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Abstract. The angiogenic factor, basic fibroblast 
growth factor (FGF), either stimulates endothelial cell 
growth or promotes capillary differentiation depending 
upon the microenvironment in which it acts. Analysis 
of various in vitro models of spontaneous angiogene- 
sis, in combination with time-lapse cinematography, 
demonstrated that capillary tube formation was greatly 
facilitated by promoting multicellular retraction and 
cell elevation above the surface of the rigid culture 
dish or by culturing endothelial cells on malleable ex- 
tracellular matrix (ECM) substrata. These observations 
suggested to us that mechanical (i.e., tension- 
dependent) interactions between endothelial cells and 
ECM may serve to regulate capillary development. To 
test this hypothesis, FGF-stimulated endothelial cells 
were grown in chemically defined medium on bacteri- 
ological (nonadhesive) dishes that were precoated with 
different densities of fibronectin. Extensive cell spread- 
ing and growth were promoted by fibronectin coating 
densities that were highly adhesive (>500 ng/cm2), 
whereas cell rounding, detachment, and loss of viabil- 

ity were observed on dishes coated with low fibronec- 
tin concentrations (<100 ng/cm2). Intermediate 
fibronectin coating densities (100-500 ng/cm 2) 
promoted cell extension, but they could not completely 
resist cell tractional forces. Partial retraction of mul- 
ticellular aggregates resulted in cell shortening, cessa- 
tion of growth, and formation of branching tubular 
networks within 24-48 h. Multicellular retraction and 
subsequent tube formation also could be elicited on 
highly adhesive dishes by overcoming the mechanical 
resistance of the substratum using higher cell plating 
numbers. Dishes coated with varying concentrations of 
type IV collagen or gelatin produced similar results. 
These results suggest that ECM components may act 
locally to regulate the growth and pattern-regulating 
actions of soluble FGF based upon their ability to re- 
sist cell-generated mechanical loads. Thus, we propose 
that FGF-stimulated endothelial cells may be 
"switched" between growth, differentiation, and involu- 
tion modes during angiogenesis by altering the adhe- 
sivity or mechanical integrity of their ECM. 

ENTRAL question in developmental biology concerns 
how groups of interacting cells and molecules give 
rise to three-dimensional tissues that exhibit special- 

ized form as well as function. We are interested in the pro- 
cess by which endothelial cell growth and capillary tube 
formation are controlled during angiogenesis. Capillary de- 
velopment is an excellent system for study of histodifferentia- 
tion because cloned endothelial cells retain the ability to 
form branching tubular networks; i.e., to undergo "angiogen- 
esis in vitro" (Folkman and Haudenschild, 1980). Morpho- 
genesis of the embryonic vasculature involves two modes of 
vessel formation: (a) accumulation of endothelial cells into 
networks composed of loosely associated cellular cords that 
eventually form into tubes; or (b) neovascularization by 
sprouting from these early vessel rudiments (Coffin and 

Poole, 1988). In vitro angiogenesis systems best model the 
former. 

In vivo studies clearly demonstrate that neovascularization 
can be initiated by soluble endothelial mitogens such as basic 
fibroblast growth factor (FGF; Shing et al., 1985; Esch et 
al., 1985). However, the regulatory signals that determine 
whether capillary endothelial cells will grow, branch, differ- 
entiate, or involute in response to FGF appear to be provided 
by the local tissue microenvironment. For example, during 
initiation of the first capillary branches, one endothelial cell 
grows in response to mitogenic stimulation while its neigh- 
bors, only microns away, do not (Auprunk and Folkman, 
1977). Furthermore, during later stages of neovasculariza- 
tion, rapidly growing capillary sprouts appear juxtaposed to 
regressing capillaries as well as differentiating tubes that 
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have become quiescent (Clark and Clark, 1938). FGF simi- 
larly retains its multifunctionality in vitro: FGF both stimu- 
lates endothelial cell growth (Shing et al., 1985; Esch et al., 
1985) and promotes formation of differentiated capillary 
tubes (Montesano et al., 1986). 

The local regulatory signals that modulate FGF action and 
control capillary development may be conveyed by extracet- 
lular matrix (ECM) ~ molecules. Localized alterations of 
ECM composition and integrity parallel changes of vascular 
form during capillary initiation, elongation, differentiation, 
and involution (Ausprunk and Folkman, 1977; Folkman, 
1982; Sariola et al., 1984; Ingber et al., 1986; Form et al., 
1986). Purified matrix components also modulate the effects 
of angiogenic factors on endothelial cell growth (Schor et al., 
1979; Ingber et al., 1987) and capillary differentiation in 
vitro (Maciag et al., 1982; Madri and Williams, 1983; Schor 
et al., 1983; Montesano et al., 1986). Yet, little is known 
about the mechanism by which insoluble ECM molecules 
transmit regulatory information to endothelial cells. 

Matrix proteins alter cell behavior as a result of specific 
binding interactions with distinct types of cell surface ECM- 
receptors, such as the integrin family of receptors (Hynes, 
1987; Ruoslahti and Pierschbacher, 1987). However, ECM 
molecules cannot transmit growth and pattern-regulating 
signals based solely upon occupancy of cell surface ECM- 
receptors since the biological effects of matrix components 
vary greatly depending upon their structural configuration. 
For example, a variety of cells proliferate on rigid, collagen- 
coated dishes (Wicha et al., 1979; Madri and Williams, 
1983; Ben Ze'ev et al., 1988), but differentiate when cul- 
tured on or within malleable collagen gels (Emerman and 
Pitelka, 1977; Schor et al., 1983; Montesano et al., 1983; 
Ben Ze'ev et al., 1988). The differentiation-inducing effects 
of collagen gels and complex ECM substrata (e.g., laminin 
gels, matrigel) also can be varied by altering their mechani- 
cal integrity (Lee et al., 1984; Li et al., 1987). Cell shape 
is determined through the action of tensile forces that are 
generated within the intracellular cytoskeleton and resisted 
by ECM attachment points (Harris et al., 1980; Ingber and 
Jamieson, 1985). Thus, one of the major effects of altering 
ECM structural integrity is induction of cell shape changes; 
rigid dishes support cell extension whereas malleable sub- 
strata promote rounding (Emerman and Pitelka, 1977; Ing- 
ber and Jamieson, 1985). Endothelial cells also take on 
different forms on rigid dishes depending upon the type of 
ECM molecules used for cell attachment (Ingber et al., 
1987). 

ECM molecules may modulate cell growth and differentia- 
tion in response to soluble factors based upon their ability 
to alter cell shape. Anchorage-dependent cells, such as en- 
dothelial cells, proliferate more rapidly in serum-containing 
medium as they become more flattened and cease growing 
as they take on increasingly rounded forms (Folkman and 
Moscona, 1978; Gospodarowicz et al., 1978). Similarly, the 
growth-promoting effects of different ECM molecules in- 
crease in parallel with their relative ability to support capil- 
lary cell extension in serum-free medium supplemented with 
FGF (Ingber et al., 1987). Matrix-dependent changes of cell 
shape that inhibit growth may also promote differentiation. 
For example, hepatocytes and mammary epithelial cells 
1. Abbreviations used in this paper: ECM, extracellular matrix; FGF, basic 
fibroblast growth factor. 

cease growing and increase their expression of differentia- 
tion-specific genes when cultured on substrata that promote 
cell rounding (Lee et al., 1984; Li et al., 1987; Ben Ze'ev 
et al., 1988). The differentiated phenotype of chondrocytes 
(Glowacki et al., 1983), adipocyte precursors (Spiegelman 
and Ginty, 1983), and pheochromocytoma cells (Bethea and 
Kozak, 1984) can be similarly altered by modulating sub- 
strate adhesivity and controlling cell form. 

In this article, we explore the possibility that the ability of 
FGF to stimulate endothelial cell growth in one microen- 
vironment and promote capillary differentiation in another 
depends on the mechanical context in which it acts. We focus 
on the role of ECM and tension-dependent changes of en- 
dothelial cell shape during regulation of FGF-stimulated an- 
giogenesis in vitro. 

Materials and Methods 

In Vitro Culture Systems for Study of Angiogenesis 
Capillary endothelial cells were isolated from bovine adrenal cortex or hu- 
man foreskin, cloned, and passaged as previously described (Folkman et 
al., 1979). Capillary endothelial cells from both species produce tubular 
netv~rks of similar size and shape when cultured under similar conditions 
(Folkman and Haudenschild, 1980). In our time-lapse cinematographic 
studies, spontaneous formation of capillary tubes was promoted by refced- 
ing human capillary cells every other day with DME (Gibco Laboratories, 
Grand Island, NY) supplemented with 15% human serum, endothelial cell 
growth supplement (5,4 mg/ml; Collaborative Research Incorporated, Bed- 
ford, MA), and tumor cell-conditioned medium (Folkman et al., 1979) 
mixed 1:1 with conditioned medium obtained from confluent cultures of bo- 
vine aortic endothelial cells. Tubes formed within '~1 mo after plating on 
gelatinized dishes. 

In our other spontaneous angiogenesis models, bovine capillary en- 
dothelial cells were cultured in complete medium comprised of DME sup- 
plemented with 10% calf serum, 2 mM glutamine, 100 U/ml penicillin, 100 
U/ml streptomycin, and 5 ~l/ml retinal extract (Gitlin, 1981). Similar results 
were also obtained using tumor-conditioned medium (Folkman et al., 1979) 
in place of retinal extract as a source of endothelial mitogens. In one set 
of experiments, cell Cultures were refed every 3 d until the cell monolayers 
spontaneously detached from the gelatinized surfaces of 6 well culture 
plates (Costar, Cambridge, MA). We found that different lots of gelatin 
differed in their ability to support monolayer retraction; best results were 
obtained with gelatin from Difco Laboratories, Inc., Detroit, MI (lot No. 
748797). In our second set of experiments, capillary tube formation was in- 
duced by plating bovine capillary endothelial cells (2.5 x 103 cells/well) 
in complete medium within small (l.3-mm-diam) wells of microtiter plates 
(Terasaki Plate, Nunc, Naperville, IL). In a third set of experiments, type I 
collagen-coated microcarrier beads (160 ~tm diameter; Cytodex-3; Pharma- 
cia Fine Chemicals, Piscataway, NJ) were added to the upper surface of 
confluent endothelial cell monolayers (7.5 mg/35-mm dish). Complete 
medium was gently removed and replaced every 3 d. 

To develop a controllable angiogenesis model, we used a previously de- 
scribed method for adsorption of ECM proteins to bacteriological plastic 
dishes that is reliable and highly efficient (Madri and Williams, 1983; Ing- 
beret al., 1987). Fibronectin (Cappel Laboratories, Malvern, PA) and type 
IV collagen (Calbiochem-Behring Corp., San Diego, CA) were diluted in 
0ol M carbonate buffer, pH 9.4, at different concentrations, plated at 2 
ml/35-mm dish (No. 1008 plates; Falcon Labware, Oxnard, CA), and al- 
lowed to incubate overnight at 4°C. Coated dishes were washed with DME 
containing 1% BSA (fraction V; Armour Pharmaceutical Co., Tarrytown, 
NY) before use. 

Bovine capillary endothelial cells were obtained from confluent en- 
dothelial monolayers that had not been refed (i.e., exposed to new en- 
dothelial mitogens) for at least 2 d before harvesting. Quiescent monolayers 
were dissociated into single cells by brief exposure (1-2 rain) to trypsin- 
EDTA (Gibco Laboratories), transferred to DME containing I% BSA, 
pelleted by centrifugation, and washed repeatedly in BSA-containing DME. 
Cell numbers were measured using a counter (Coulter Electronics, Inc., Hi- 
aleah, FL), aliquots were pelleted, and cells were resuspended in defined 
medium consisting of DME supplemented with 5 ~tg/ml transferrin (Col- 
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laborative Research Incorporated), 10/~g/ml high density iipoprotein (spe- 
cific gravity, 1.063-1.21 g/cm3; Bionetics Research Institute, Rockville, 
MD), and 2 ng/ml recombinant basic FGF (kindly supplied by Takeda 
Chemical Industries, Osaka, Japan). BSA (10 mg/mi) was also included as 
colloid in some studies without altering our results. Capillary endothelial 
cells were plated in defined medium onto matrix-coated substrata at moder- 
ate (2-5 × I04 cells/cm 2) or high (1-3 × 105 cells/era 2) densities. 

Morphological Techniques 
Phase-contrast images of living cells were recorded using an inverted micro- 
scope (Diaphot; Nikon Inc., Garden City, NY) with film (Plus-X-Pan; East- 
man Kodak Co., Rochester, NY). Time-lapse, phase-contrast recording of 
human capillary endothelial cells ( 1 rain = 13 h) was carried out for a 
period of 4 d beginning after the third week of primary culture using a 16- 
mm camera (Bolex, Yverdon, Switzerland) in conjunction with a photomi- 
croscope (No. II; Carl Zeiss, Inc., Thornwood, NY). Black and white inter- 
negatives were prepared from single 16-mm film frames by Spectrum Color 
Laboratory (Boston, MA). For electron microscopic analysis, reorganized 
capillary tubes were fixed in 2.5% glutaraldehyde/2%paraformaldehyde in 
0.1 M sodium cacodylate buffer, pH 7.4, postfixed in 1% osmium tetroxide, 
dehydrated in a graded series of alcohols, and embedded in epon. Thin sec- 
tions (800 A thick) were cut on an ultracut microtome (Reichert Scientific 
Instruments, Buffalo, NY), counterstained with uranyi acetate and lead ci- 
trate, and studied under an electron microscope (No. 100B; JEOL USA, 
Cranford, NJ). Light microscopic autoradiography was carried out by add- 
ing [3H]thymidine (1 #Ci/ml final concentration; New England Nuclear, 
Boston, MA) to the defined medium during the first 24 h of culture. Radiola- 
beled endothelial cells were fixed with Karnovsky's solution, dehydrated 
with methanol, and overlayed with nuclear track emulsion (NTB-2; East- 
man Kodak Co.). Autoradiographic grains were developed (D-19 developer; 
Eastman Kodak Co.). 

Results 

Spontaneous Angiogenesis In Vitro 
We have previously demonstrated that capillary endothelial 
cells spontaneously reorganize and form tubular networks 
when cultured on gelatinized dishes in medium containing 
endothelial growth factors (Folkman and Haudenschild, 
1980). Tube formation involves a series of steps that usually 
take place over a period of weeks to months: (a) adhesive ten- 
drils accumulate on top of the endothelial cell monolayer; (b) 
tendrils lengthen and become organized within a spider web- 
like structure; (c) cells accumulate along the tendrils; (d) in- 
tracellular vacuoles or lumina begin to form as the tendrils 
progressively dissolve; and (e) hollow tubular networks be- 
come established. The tendrils that initiate capillary tube 
formation appear to be comprised of a complex of different 
ECM components including fibronectin (Maciag et al., 
1982; Feder et al., 1983), laminin and types IV and V colla- 
gens (Madri, 1982) as well as heparan sulfate proteoglycan 
(our unpublished observation). However, the mechanism by 
which cell-matrix interactions trigger tubular reorganization 
is not known. 

In the present study, we used time-lapse cinematography 
to study spontaneous angiogenesis in vitro. Analysis of the 
earliest stages of tube formation revealed that the filamentous 
ECM web that endothelial cells accumulated actually served 
as a malleable attachment foundation. The entire web and 
associated cells would repeatedly contract and extend in 
an elastic fashion apparently through the action of cell-gen- 
erated tensile forces (Fig. 1, a-j). Regardless of these me- 
chanical alterations, the pattern of the web remained con- 
stant. These studies also confirmed that the adhesive tendrils 
became elevated within the culture medium; cells on the sur- 
face of the culture dish frequently were observed to pass 

directly beneath suspended filaments (Fig. 1, f-i). Neighbor- 
ing cells that remained adherent to the rigid plastic dish did 
not form tubes although some of these cells became associ- 
ated with the web when they underwent mitosis (Fig. 1, c-e). 
Thus, these findings suggested to us that mechanical (i.e., 
tension-dependent) interactions between cultured endothe- 
lial cells and their ECM attachment points may be central to 
the capillary organization process. 

Our second clue that cell-generated tensile forces might be 
important during regulation of angiogenesis was based upon 
the observation that continuous refeeding of confluent en- 
dothelial cells with FGF-containing medium resulted in 
spontaneous retraction and detachment of the cell layer from 
the underlying gelatinized substratum. The high degree of 
resting tension inherent in the "quiescent" monolayer was 
made evident by its rapid contraction upon detachment to 
,~15 % of its original area. This effect was very reproducible; 
usually between 4-6 wells of a 6-well plate would spontane- 
ously retract within the same 24 h period, '~1-2 wk after 
con fluency. Retracted monolayers often remained attached to 
the plastic dish at selected sites and formed large multicellu- 
lar aggregates (Fig. 2 a). These retracted cells consistently 
reorganized into tubular networks within 4-9 d (Fig. 2 b). 
Capillary organization appeared to be suppressed by culture 
conditions that inhibited cell retraction since tubes were 
never observed within regions of the original monolayer that 
remained in contact with the rigid dish, even though cultured 
for the identical time in the same medium. 

We carried out a simple experiment to ask whether induc- 
tion of tube formation was related to the ability of capillary 
cells to physically release themselves from the surface of the 
plastic dish. Capillary endothelial cells were plated into 
small wells of microtiter plates that contained beveled rather 
than perpendicular side walls. Under these conditions, en- 
dothelial cells at the periphery of the monolayer migrated up 
along the sidewalls, while maintaining lateral contacts with 
neighboring cells. Portions of the endothelial cell monolayer 
soon became elevated above the surface of the culture sub- 
stratum, apparently as a result of cell tractional forces. Ele- 
vation of the endothelial cell layer and subsequent multicel- 
lular retraction once again promoted tube formation within 
3-6 d after reaching confluency (Fig. 2 c). 

Capillary tube formation was also induced by adding col- 
lagen-coated microcarrier beads to the upper surfaces of 
confluent endothelial cell monolayers. Again, cell elevation 
and retraction appeared to be central to the organization pro- 
cess. Light microscopic analysis of the same cultures at 
different times after addition of beads revealed that en- 
dothelial cells initially migrated up from the confluent 
monolayer and became adherent to the overlying microcar- 
rier beads within a period of 1-3 d. Once elevated, the cells 
on beads formed long processes that stretched through the 
culture medium to contact the apical surfaces of cells within 
the underlying monolayer as well as cells on other beads 
(Fig. 3 a). Over the next few days, long sprouts appeared that 
were completely elevated above the surface of the monolayer 
and surrounded by culture medium. These solid cellular 
cords were composed of capillary endothelial cells aligned 
in tandem and suspended between adjacent beads that were 
often separated by multiple cell diameters; i.e., distances 
>500 #m (Fig. 3 b). Alignment of cells in this oriented fash- 
ion apparently facilitated multicellular contraction and lat- 
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Figure 1. Time-lapse cinemat- 
ographic analysis of the early 
stages of spontaneous angio- 
genesis in vitro. This series of 
phase-contrast views shows the 
elastic nature of the filamen- 
tous web. (a) Time 0. Tips of 
arrows abut on adhesive ten- 
drils that have accumulated on 
top of cultured human capillary 
endothelial cells after ,03 wk 
in culture. The tendrils have 
joined and appear as a web in 
the form of an inverted letter 
"Y7 (b) 4.2 h. The filaments 
were retracted to the right re- 
suiting in straightening of the 
left portion of the web and com- 
mensurate contortion of the 
right. (c, d, and e) 7.4, 7.8, and 
8.2 h. Small arrow indicates a 
spread cell on the culture dish 
that became adherent to the fi- 
brillar web as it underwent mi- 
tosis. The web also continued 
to undergo elastic transforma- 
tions. (e) Double small arrows 
indicate two daughter ceils that 
were produced by the cell divi- 
sion; one remained associated 
with the filament while the 
other eventually migrated onto 
the plastic dish. (f, g, h, and i) 
31.6, 35.8, 36.8, and 38.4 h. 
Tip of small arrow abuts on the 
nucleus of a spread cell that 
migrated from right to left di- 
rectly beneath a suspended 
filament. The web also became 
highly contorted during this 
period. (i) Large arrows indi- 
cate a region along one fila- 
ment that temporarily became 
free of associated cells. (j) 
77.4 h. The web extended once 
again and took on a more lin- 
ear form. Associated cells ap- 
peared to form a continuous 
luminal space in the form of 
an inverted "Y" at the center of 
the web. Scale unit, 10 ~m. 
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beads, and, once again, hollow tubular networks only ap- 
peared after multicellular retraction and bead aggregation 
had occurred. 

In fact, when we reviewed the literature on angiogenesis 
in vitro, we found that capillary tubes formed on tissue cul- 
ture plastic (+ECM coating) only under conditions that per- 
mitted endothelial cell retraction, elevation of multicellular 
cords, and thus partial release from contact with the rigid 
culture dish (Table I). Certain matrix molecules (e.g., lami- 
nin) did not support capillary differentiation when adsorbed 
to tissue culture dish; yet they induced rapid tube formation 
when presented as a three-dimensional gel (Kubota et al., 
1988). In general, we noticed that the rate of capillary tube 
formation was accelerated by culture on malleable substrata, 
regardless of the type of ECM molecule utilized. For exam- 
ple, while capillary organization took place over a period of 
weeks on collagen-coated plastic dishes (Folkman and Hau- 
denschild, 1980; Madri, 1982), tubes formed within days in 
native collagen gels (Schor et al., 1983; Montesano et al., 
1983). 

Figure 2. Capillary tube formation triggered by endothelial cell 
retraction. (a) Phase-contrast view of a region of a retracted cell 
monolayer showing a large multicellular aggregate that spontane- 
ously reorganized (magnification of 50). (b) Higher magnification 
view of the same cellular aggregate. Only endothelial cells that be- 
came elevated on top of the adherent cell monolayer reorganized 
and formed capillary networks (magnification of 100). (c) Cells at 
the periphery of the endothelial cell monolayer migrated up along 
the beveled side wall of the microtiter well. This resulted in eleva- 
tion of the cell layer, retraction of muhicellular cords, and forma- 
tion of capillary tubes. The tubes that became elevated were in a 
focal plane different from that of the few cells that remained adher- 
ent to the culture dish surface; thus, the adherent cells appear out 
of focus (magnification of 60). 

eral movement of the microcarrier beads since the beads be- 
came grouped within tight clusters over the next few days. 
Examination of these clusters of beads revealed that they 
were interlinked by a dense network of branching cellular 
cords (Fig. 3 c). This network subsequently remodeled into 
a highly developed system of branching capillary tubes con- 
ruining well-defined lumina (Fig. 3 d). The total time re- 
quired for tube formation was ,~1-2 wk after addition of 

Control of Angiogenesis In Vitro 

In summary, results from a variety of model systems sug- 
gested that adhesion to a highly adhesive, rigid substratum 
served to inhibit capillary tube formation whereas attach- 
ment to a substratum that permitted multicellular retraction 
appeared to be stimulatory. However, the complexity of these 
experimental systems made analysis of the molecular and 
biophysical determinants of capillary tube formation very 
difficult, if not impossible. For example, it was not possible 
to determine whether capillary cells were induced to form 
tubular networks as a result of being suspended above the ap- 
ical surfaces of a confluent cell monolayer, surrounded by 
culture medium, allowed to form three-dimensional cell ag- 
gregates, or whether tube formation was triggered by me- 
chanical alterations (e.g., multicellular retraction and cell 
shortening). Thus, we set out to devise a more well-defined 
system for study of the role of cell tension and ECM- 
dependent changes of cell shape during angiogenesis in vitro. 

Capillary endothelial cells were plated at moderate densi- 
ties (2-5 x 1@ cells/cm 2) on bacteriological plastic dishes 
of varying adhesivity to control cell extension. Adhesivity 
was controlled by prccoating the dishes with different 
amounts of a purified ECM molecule, fibronectin. These 
studies were carried out in chemically defined medium con- 
raining saturating amounts of recombinant FGF, a potent en- 
dothelial mitogen. Serum had to be excluded from the cul- 
ture medium because it contains attachment factors, such as 
fibronectin and vitronectin, as well as undefined amounts of 
other growth factors. Capillary endothelial cells can not at- 
tach to bacteriological dishes in the absence of adsorbed 
ECM proteins or serum. Thus, any attachment and spread- 
ing that we observed were initiated through specific cell- 
ECM interactions. 

Using this experimental system, capillary cells could be 
artificially induced either to spread, remain round, or form 
capillary tubes in the presence of saturating amounts of FGF 
simply by varying fibronectin molecular coating densities 
(Fig. 4). Endothelial cells avidly attached and spread on 
dishes coated with high densities of fibronectin (>500 ng/ 
cm2), but no tubes were observed. When cells were plated 

Ingber and Folkman Mechanochemical Switching during Angiogenesis 321 



Figure 3. Induction of capillary tube formation by addition of microcarrier beads to an endothelial cell monolayer. (a) Day 4. Endothelial 
cells that have migrated onto the surfaces of overlying microcarrier beads extend cell processes that contact the surface of the monolayer 
below as well as other beads. (b) Day 6. Long multicellular cords appear that are suspended between neighboring beads and stretch for 
many cell diameters. (c) Day 10. Aggregates of closely apposed microcarrier beads form that are interlinked by a continuous network of 
cellular cords. (d) Day 12. Remodeling of the cellular cords has resulted in formation of branching capillaries containing well-developed 
lumina (magnification of 115). 

at similar densities on dishes containing less than 100 ng fi- 
bronectin/cm 2, the cells attached but remained round. Once 
multicellular aggregates formed, they spontaneously retracted 
and completely detached themselves from these poorly adhe- 
sive dishes. In contrast, extensive branching capillary net- 
works consistently formed within 24-48 h when capillary 
endothelial cells were plated on dishes of intermediate adhe- 
sivity (100-500 ng fibronectin/cm2). 

Tube formation was the result of a dynamic remodeling 
process. During the first 8 h of culture on moderately ad- 
hesive dishes, attached endothelial cells extended cell pro- 
cesses, formed cell-cell contacts, and established a branched 
network comprised of elongated, bipolar cells. Network for- 
mation was followed by multicellular retraction over the next 

16 h of culture. This mechanical shift resulted in formation 
of free-floating cellular cords that were attached to the cul- 
ture dish at intermittent points through contacts with adjoin- 
ing multicellular aggregates. When viewed at high magnifi- 
cation after 48 h of culture, these multicellular cords ap- 
peared as tubes that contained a central lumen along their 
length (Fig. 5 a). This was confirmed by EM, which revealed 
groups of endothelial cells that were joined by interdigitated 
cell processes and enclosed a central lumenal space (Fig. 5 
b). Residual fibrillar material appeared in many lumina that 
was similar to the contents found within tubes formed in 
other in vitro angiogenesis models (Folkman and Hauden- 
schild, 1980; Maciag et al., 1982; Feder et al., 1983). Occa- 
sional tubes also exhibited wisps of electron-dense material 

The Journal of Cell Biology, Volume 109, 1989 322 



Table I. Chemical and Mechanical Requirements for Spontaneous Angiogenesis In  V i t r o  

Cell Time ECM Rigid Elevation Reference 

HUVE 6-8  wk FN + + Maciag et al., 1982 
HUVE 4 -6  wk - + + Maciag et al., 1982 
BCE, HCE 3-6  wk GEL + + Folkman and Haudenschild, 1980 
RCE 3-4 wk Stroma - - Madri and Williams, 1983 
RCE 2-4  wk I, III + + Madri, 1982 
RAEx 2-4  wk PI-Clot - - Nicosia et al., 1982 
HUVE 1-2 wk P-FN + + Maciag et al., 1982 
BAE 1-2 wk - + + Feder et al., 1983 
RCE 4 d IV, V + + Madri and Williams, 1983 
RCE 4 d BM - / +  - / +  Madri and Williams, 1983 
BAE 3-10 d 1-Gel - - Schor et al., 1983 
BCE 2-3 d I-Gel - - Montesano et ai., 1983 
HUVE,  HCE 1 d LM-Gel - - Kubota et al., 1988 
BCE 1-2 d FN, IV, Gel + + The present study 

The cell type, time for tubes to form, and type of matrix coating used are presented for each study cited. Endothelial cells were derived from human umbilical 
vein (HUVE), bovine aorta (BAE), rat aortic explants (RAEx), or capillaries isolated from bovine (BCE), human (lICE), or rat (RCE) tissues. Rigid plastic dishes 
were used either alone ( - )  or coated with fibronectin (FN), proteolyzed fibronectin (P-FN), gelatin (GEL), type I collagen (1), type III collagen (111), type IV 
collagen (/V), or type V collagen (V). Pl-Clot, clotted chick plasma; 1-Gel, native type I collagen gel; Stroma, amniotic stroma; BM, intact amniotic basement 
membrane; LM-Gel, laminin gel. Substrata were viewed as rigid (+) if their form could not be altered by adherent cells. Malleable substrata were rated as partially 
flexible ( - / + )  if they were held in place by inflexible holders during experiments. Capillary tubes were viewed as elevated (+) if they were separated from their 
substratum by 100 nm or more. In one study, tubes formed both in direct contact and suspended above the substratum ( - / + ) .  

Figure 4. Matr ix-dependent  control  o f  angiogenesis  in defined medium containing F G E  Bacteriological dishes were precoated with 10, 
50, 100, o r  2500 ng/cm 2 (from left to righO of  fibronectin (FN) or  type IV collagen (Type IV). The highest  concentrat ion shown was 
saturating for both cell at tachment and spreading. These  phase-contrast  views show that cell at tachment and spreading increased in parallel 
with the number  o f  matrix molecules  available for cell attachment.  Tube formation was only observed on dishes  o f  intermediate adhesivity 
when  cells  were plated at a moderate  densi ty (4 × 104 cells/cm2). Endothelial  cells formed extensive capil lary networks on the highest  
F N  coating densi ty when  higher  numbers  were plated (2 x 105 cells/era2; top right). Tube formation was observed on  lower coating den-  
sities on type IV than on FN;  type IV promoted  more  extensive cell at tachment and spreading at all coating concentrat ions (magnification 
o f  50). 
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Figure 5. Formation of tubular networks in defined 
medium supplemented with FGE (a) Phase-con- 
trast view of a network of capillary tubes that 
formed on a moderately adhesive fibronectin- 
coated dish (48 h). The tubes became elevated 
above the surface of the culture dish as they 
stretched from one multicellular cell aggregate to 
another. Tips of arrows abut on a central lumen 
that appeared to stretch the entire length of a sus- 
pended capillary tube (magnification of 150). (b) 
Electron microscopic view demonstrating the pres- 
ence of a central lumenal space within a reor- 
ganized capillary tube. Small amounts of residual 
amorphous electron-dense material can be seen 
within the capillary lumen (magnification of 8,250). 

along their periphery that were reminiscent of the discon- 
tinuous basal lamina seen surrounding forming capillaries in 
vivo (Ausprunk et al., 1981). 

It is difficult to quantitate the amount or frequency of a 
pattern-generating event, such as angiogenesis. However, in 
our experiments, tubular networks appeared to be evenly dis- 
tributed across more than 50 % of the surface of dishes coated 
with the permissive fibronectin coating density. Neverthe- 
less, small regions containing moderately spread cells as 
well as fully retracted cell aggregates were also present. 
Similar results were obtained in five different experiments 
with only minor variation of the permissive fibronectin coat- 
ing concentration; tubes always formed on either 100, 250, 
or 500 ng/cm 2 even though different lots of commercial 
fibronectin were used. Furthermore, between 75-100% of 
dishes coated with the permissive fibronectin density in- 
duced tube formation within any individual experiment. Cell 
spreading increased in a concentration-dependent fashion as 
the fibronectin coating density was raised above 500 ng/ 
cm2; however, tube formation was never observed at any of 
these concentrations. 

Importantly, we could overcome the suppression of capil- 
lary differentiation imposed by highly adhesive dishes by in- 
creasing endothelial cell plating numbers (Fig. 4). As in less 
dense cultures, endothelial cells attached and spread exten- 
sively on the highly adhesive dishes (2,500 ng FN/cm 2) 
during the first 6 h after plating. Efficient cell adhesion 

resulted in formation of a confluent endothelial cell layer in 
direct contact with the dish as well as groups of overlying 
cells that only contacted and exerted tractional forces on 
other cells. However, spontaneous retraction of dense mul- 
ticellular cords at later times (6-24 h) resulted in formation 
of extensive tubular arrays that became elevated within the 
culture medium. These capillary nets were grossly visible as 
networks comprised of fine, white threads and often covered 
the entire surface of a 35-mm dish (•10 cm2). 

These effects on capillary differentiation were not limited 
to fibronectin-coated dishes. Similar control of tube forma- 
tion was obtained using plates coated with varying amounts 
of type IV collagen (Fig. 4) or gelatin (not shown). However, 
tube formation was induced by lower matrix coating concen- 
trations on type IV collagen than on fibronectin-coated 
dishes (25-75 ng/cm 2 versus 100-500 ng/cm2). Type IV col- 
lagen, which is more adhesive for bovine adrenal capillary 
endothelial cells than fibronectin (Ingber et al., 1987), 
promoted more extensive cell spreading at all coating densi- 
ties. Capillary tube formation also was induced by a variety 
of ECM molecules in past studies, however, the rate of capil- 
lary tube formation that we obtained using this method (1-2 d) 
was among the most rapid observed to date (Table I). 

ECM-coated substrata that switched on differentiation in 
FGF-containing medium also turned off cell growth (Fig. 6). 
When we carried out thymidine autoradiography, we found 
that the ability of endothelial cells to grow in response to 
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Figure 6. Tritiated-thymidine autoradiographs 
of capillary endothelial cells grown for 24 h 
on fibronectin-coated dishes in defined medi- 
um containing FGE (a) The majority of cells 
grown on highly adhesive dishes (2,000 ng/ 
cm 2) spread extensively and incorporated thy- 
midine into DNA as indicated by the presence 
of multiple nuclear grains. (b)On moderately 
adhesive dishes (100 ng/cm2), endothelial cells 
reorganized within elongated aggregates that 
formed into capillary tubes. Arrows point to all 
of the cells that exhibited nuclear grains in this 
view (this was confirmed using bright field illu- 
mination). Note that only cells that remained 
adherent and spread on the plastic dish con- 
tinued to synthesize DNA; retracted cells ap- 
peared to be quiescent. (c) Adherent cells that 
appeared round or poorly spread on low fibro- 
nectin coating densities (50 ng/cm 2) also did 
not exhibit nuclear grains. Note the wide range 
of cell shape control displayed in these phase 
contrast views. All photographs are at the same 
magnification of 150. 

stimulation by FGF, a potent endothelial mitogen, was sup- 
pressed in cells that had become organized within differen- 
tiating capillary tubes. In contrast, nearby cells that re- 
mained adherent and spread on the rigid fibronectin-coated 

dish continued to synthesize DNA. Quiescent cells within 
newly formed tubes were much smaller than their actively 
growing neighbors. Capillary endothelial cell spreading and 
growth also increased in parallel as fibronectin coating den- 
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sities were raised when cells were plated at low cell densities 
(5 × 103 cells/cm 2) that prohibit formation of cell-cell con- 
tacts (Ingber, manuscript submitted for publication). Ceils 
that spontaneously detached from dishes coated with low 
concentrations of fibronectin did not grow and lost viability 
over a period of days; these cells failed to attach when 
replated on highly adhesive dishes. 

Discussion 

Mechanochemical Interactions during Spontaneous 
Capillary Tube Formation 
Capillary tube formation can be induced in vitro using a vari- 
ety of different methods, many of which accelerate capillary 
organization by culturing endothelial cells on purified ECM 
molecules (Table I). However, the mechanism by which 
ECM components switch growing capillary cells into a 
differentiation mode remains unknown. This is an especially 
difficult problem considering that capillary differentiation 
can occur in the presence of a soluble angiogenic mitogen; 
FGF has been previously shown to promote angiogenesis in 
vitro (Montesano et al., 1986). 

Our studies revealed that capillary tube formation resulted 
from a complex series of mechanochemical interactions that 
required formation of multiple cell-matrix and cell-cell con- 
tacts. Capillary endothelial cells initiated tube formation in 
longer term cultures on rigid substrata by accumulating 
adhesive matrix tendrils and then applying tension to their 
attachment points. This mechanical interaction resulted in 
multicellular retraction, elevation of the matrix web into the 
culture medium, and production of isolated cords of short- 
ened endothelial cells surrounding central matrix filaments. 
Formation of new cell-matrix contacts was limited to poten- 
tial adhesive sites on the suspended web because cells were 
no longer in contact with the rigid planar dish. Thus, capil- 
lary endothelial cells elongated with the long axis of the web 
and became oriented in tandem. Cell alignment within form- 
ing tubes most likely involves specific interactions between 
elements of the cytoskeletal contractile apparatus and distinct 
membrane-associated molecules that mediate cell-cell mech- 
anochemical coupling (e.g., junctional_proteins, cell adhe- 
sion molecules (_Pitelka and Taggart, 1983; Edelman, 1984). 

Time-lapse studies demonstrated that the filamentous 
ECM web was a dynamic structure; it served as a major con- 
duit for cell traffic and underwent elastic transitions of form. 
In this manner, the filament network functioned as a three- 
dimensional template that assured maintenance of pattern 
integrity. The web also served as a true construction scaffold- 
ing in that it was removed once the tubular endothelium be- 
came organized. We have previously shown that dissolution 
of these fibrillar materials results in formation of a hollow 
capillary containing a central lumen (Folkman and Hauden- 
schild, 1980). Tubes formed by cultured endothelial cells 
from bovine aorta and human umbilical vein also contain 
ECM materials in their lumina that appear to progressively 
dissolve (Maciag et al., 1982; Feder et al., 1983). Thus, 
these findings in conjunction with results of analysis in vivo 
(Ausprunk et al., 1981) confirm that accumulation of a con- 
tinuous lamina densa along the capillary periphery (as de- 
tected by EM) is not required for organization of tubular net- 
works. Rather, intact basal lamina may serve to formalize or 
add structural stability once the hollow capillary is formed. 

A Mechanochemical Switching System 

Capillary endothelial cells appear to walk a fine line of struc- 
tural stability with extensive cell spreading and growth at one 
extreme and complete loss of anchorage resulting in round- 
ing and cell death (i.e., "involution") at the other. Endothelial 
cell elongation required a sufficient number of attachment 
points and an underlying attachment foundation that could 
physically resist cell-generated tensile forces. Capillary cells 
experienced a "resting tension" when present within an ad- 
herent confluent monolayer and spontaneously retracted the 
elastic ECM web. Endothelial cells also pulled themselves 
off poorly adhesive dishes although substrata that were 
highly adhesive and rigid promoted extensive cell spreading. 
Capillary endothelial cells must be able to spread to grow in 
response to stimulation by FGF (Ingber et al., 1987) and rap- 
idly lose viability when completely detached (Folkman and 
Moscona, 1978). 

Cell-generated tensile forces also produced mechanical 
changes in larger endothelial cell aggregates that appeared to 
trigger capillary organization. Capillary tube formation was 
greatly facilitated in growth factor-containing medium by 
culturing capillary cells on dishes with beveled sidewalls, 
adding microcarrier beads to the upper surfaces of endo- 
thelial monolayers, and continuously refeeding endothelial 
monolayers until they spontaneously detached. In each of 
these systems, tube formation was tightly coupled to mul- 
ticellular retraction. Furthermore, we were able to trigger 
artificially both retraction and tube formation in a parallel 
fashion using our new model of in vitro angiogenesis; i.e., 
solely by modulating ECM coating densities. Angiogenesis 
was only observed on low to moderate adhesive FN coating 
concentrations that permitted cell retraction and partial re- 
lease from contact with the rigid dish. Key to the capillary 
organization process was the ability of endothelial ceils to ar- 
range themselves in tandem along their own malleable adhe- 
sive scaffolding in vitro as they do in vivo (Folkman, 1982; 
Coffin and Poole, 1988). This apparently resulted in am- 
plification of tension and multicellular retraction in a coordi- 
nated fashion in a manner analogous to that observed during 
muscle contraction. 

Multicellular retraction might trigger capillary differentia- 
tion by a variety of different mechanisms. Retraction results 
in increased contacts between neighboring cells, decreased 
adhesion to the rigid substratum, cell rounding, as well as 
a reduction of tensile stresses. Any one of these alterations 
could serve to induce tubular reorganization. For example, 
cell-cell interactions are known to play a central role during 
tissue development. However, it is important to point out that 
endothelial cell densities and thus the extent of cell-cell con- 
tact varied from one model system to the other. Tubes also 
did not form in serum-containing medium if confluent en- 
dothelial monolayers remained adherent or in defined medi- 
um when ceils were cultured on highly adhesive fibronectin 
coatings that strongly resisted cell tractional forces. Yet, a 
high degree of cell-cell contact formation occurred in both 
of these systems. The mechanical resistance of the substra- 
tum therefore apparently could overcome signals derived 
from cell-cell contact formation that might, in part, promote 
capillary differentiation. Furthermore, plating endothelial 
cells in high numbers on low ECM coating densities resulted 
in formation of large, fully-retracted cellular aggregates that 
exhibited multiple cell-cell contacts; however, these cell 
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clusters did not display tubular organization or lumina for- 
mation. Thus, cell-cell contact formation is not sufficient to 
trigger capillary organization, although increased cell-cell 
interactions clearly facilitate this process. 

One property that was common to all of the systems that 
induced tube formation was suspension of multicellular 
cords within the culture medium with commensurate loss of 
cell contact with the rigid planar dish. Suspension within liq- 
uid medium is clearly not a prerequisite for capillary 
differentiation since tubes form rapidly when endothelial 
cells are cultured within three-dimensional ECM gels (Mon- 
tesano et al., 1983; Kubota et al., 1988). However, loss of 
contact with a rigid foundation may be a critical event. This 
possibility is supported by our observation that the inhibition 
of capillary tube formation imparted by high fibronectin 
coating densities could be suppressed by using higher cell 
plating numbers. This procedure resulted in formation of 
cell multilayers. In this manner, cell-cell mechanochemical 
coupling was facilitated and cell-generated contractile forces 
amplified, while the mechanical resistance of the adhesive 
substratum remained constant. These studies also demon- 
strate that a specific ECM coating "density" or degree of sub- 
stratum adhesiveness is not the only trigger for tube for- 
mation. 

Multicellular retraction and release from contact with the 
rigid substratum resulted in endothelial cell shortening. A 
decrease of cell extension alone is not sufficient to induce 
capillary differentiation; isolated cells do not form tubes, 
regardless of their size. Yet, changes of endothelial cell shape 
could produce intracellular metabolic alterations that might 
be required for capillary differentiation (i.e., if multiple 
similarly shaped endothelial cells were allowed to contact 
one another). Cell rounding promotes expression of the 
differentiated phenotype in a variety of cells (Emerman and 
Pitelka, 1977; Glowacki et al., 1983; Lee et al., 1984; Ben 
Ze'ev et al., 1988). However, endothelial cells do not form 
capillary tubes when completely round. Rather, they aggre- 
gate into disorganized clusters. The sensitivity of endothelial 
cells to cell shape perturbation, at least in terms of differenti- 
ation events, may be limited to a very narrow range of cell 
size or extension relative to other types of specialized cells. 

In conclusion, capillary tube formation is not exclusively 
the result of either cell-cell interactions, culture on a con- 
ducive "type" of ECM component, maintenance of a defined 
"cell shape" or addition of a specific angiogenic molecule. 
Rather, capillary organization results from mechanochemi- 
cal interplay between all of these factors. 

Regulation of FGF Multifunctionality: 
Local Control by ECM 
The importance of peptide growth factors in development is 
based upon their multifunctionality; the same soluble mito- 
gen can stimulate growth in one microenvironment and pro- 
mote differentiation in another. It has been suggested that the 
action of peptide growth factors depends upon the context of 
other chemicals or soluble regulatory molecules present 
(Sporn and Roberts, 1988). Data from the present study, in 
which constant amounts of soluble FGF were present under 
all culture conditions, suggest that growth factor action may 
also depend upon the mechanical context in which it acts. 
The stimulus for capillary differentiation was not a specific 
ECM component or a particular matrix coating density; tube 
formation was promoted by moderately adhesive substrata 

regardless of whether fibronectin, type IV collagen, or gela- 
tin was used for attachment. Furthermore, endothelial cell 
binding to distinct "chemical addresses" in these ECM mole- 
cules clearly was not sufficient to trigger capillary differenti- 
ation since tubes did not form on dishes coated with high 
fibronectin concentrations when cells were plated at moder- 
ate cell densities. Rather matrix-coated substrata that irt- 
duced capillary tube formation acted in a permissive fashion, 
they allowed FGF-stimulated cells to retract into more fa- 
vored minimum energy configurations (i.e., tubular arrays). 

ECM configurations that favored capillary differentiation 
also suppressed cell growth. Differentiating endothelial cells 
retracted, rounded, and ceased synthesizing DNA even 
though they were cultured in the presence of saturating 
amounts of soluble FGE At the same time, extended cells 
that remained adherent only microns away continued to 
progress through the cell cycle. Capillary endothelial cells 
decrease their growth rates in an exponential fashion in di- 
rect relation to linear decreases in cell extension (Ingber et 
al., 1987). This growth inhibition occurs in the absence of 
any change of FGF receptor number or affinity; yet intracel- 
lular pH, a common chemical second messenger system used 
by many peptide mitogens, is greatly altered (Ingber et al., 
submitted for publication). Thus, the simultaneous switching 
between capillary growth and differentiation may result from 
tension-dependent alterations of endothelial cell shape that 
in turn influence intracellular signaling pathways and thereby 
alter cell responsiveness to soluble factors. Interestingly, 
malleable substrata that permit substratum retraction, pro- 
mote cell shortening, and induce differentiation also often in- 
hibit cell growth (Emerman and Pitelka, 1977; Li et al., 
1987; Ben Ze'ev et al., 1988; for review, see Kleinman et al., 
1987). Furthermore, Clark and Clark (1938) noted that 
growing sprouts became functional capillary tubes when the 
perivascular matrix "changed to a tissue substance resem- 
bling a soft gel" in a camera lucida study of physiological 
neovascularization published over fifty years ago. 

These results suggest that one of the most important prop- 
erties of complex ECM substrata (e.g., intact basal lamina, 
native collagen gels, laminin gels), at least in terms of con- 
trolling cell growth and differentiation, may be their inherent 
malleability. This hypothesis is in contrast to explanations 
that solely ascribe the differentiating properties of these ma- 
trices to distinct chemical constituents. Our model system al- 
lowed us to modulate multicellular retraction in a controlled 
fashion under defined medium and substrate conditions and 
thus it may also be useful for study of other cell types that 
can undergo differentiation in vitro. 

Theoretical Implications: Mechanical Forces as 
Biological Regulators 
How could mechanical perturbation and associated changes 
of cell shape alter endothelial cell responsiveness to soluble 
FGF? We and others have shown that a variety of nuclear 
functions including DNA and RNA synthesis and expression 
of differentiation-specific genes can be controlled by per- 
turbing cell shape (Folkman and Moscona, 1978; Ben Ze'ev 
et al., 1980; Bissell et al., 1982; Lee et al., 1984; Ingber 
et al., 1987; Ben Ze'ev et al., 1988). However, the molecular 
mechanism by which tension-dependent changes of cell shape 
might convey regulatory information remains unclear. 

To understand the biological significance of cell "shape; 
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this phenomenological entity must be redefined in terms of 
chemical and physical determinants that can be studied at 
the molecular level. Actin-containing, contractile microfila- 
ments are responsible for force transduction in cells (Korn, 
1978), and thus they play a central role in cell shape determi- 
nation. ECM molecules such as fibronectin appear to be 
structurally interconnected with microfilaments via a con- 
tinuous series of noncovalent binding interactions involving 
actin-associated proteins (e.g., talin) and transmembrane 
integrin receptors (Hynes and Destree, 1978; Horowitz et 
al., 1986). Microfilaments interact with microtubules and 
intermediate filaments within the cytoskeleton and thus form 
an integrated system of structural organization (Bissell et al., 
1982; Ingber and Jamieson, 1985; Ingber and Folkman, 1989). 

Cell shape also represents a visual manifestation of under- 
lying physical force distributions since cells spontaneously 
change their shape and take on new minimum energy forms 
when the adhesivity (i.e., mechanical integrity) of their at- 
tachment substratum is varied. This was demonstrated in the 
present and past studies (Harris et al., 1980; Emerman and 
Pitelka, 1977; Ingber and Jamieson, 1985) as well as with 
three-dimensional tension-dependent (~tensegrity') cell mod- 
els that are built using sticks and string to represent microtu- 
bules and microfilaments, respectively (Ingber and Jamie- 
son, 1985; Ingber and Folkman, 1989). Studies with the in- 
organic cell models suggest that if cytoskeletal filaments also 
form a continuum within living cells, then complementary 
force interactions between ECM, cell surface matrix recep- 
tors, contractile microfilaments, and microtubules could 
serve to control cytoskeletal filament assembly (Ingber and 
Jamieson, 1985; Joshi et al., 1985). This mechanochemical 
relation (i.e., dependence of cytoskeletal polymerization 
upon tension and compression) has a strong thermodynamic 
basis (Hill and Kirschner, 1982; Ingber and Jamieson, 1985; 
Buxbaum and Heidemann, 1988) as well as excellent sup- 
porting data from experiments with living cells (Bray, 1984; 
Joshi et al., 1985; Dennerll et al., 1988). Alterations of 
cytoskeletal polymerization may in turn affect cell metabo- 
lism in many ways. For example, transmembrane proteins, 
protein kinases, polyribosomes, mRNA, mitochondria, and 
glycolytic enzymes all appear to be physically associated 
with elements of the cytoskeletal lattice (Gall and Edelman, 
1981; Wolosewick and Porter, 1979; Fulton et al., 1980; 
Cervera et al., 1981; Browne et al., 1982; Masters, 1984). 
Mechanical perturbation of the endothelial cell surface or 
cortical cytoskeleton may also have direct effects on the 
function of stretch-activated ion channels in the plasma mem- 
brane (Lansman et al., 1987). Interestingly, recent studies 
with fibroblasts (Schwartz et al., 1989) and with our capil- 
lary endothelial cells (Ingber et al., submitted for publica- 
tion) suggest that ECM-dependent changes of cell shape may 
in part alter cell growth by modulating a Na÷/H + antiport 
on the cell surface. 

Another possibility is that tension-dependent changes of 
cell shape and cytoskeletal organization might alter a struc- 
tural system for signal transduction within capillary cells. 
For example, extracellular alterations of physical force dis- 
tributions may be translated directly into changes of nuclear 
structure via transmission of mechanical forces across inter- 
mediate filaments that physically link the plasma membrane 
to the nuclear envelope (Fey et al., 1984; Georgatos and 
Blobel, 1987). In normal cells, nuclear enlargement appears 

to be a prerequisite for entrance into the synthetic phase of 
the cell cycle (Nicolini et al., 1986; Ingber et al., 1987). 
DNA synthesis also can be activated within isolated nuclei 
by artificially inducing nuclear swelling (Coffey et al., 1974). 
Thus, the mechanical restraints of a compact nucleus within 
a shortened cell may physically limit large scale biophysical 
alterations that are required for initiation of DNA synthesis, 
such as DNA unwinding and unfolding (Pienta and Coffey, 
1984; Roberts and D'Urso, 1988), and thereby suppress 
DNA replication. For this reason, endothelial cell retraction 
during capillary differentiation may induce quiescence. 

Alterations of torsional strain within DNA also can have 
potent effects on gene transcription (Luchnik et al., 1982). 
Thus, this is one way in which cell retraction and nuclear 
rounding (i.e., local mechanical perturbations) could switch 
on differentiation-specific.genes as well as tissue-specific 
patterns of histodifferentiation. Interestingly, both experi- 
ments with cultured capillary cells (Ingber et al., 1987) and 
studies with "nucleated" tensegrity cell models (Ingber and 
Jamieson, 1985) confirm that cell and nuclear shape alter in 
a coordinated fashion as cells progress from round to spread 
suggesting that biophysical interactions may play a central 
role in this process. 

Control of Angiogenesis: a Solid-State 
Regulatory System 

Soluble FGF can act over large distances to initiate angiogen- 
esis. However, our results suggest that capillary growth, 
differentiation and involution may be controlled locally 
through modulation of ECM adhesivity or structural in- 
tegrity. This possibility is supported by the finding that capil- 
lary involution can be induced in vivo using compounds that 
produce capillary basement membrane breakdown, inhibit 
collagen accumulation, or interfere with collagen cross-link 
formation and alter its tensile strength (Ingber et al., 1986; 
Ingber and Folkman, 1988). Regression of mammary and 
Mullerian Duct epithelium is similarly associated with loss 
of basement membrane integrity (Wicha et al., 1980; Trel- 
stad et al., 1982). Furthermore, Bernfield and coworkers 
have previously suggested that local patterns of tissue organi- 
zation may be established during epithelial morphogenesis 
based upon controlled alterations of ECM turnover at selec- 
tive sites (Bernfield and Banerjee, 1978). 

However, the most novel finding of the present study is that 
local control of FGF action is based upon a pivotal "switch" 
that is mechanochemical rather than purely chemical in na- 
ture. This switching mechanism acts like a photomultiplier 
in that it is triggered as a result of summation or amplifica- 
tion of many smaller signals, in this case, multiple individual 
cell contractions or changes in cell extension. In this hypo- 
thetical solid-state regulatory system, ECM molecules would 
transmit growth and pattern-regulating signals as a result of 
mechanical interactions with specific cell surface receptors; 
i.e. by physically resisting cell-generated tensile forces ap- 
plied by those receptors. In this manner, the composition, 
polymerization chemistry, and turnover rates of complex ex- 
tracellular matrices would in part serve to convey regulatory 
information by determining their physical properties. 
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