.98 13.74 11.82
8 24.67 18.77 30.87 12.16 24.12 13.22 11.99 13.76 11.82
9 25.19 19.78 31.09 12.17 24.22 13.19 11.99 13.68 11.82
10 25.35 19.60 31.34 12.18 24.28 13.17 12.00 13.62 11.83
11 25.53 20.68 31.57 12.19 24.33 13.18 12.00 13.59 11.83
12 25.71 20.43 31.79 12.20 24.34 13.18 12.00 13.57 11.83
13 25.60 20.80 31.93 12.20 24.32 13.20 12.01 13.56 11.85
14 24.84 20.64 31.98 12.20 24.26 13.20 12.01 13.49 11.84
15 24.43 20.18 31.99 12.20 24.22 13.19 12.01 13.42 11.84
16 24.18 19.59 31.94 12.20 24.17 13.18 12.02 13.37 11.85
17 24.01 19.76 31.85 12.21 24.15 13.16 12.02 13.34 11.85

https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
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Table A2. Cont.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

18 23.58 19.15 31.73 12.21 24.16 13.16 12.02 13.35 11.86
19 23.57 19.23 31.58 12.22 24.16 13.15 12.02 13.36 11.86
20 23.27 19.62 31.42 12.23 24.17 13.14 12.03 13.34 11.87
21 23.14 19.72 31.29 12.25 24.18 13.11 12.03 13.34 11.88
22 23.18 19.67 31.15 12.27 24.21 13.17 12.03 13.33 11.88
23 23.75 20.10 30.99 12.29 24.23 13.21 12.03 13.31 11.88
24 24.63 20.05 30.82 12.31 24.26 13.26 12.03 13.30 11.88

Avg. 23.88 19.16 31.03 12.16 23.59 13.08 12.00 13.37 11.81

Table A3. Mean absolute percentage error comparison for Building 3.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 6.32 7.76 8.80 6.31 6.42 6.69 6.27 6.68 5.91
2 6.37 7.25 8.82 6.37 7.02 6.69 6.27 6.67 6.01
3 6.44 7.60 8.87 6.41 7.13 6.67 6.29 6.67 6.03
4 6.51 7.84 8.90 6.45 7.19 6.79 6.28 6.83 6.05
5 6.58 7.77 8.93 6.48 7.21 6.73 6.29 6.81 6.07
6 6.65 7.86 8.98 6.51 7.23 6.76 6.28 6.86 6.07
7 6.67 7.93 9.04 6.53 7.26 6.74 6.28 6.84 6.08
8 6.68 8.17 9.09 6.55 7.25 6.74 6.28 6.81 6.09
9 6.69 8.12 9.14 6.56 7.27 6.75 6.29 6.78 6.09
10 6.77 8.31 9.21 6.57 7.29 6.77 6.29 6.78 6.09
11 6.80 8.46 9.26 6.57 7.31 6.80 6.29 6.78 6.09
12 6.80 8.55 9.30 6.58 7.33 6.84 6.29 6.78 6.10
13 6.77 8.45 9.31 6.58 7.34 6.86 6.29 6.79 6.10
14 6.78 8.59 9.30 6.58 7.34 6.87 6.29 6.79 6.10
15 6.78 8.72 9.28 6.58 7.35 6.89 6.30 6.80 6.10
16 6.81 8.77 9.27 6.59 7.35 6.91 6.30 6.81 6.11
17 6.79 8.49 9.23 6.60 7.36 6.93 6.30 6.81 6.11
18 6.83 8.63 9.19 6.61 7.36 6.95 6.30 6.81 6.13
19 6.92 8.63 9.16 6.62 7.37 6.95 6.30 6.81 6.12
20 7.00 8.68 9.12 6.63 7.38 6.97 6.30 6.82 6.12
21 7.10 8.35 9.07 6.64 7.40 6.97 6.30 6.84 6.12
22 7.24 8.72 9.02 6.66 7.40 6.97 6.30 6.85 6.12
23 7.50 8.69 8.98 6.67 7.40 6.98 6.30 6.85 6.12
24 7.84 8.82 8.94 6.69 7.39 7.00 6.30 6.85 6.12

Avg. 6.82 8.30 9.09 6.56 7.26 6.85 6.29 6.80 6.09

Table A4. Coefficient of variation of the root mean squared error comparison for Building 1.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 27.40 22.34 37.85 22.80 24.97 25.56 22.93 23.56 22.44
2 27.59 23.76 38.56 23.01 23.69 25.53 22.49 23.61 22.46
3 27.90 24.53 39.41 23.15 23.30 25.85 22.32 23.69 22.49
4 28.10 24.96 40.38 23.25 23.28 25.69 22.36 23.73 22.50
5 28.13 25.42 41.69 23.33 23.52 25.86 22.62 23.86 22.60
6 28.22 25.70 43.25 23.40 23.73 26.16 22.78 23.90 22.62
7 28.27 25.75 44.17 23.45 23.67 26.39 22.96 24.00 22.63
8 28.36 25.53 45.96 23.50 23.61 26.56 23.06 24.06 22.80
9 28.30 25.59 47.51 23.54 23.59 26.73 23.10 24.15 23.06
10 28.52 26.09 47.91 23.56 23.62 26.85 23.17 24.25 23.16
11 28.56 25.83 48.28 23.59 23.66 26.95 23.22 24.38 23.16
12 28.85 26.22 48.22 23.61 23.68 27.03 23.32 24.41 23.31
13 28.86 26.12 48.03 23.62 23.68 27.12 23.31 24.41 23.22
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Table A4. Cont.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

14 28.66 26.09 48.00 23.63 23.71 27.21 23.34 24.45 23.31
15 28.56 25.84 47.74 23.63 23.75 27.26 23.40 24.50 23.35
16 28.56 25.70 46.77 23.63 23.77 27.29 23.43 24.54 23.36
17 28.42 26.06 45.74 23.63 23.80 27.30 23.47 24.56 23.39
18 28.48 25.62 44.54 23.63 23.82 27.30 23.51 24.57 23.38
19 28.45 25.61 42.85 23.63 23.80 27.30 23.51 24.58 23.39
20 28.33 25.75 42.03 23.64 23.78 27.29 23.53 24.55 23.52
21 28.41 25.72 41.38 23.65 23.76 27.36 23.54 24.56 23.50
22 28.90 25.84 40.79 23.67 23.76 27.41 23.54 24.56 23.55
23 29.56 25.74 40.11 23.68 23.74 27.55 23.56 24.53 23.63
24 30.46 26.13 39.48 23.69 23.76 27.62 23.53 24.49 23.65

Avg. 28.49 25.50 43.78 23.50 23.73 26.80 23.17 24.25 22.44

Table A5. Coefficient of variation of the root mean squared error comparison for Building 2.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 24.03 19.28 34.54 19.09 21.21 22.03 19.21 20.88 19.11
2 23.83 19.99 35.02 19.24 20.04 21.82 19.26 21.69 19.21
3 23.83 20.57 35.54 19.33 21.44 22.22 19.29 21.43 19.27
4 23.83 21.16 36.12 19.41 22.81 22.42 19.30 21.88 19.26
5 23.88 21.60 36.63 19.47 23.48 22.52 19.36 21.85 19.33
6 23.86 22.00 37.26 19.51 23.61 22.58 19.41 22.14 19.39
7 24.00 21.96 37.95 19.55 23.69 22.60 19.44 22.17 19.42
8 24.08 22.16 38.68 19.58 23.75 22.58 19.51 22.18 19.45
9 24.06 22.62 39.17 19.60 23.86 22.59 19.52 22.15 19.49
10 24.04 22.70 39.84 19.62 23.99 22.62 19.53 22.10 19.47
11 23.91 23.20 40.43 19.64 24.10 22.63 19.53 22.13 19.48
12 24.13 22.97 40.84 19.65 24.13 22.65 19.54 22.13 19.46
13 24.13 23.35 41.09 19.66 24.13 22.69 19.55 22.07 19.53
14 23.91 23.58 41.08 19.66 24.09 22.72 19.57 22.05 19.49
15 23.85 23.27 40.91 19.66 24.07 22.75 19.57 22.00 19.51
16 23.69 22.79 40.70 19.66 24.03 22.77 19.60 22.00 19.53
17 23.61 23.12 40.34 19.66 24.00 22.79 19.62 22.04 19.60
18 23.64 22.65 39.93 19.65 24.00 22.80 19.61 22.06 19.59
19 23.69 22.72 39.43 19.66 24.00 22.80 19.62 22.08 19.59
20 23.75 22.91 38.90 19.67 23.99 22.79 19.63 22.08 19.56
21 23.87 22.96 38.39 19.69 23.99 22.78 19.65 22.09 19.59
22 24.04 22.91 37.82 19.71 23.99 22.72 19.66 22.09 19.57
23 24.70 23.14 37.26 19.75 24.00 22.69 19.65 22.08 19.61
24 25.51 23.10 36.80 19.77 24.00 22.65 19.66 22.11 19.58

Avg. 23.99 22.36 38.53 19.58 23.52 22.59 19.51 21.98 19.46

Table A6. Coefficient of variation of the root mean squared error comparison for Building 3.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

1 11.40 11.02 16.62 10.24 10.96 11.56 10.16 11.29 10.09
2 11.46 11.19 16.66 10.37 11.21 11.86 10.37 11.10 10.08
3 11.60 11.86 16.68 10.47 11.62 11.69 10.32 11.24 10.25
4 11.66 11.84 16.66 10.55 11.85 12.02 10.35 11.46 10.46
5 11.75 12.12 16.64 10.61 11.87 11.99 10.56 11.26 10.33
6 11.82 12.38 16.65 10.66 12.25 12.16 10.51 11.42 10.52
7 11.76 12.36 16.75 10.71 12.42 12.22 10.55 11.52 10.54
8 11.74 12.39 16.87 10.74 12.52 12.29 10.72 11.60 10.57
9 11.67 12.63 17.02 10.76 12.61 12.36 10.71 11.63 10.63
10 11.83 12.88 17.18 10.77 12.70 12.40 10.67 11.67 10.61



Sensors 2021, 21, 1639 18 of 19

Table A6. Cont.

Points MRF DNN Park’s [14] COSMOS [10] Kuan’s [18] LSTM ATT-LSTM GRU ATT-GRU

11 11.87 12.68 17.32 10.77 12.76 12.43 10.75 11.68 10.74
12 11.85 12.88 17.46 10.78 12.80 12.48 10.71 11.67 10.77
13 11.64 12.97 17.50 10.78 12.86 12.51 10.62 11.66 10.67
14 11.58 12.66 17.46 10.78 12.87 12.53 10.65 11.67 10.59
15 11.57 12.80 17.42 10.79 12.89 12.56 10.77 11.69 10.58
16 11.57 12.81 17.32 10.79 12.90 12.57 10.75 11.70 10.56
17 11.43 12.86 17.22 10.80 12.89 12.58 10.77 11.69 10.74
18 11.46 12.86 17.20 10.81 12.88 12.60 10.81 11.67 10.51
19 11.69 12.94 17.18 10.82 12.89 12.62 10.78 11.65 10.66
20 11.95 12.84 17.13 10.84 12.91 12.64 10.66 11.65 10.70
21 12.18 12.39 16.99 10.86 12.93 12.64 10.82 11.66 10.80
22 12.30 12.82 16.79 10.88 12.94 12.64 10.71 11.66 10.88
23 12.90 12.63 16.56 10.91 12.96 12.64 10.84 11.65 10.67
24 13.73 13.08 16.38 10.94 12.97 12.65 10.76 11.65 10.84

Avg. 11.85 12.50 16.99 10.73 12.52 12.36 10.64 11.56 10.57
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