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Abstract

Motivation: Loss-of-function genetic variants are frequently associated with severe clinical pheno-

types, yet many are present in the genomes of healthy individuals. The available methods to as-

sess the impact of these variants rely primarily upon evolutionary conservation with little to no

consideration of the structural and functional implications for the protein. They further do not pro-

vide information to the user regarding specific molecular alterations potentially causative of

disease.

Results: To address this, we investigate protein features underlying loss-of-function genetic vari-

ation and develop a machine learning method, MutPred-LOF, for the discrimination of pathogenic

and tolerated variants that can also generate hypotheses on specific molecular events disrupted by

the variant. We investigate a large set of human variants derived from the Human Gene Mutation

Database, ClinVar and the Exome Aggregation Consortium. Our prediction method shows an area

under the Receiver Operating Characteristic curve of 0.85 for all loss-of-function variants and 0.75

for proteins in which both pathogenic and neutral variants have been observed. We applied

MutPred-LOF to a set of 1142 de novo vari3ants from neurodevelopmental disorders and find en-

richment of pathogenic variants in affected individuals. Overall, our results highlight the potential

of computational tools to elucidate causal mechanisms underlying loss of protein function in loss-

of-function variants.

Availability and Implementation: http://mutpred.mutdb.org

Contact: predrag@indiana.edu

1 Introduction

Genetic data-driven approaches to human health have resulted in

the implication of loss-of-function (LOF) variants in phenotypes

ranging from complex neuropsychiatric diseases to Mendelian blood

groups (Stenson et al., 2014). Loss-of-function variants include

frameshifting and stop variants and are of particular interest because

of their potentially profound impact on the mRNA transcript and

translated protein. Frameshifting variants are insertions and dele-

tions of nucleotides (indels) not divisible by three, causing a change

in the mRNA coding frame. Stop variants, on the other hand, entail

the gain or loss of stop codons in mRNA; stop-gain or nonsense

variants introduce a premature termination codon that truncates the
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protein, whereas stop-loss or nonstop variants alter the termination

codon and lead to elongated proteins.

Altered transcripts resulting from LOF variants are either

degraded at the mRNA or protein levels or rendered non-functional,

often leading to disease phenotypes. For example, disease-causing

stop variants are significantly enriched for alterations which activate

nonsense mediated decay, resulting in haploinsufficiency (Mort

et al., 2008). However, LOF variants can also be functionally and

phenotypically neutral; in fact, each human genome may contain

hundreds of frameshifting indels and dozens of stop variants with

little or no observable impact upon phenotype (Kircher et al., 2014;

MacArthur and Tyler-Smith, 2010; MacArthur et al., 2012; Sulem

et al., 2015; Thousand Genomes Project Consortium, 2010).

Robustness in the genome through gene duplication (Hsiao and

Vitkup, 2008) and compensatory mechanisms (Hu and Ng, 2012)

can result in the toleration of many LOF variants. Furthermore,

gene loss in regions under relaxed selection, including olfactory and

taste receptor genes, is typically tolerated (Risso et al., 2014).

Recently, there has been a growing interest in the phenotypic

and clinical roles of de novo LOF variants. For example, an esti-

mated one out of every hundred de novo LOF mutations contributes

to autism spectrum disorders (Ronemus et al., 2014). Data from the

Exome Aggregation Consortium (ExAC) found that the exomes of

60 706 individuals contain nearly sixty thousand non-singleton non-

sense variants while 3230 genes exhibit near-complete depletion

(Lek et al., 2016); therefore, a major challenge remains in under-

standing the nature and quantifying the impact of LOF variants in a

given genome. The lack of annotation for previously unseen genetic

variants in many such cases further highlights the need for sophisti-

cated prediction models specifically designed for LOF variants.

Unlike single nucleotide variants (Cline and Karchin, 2011), LOF

variants are not as well-studied. Early approaches used in the work of

Zia and Moses (2011), SIFT Indel (Hu and Ng, 2012) and NutVar

(Rausell et al., 2014) have primarily utilized conservation features.

However, these features are limited in distinguishing between LOF

variants of different classes in the same protein. Moreover, these

methods restrict their training sets to core proteins that have high

quality annotations, thereby reducing their utility on less well-studied

genes. To circumvent this issue, CADD (Kircher et al., 2014), a

method designed to predict the impact of all classes of genetic vari-

ation, was trained on simulated de novo and ancestral mutations.

DDIG-in further supplemented conservation-based features with in-

trinsic disorder predictions from the region affected by stop gain and

frameshifting variants (Folkman et al., 2015), whereas VEST-Indel

evaluates frameshifting indels via a random forest model, yet restricts

functional and structural features to stability, solvent accessibility and

the temperature factor (Douville et al., 2016). However, there are nu-

merous other structural and functional properties of proteins that

could potentially be impacted by LOF variants. The incorporation of

such information alongside features indicative of functional redun-

dancy of the protein into more complex predictive models is expected

to not only increase discriminative power but also suggest the specific

nature of functional impact in a principled manner.

To address these challenges, we study the evolutionary, struc-

tural and functional signatures of loss-of-function genetic variants.

We subsequently develop machine learning methods for the discrim-

ination of pathogenic from tolerated frameshifting and stop gain

variants and hypothesizing specific molecular alterations. Our re-

sults provide evidence that there is significant potential to analyze

the causal mechanisms for loss of function in these classes of vari-

ants and point out potential difficulties in developing computational

tools for automated prioritization of loss-of-function variants.

2 Materials and methods

2.1 Training data sets
Pathogenic (disease-causing) stop gain and frameshifting variants

were obtained from the July 2016 version of the Human Gene

Mutation Database (HGMD) (Stenson et al., 2014) and ClinVar

(Landrum et al., 2016). The set of putatively neutral variants was

composed of frameshifting and stop gain variants from ExAC which

were annotated to have passed all quality filters. To remove poten-

tial biases, we did not perform filtering based upon population fre-

quency and only retained canonical isoforms in subsequent analyses.

Table 1 summarizes all data sets.

2.2 Neurodevelopmental disorders dataset
We applied MutPred-LOF to a data set, curated from the published

literature, consisting of 970 de novo LOF variants identified through

whole-exome or whole-genome sequencing of individuals diagnosed

with six neurodevelopmental disorders, including autism spectrum

disorder (ASD), schizophrenia, intellectual disability, bipolar dis-

order, developmental delay and epileptic encephalopathy (de Ligt

et al., 2012; De Rubeis et al., 2014; EuroEPINOMICS-RES

Consortium, Epilepsy Phenome/Genome Project and Epi4K

Consortium, 2014; Epi4K Consortium and Epilepsy Phenome/

Genome Project, 2013; Fromer et al., 2014; Gilissen et al., 2014;

Girard et al., 2011; Guipponi et al., 2014; Gulsuner et al., 2013;

Hashimoto et al., 2016; Iossifov et al., 2012, 2014; Jiang et al.,

2013; Kong et al., 2012; McCarthy et al., 2014; Neale et al., 2012;

O’Roak et al., 2011, 2012a, b; Rauch et al., 2012; Sanders et al.,

2012; Turner et al., 2016; Xu et al., 2011; Xu et al., 2012; Yuen

et al., 2015, 2016; S.Jonathan et al., unpublished data, doi: https://

doi.org/10.1101/102327) and a control set of 172 de novo LOF mu-

tations from healthy siblings (Gulsuner et al., 2013; Iossifov et al.,

2012, 2014; O’Roak et al., 2011, 2012b; Rauch et al., 2012;

Sanders et al., 2012; Xu et al., 2011, 2012; S.Jonathan et al., unpub-

lished data, doi: https://doi.org/10.1101/102327).

2.3 Feature engineering
We created features for the description of each variant based upon

the properties of wildtype protein sequence, with features divided

into those representing portions of the protein sequence affected and

unaffected by the alteration. Amino acids occurring prior to the vari-

ant were considered to constitute the unaffected portion of the pro-

tein and are referred to in the text as the amino side (Fig. 1).

Residues that occur after the variant are likewise denoted as the

carboxyl side, either wildtype or mutant. The amino acid sequences

of the carboxyl side in mutant variants were not reconstructed from

the genomes for use in structural and functional property features;

incorporation of features based upon predicted mutant amino acid

sequence did not lead to improved performance and the exclusion of

these features greatly simplifies predictor development and its

Table 1. Number of variants (proteins) present in each data set

Disease Neutral Total

Frameshift 18 116 (1545) 90 135 (13 427) 108 251 (13 713)

Stop gain 14 318 (1681) 7960 (4990) 22 278 (6137)

Total 32 434 (1995) 98 095 (13 605)

The set of canonical sequences was derived from UniProt (Suzek et al.,

2007). The number of available stop-loss variants was too small to be

included in this work.
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application because the variants could be scored based on the wild-

type sequence only.

The feature space covers three classes: general sequence features,

evolutionary features and predicted structural and functional fea-

tures. Sequence-based features include the relative position of the

variant, the number of amino acids affected by the variant, binary

nonsense-mediated decay prediction based upon the 50 nucleotide

rule (variant is more than 50 nucleotides upstream of the final exon–

exon junction (Maquat, 2004), number of amino acids from the

variant to the final exon–exon junction, and a two-element binary

vector indicating the type of LOF variant (stop gain or frameshifting

insertion/deletion).

2.3.1 Evolutionary features

Evolutionary features involved general sequence conservation

indexes for amino/carboxyl sides of the protein as well as counts of

close homologs of the wildtype protein in the human and mouse

genomes. Conservation features for the wildtype sequence were ex-

tracted from two sources. First, we generated a position-specific

scoring matrix (PSSM) by running PSI-BLAST against the "nr" data-

base (Altschul et al., 1997). Second, we used AL2CO (Pei and

Grishin, 2001) to derive nine conservation indexes from the UCSC

Genome Browser 46-species alignment (Karolchik et al., 2014) for

each position in the sequence. Both normalized and unnormalized

versions of these scores were calculated for the whole alignment and

two sub-alignments (mammals only and primates only). To capture

the relative conservation of affected and unaffected regions of the

protein, we took the maximum conservation over the amino and

carboxyl sides of the protein as well as the difference between

these regions. This resulted in 3�42¼126 PSSM features and

3�2�3�9¼162 AL2CO conservation features.

2.3.2 Structural and functional property features

The structural and functional features included both gene-based

and residue-based features. The gene-based features contained

2132-dimensional vectors of predicted Gene Ontology terms using

FANN-GO (Clark and Radivojac, 2011), where each variant in

the same protein received the same set of features. The predicted

features were used in order to mitigate biases that could arise due

to the fact that known disease genes are generally better studied

and contain more functional information than the remaining

genes.

We extended the gene-based feature space via the prediction of a

variety of residue-level structural and functional properties in the

wildtype protein that convert its amino acid sequence into a series of

real-valued vectors of the same length. We then used the method-

ology behind vector quantization kernels (Clark and Radivojac,

2014) to encode these property vectors into a fixed-length feature

representation. Vector quantization features address an important

challenge in encoding LOF variants as they facilitate encoding of

variable-length amino acid sequences into a fixed-length representa-

tion, beyond simple summary statistics. At the same time, they allow

for more effective use of external biological data to be incorporated

into method development via a series of prediction models previ-

ously constructed for given structural and functional properties.

Specifically, the vector quantization procedure involved a data

preprocessing step and a feature construction step. In the data pre-

processing step, we first defined the universe of human protein se-

quences S ¼ fs1; s2; s3; . . .g as the UniRef50 database (Suzek et al.,

2007), where each s 2 S is a string composed of amino acids from

A ¼ fA;C; . . . ;Yg. For each s 2 S, we mapped the protein sequence

into a real-valued property vector p ¼ ðp1;p2; . . . ;plÞ, where l is

length of the string s, using any particular feature mapping described

in Table 2. For example, predicting the helical propensity for a given

sequence s results in one such vector p of numbers between 0 and 1.

Next, we decomposed the property vector into n-dimensional over-

lapping subvectors p½1;n�; p½2;nþ1�; . . . ; p½l�nþ1;l�, where p½1;n� represents

the first n elements of p. The process was repeated for each protein

sequence to create a large database of n-dimensional fragments for a

particular property. This database of fragments was then clustered

using the K-means algorithm into m groups to generate a partition

to m regions R ¼ fR1;R2; . . . ;Rmg, represented by centroids

C ¼ fc1; c2; . . . ; cmg. Each centroid is associated with a Voronoi re-

gion, Ri, such that

Ri ¼ fx : dðx; ciÞ � dðx; cjÞ; i 6¼ jg; (1)

where d(x, c) is the Euclidean distance between fragment x and cen-

troid c. One such clustering was created for each property and a set of

m centroids per property was stored. In the feature construction step,

a particular property was first predicted for the wildtype sequence and

a set of length-n segments within the amino and carboxyl regions rela-

tive to the variant position were extracted. A set of features was then

created for each side by counting the segments closest to each of the

UniRef50-derived centroids; i.e., the count at position i corresponds

to the number of fragments closest to the i-th centroid. Two vectors of

counts, one for the amino and one for the carboxyl side, were created

for each property. Based on previous work, and with minimal experi-

mentation, we chose n¼16 and m¼16 (Clark and Radivojac, 2014).

This vector quantization framework was utilized on both the carboxyl

and amino side sequence fragments for the 57 structural and func-

tional features to derive a total of 57�16�2¼1824 features.

Overall, the data set contained 4 270 features.

2.4 Predictor development
An ensemble of one hundred bagged two-layer feed-forward neural

networks was trained for all loss-of-function variants collectively

utilizing the Matlab Neural Network Toolbox. The number of hid-

den units in each network was fixed at 10. To eliminate features

very likely to be uninformative, we applied a two-sample t-test with

a high P-value threshold of 0.5. Furthermore, we applied principal

component analysis with 99% retained variance on z-score normal-

ized data to reduce dimensionality and eliminate (near-)colinear fea-

tures. The resilient propagation method was used for training with

25% of the training data used as validation (Riedmiller and Braun,

1993). All parameters were set prior to training and were not varied.

Finally, all models were trained on balanced training sets, where the

majority class was subsampled.

2.5 Predictor evaluation
Performance of MutPred-LOF is represented by the area under the

ROC curve (AUC) derived from scores generated in 10-fold per-

Wildtype

Mutant

variant

Carboxyl side mutant

Amino side wild Carboxyl side wild

Fig. 1. Illustration of the impacted portions of the protein for loss-of-function

variants. The impacted region can be shorter or longer for the mutant protein

(if translated); its length is zero for the stop gain variants
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protein cross-validation. All pre-processing steps (normalization,

dimensionality reduction) were carried out on the training partition

only and applied on the test partition. To ensure that the model did

not suffer from over-reliance on protein-based features, we performed

per-protein cross-validation such that for each fold all variants in a

protein were either entirely in the training or test set. We illustrate

the influence of gene-based features on estimated performance

of MutPred-LOF using three types of cross-validation protocols:

(1) per-variant, (2) per-protein and (3) per-cluster. Per-variant cross-

validation considers all variants as independent data points and parti-

tions variants into ten-folds without consideration of the proteins

from which the set is derived. In contrast, per-protein cross-validation

ensures in each fold that all variants from the same protein are either

in the training or in the test partition. This evaluation protocol ensures

better performance estimation when the model is presented with a

variant in protein that was not in the training set or that contained

only one type of variant (e.g., disease-associated). In per-cluster cross-

validation, variants within proteins with at least 50% sequence iden-

tity were included in either training or test sets, and can be used to

estimate performance when the model is presented with a protein for

which no protein within 50% sequence identity was available in the

training set. We also used this evaluation protocol to assess the over-

fitting potential of the per-protein performance assessment.

Next, we compared the performance of MutPred-LOF against

three currently available methods, each of which was evaluated using

a set of frameshifting and stop gain variants from the MutPred-LOF

training set. Deleterious variants from HGMD professional version

2016 that were not present in HGMD 2015 were extracted to repre-

sent a set of deleterious variants that are unlikely to be included in the

training data of these methods (2,409 variants from 745 genes). The

neutral test set consisted of variants from the ExAC training data

(43,534 variants from 11,098 genes). The test set was filtered to re-

move the training data from DDIG-in and Vest-Indel; this procedure,

however, could not be replicated for the CADD training data.

Further, we created a for-comparison-only version of MutPred-LOF,

MutPred-LOF0, with these test set variants removed from the training

data, to ensure that for every model in this comparison the test vari-

ants were not included in the training set.

2.6 Assessing significance of functional alterations
To identify loss-of-function variants with significant functional im-

pact, we defined a P-value for each feature listed in Table 2 to assign

significance and rank prospective mechanisms. In the development

of MutPred (Li et al., 2009), a method that predicts the impact of

single amino acid substitutions, we constructed empirical P-values

as follows. The null distribution was first defined using the scores of

functional disruption for all variants present in the set of putatively

neutral substitutions. Then, given a score of functional disruption

for a new variant, the P-value is determined as the fraction of neutral

substitutions with disruption scores at least as high as the observed

value. This method relies on two strong assumptions: (1) that each

functional mechanism is equally disrupted in the set of neutral sub-

stitutions, and (2) that each functional mechanism is equally likely.

In this work, we rank functional disruption scores by modifying

MutPred’s approach so as to mitigate the latter assumption.

Specifically, we rank the molecular mechanisms by adjusting the

P-values as

P0 ¼ ð1� aÞ � P; (2)

where P is the P-value assigned in a way identical to MutPred’s ap-

proach and a is the frequency of a particular functional mechanism.

We refer to this quantity as prior-corrected P-value. The rationale

for this adjustment comes from the definition of the false discovery

rate (FDR); i.e.,

FDR ¼ ð1� aÞ � FPR

a � TPRþ ð1� aÞ � FPR
; (3)

where TPR is the true positive rate and FPR is the false positive rate.

Here, we use the P-value as an approximation of the false positive

rate and ignore the denominator. Ideally, molecular alterations

would be prioritized based on the posterior probability that a par-

ticular mechanism (e.g., DNA binding, or protein binding) is dis-

rupted. However, this step either requires a data set of disrupted and

non-disrupted mechanisms that can be used to estimate true positive

and false positive rates or further assumptions on how to probabilis-

tically reason on the disruption of structural/functional propensity

for entire protein regions based on such propensities on a single-

residue basis.

The scoring function that was used to determine the empirical

null distribution and assign P-values was the number of residues

with high structural and functional propensities. The thresholds for

these high propensity scores were determined separately for each in-

dividual model described in Table 2 during the training phase (low

false positive rates; here, 10%). On the other hand, the prior

Table 2. Predicted structural and functional features

Property category Predicted features

Structure and

dynamics

Three classes*—Helix, strand, loop; Intrinsic disorder (Peng et al., 2006); B-factor (Radivojac et al., 2004); Relative solvent

accessibility*; Coiled-coil region*

Signal peptide and

transmembrane

regions*

Seven classes—N- and C-termini of signal peptide, signal helix, signal peptide cleavage site, transmembrane segment, cyto-

plasmic and non-cytoplasmic loops

Enzyme activity* Catalytic residues

Regulation* Allosteric residues

Macromolecular

binding

DNA*; RNA*; Protein-protein interaction (PPI)*; PPI hotspots*; Molecular Recognition Features (MoRFs)*; Calmodulin-

binding (Radivojac et al., 2006)

Metal-binding* Cd; Ca; Co; Cu; Fe; Mg; Mn; Ni; K; Na; Zn

Post-translational

modification

(PTM) (Pejaver

et al., 2014)

Acetylation, ADP-ribosylation, Amidation, Carboxylation, Disulfide linkage, Farnesylation, Geranylgeranylation,

Glycosylation (C-linked, N-linked and O-linked), GPI anchor amidation, Hydroxylation, Methylation, Myristoylation,

N-terminal acetylation, Palmitoylation, Phosphorylation, Proteolytic cleavage, Pyrrolidone carboxylic acid, Sulfation,

SUMOylation, Ubiquitylation

Motifs From PROSITE (Sigrist et al., 2013) and ELM (Dinkel et al., 2014)

*Indicates in-house predictors.
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probabilities that a particular residue has a specific property were

estimated using the AlphaMax algorithm (Jain et al., 2016).

2.7 MutPred-LOF output
For every mutation input into MutPred-LOF, the model returns a

score between zero and one, where variants with higher scores are

more likely to be pathogenic. In addition, MutPred-LOF returns up

to five structural and functional mechanisms that are impacted in

the affected region of the protein, and have significant prior-

corrected P-values (less than 0.05). For the purposes of classifica-

tion, we provide three score thresholds to aid users in discriminating

between pathogenic and neutral variation, at different levels of false

positive rate (FPR): 0.40 (10% FPR), 0.50 (5% FPR, recom-

mended), 0.70 (1% FPR).

3 Results

3.1 Evolutionary conservation of loss-of-function

variants
Conservation has consistently been shown to be a key signature of

pathogenic variants (Ng and Henikoff, 2003). Unsurprisingly, these

features were also shown to be informative across all variant types

in our data. To highlight the differences in conservation between

pathogenic and neutral loss-of-function variants, Figure 2 shows a

representative plot created from one of the conservation metrics.

The plots show the approximate probability density function of

average unnormalized unweighted entropy in the vertebrate align-

ment for amino and carboxyl sides of the wildtype sequences. While

the affected region in disease-associated variants is more conserved

than that of the neutral variants, the similarity between distributions

of conservation between amino and carboxyl sides indicates that the

conservation of the protein as a whole plays a dominant role.

Therefore, for such a feature to be sufficiently effective in discrimi-

nating between pathogenic and neutral variants, the training set

would need to contain both types of variants for most proteins,

which is currently not the case.

An alternative metric to analyze sequence conservation between

variation is the number of closely related proteins. Functional redun-

dancy in the genome, as measured by the number of closely related

paralogs has been shown to be associated with neutral loss-of-

function variants (MacArthur et al., 2012) and genes with homologs

that have 90% sequence identity are three times less likely to harbor

disease variants (Hsiao and Vitkup, 2008). To test if our data were

consistent with this trend, we counted sequences with high sequence

identity in human and mouse proteomes. The average number of

homologs in overlapping sequence identity regions for each class of

loss-of-function variation are shown in Figure 3. In the human-

human comparison, proteins containing pathogenic variants tend to

have fewer similar proteins across all levels of sequence identity than

proteins containing neutral variants. Broadly speaking, this suggests

increased robustness of the system through functional redundancy;

i.e., it allows very similar proteins to compensate for one another.

On the other hand, human-mouse protein comparisons show the op-

posite trend. Proteins with disease-associated variants tend to have

more homologs in the mouse genome than proteins with neutral

variants. Although trends remain consistent, the magnitude between

the average homolog count differs between the types of variant. This

discrepancy may partially be due to biases in the data sets but may

also reflect evolutionary constraints underlying sequences suscep-

tible to each variant type.

Generally, our results agree with previous observations suggest-

ing the importance of evolutionary conservation for identifying

disease-associated variants. However, we also find that disease vari-

ants are often located in more evolutionarily conserved proteins

compared to the neutral variants suggesting limitations in using such

information as a sole discriminator of pathogenicity of variants. The

homology profiles from Figure 3 also support previous observations

that proteins harboring disease variants tend to have fewer homo-

logs in the human genome but more homologs in the genomes of

model organisms compared to other proteins (Hsiao and Vitkup,

2008; Mushegian et al., 1997).
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Fig. 2. Approximate probability density functions of an average conservation

measure of the wildtype protein (A) at the amino side of the variant and (B) at

the carboxyl side of the variant for pathogenic (blue) and neutral (orange)

variants. To ensure clarity, we omit proteins that contain both pathogenic and

neutral variants from this figure. Proteins harboring disease variants are gen-

erally more conserved at both sides of the variant
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Fig. 3. Homology profiles for the types of loss-of-function variants. Each plot

shows the average number of sequences affected by pathogenic and puta-

tively neutral variants, within a particular range of global sequence identity

against human and mouse genomes
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3.2 Prediction evaluation
Classifier performance is reported as the area under the ROC curve

(AUC) and shown in Figure 4. In panel A, we show the AUC of al-

ternative models based upon per-variant, per-protein and per-cluster

cross-validation. The per-variant version of MutPred-LOF outper-

forms per-gene and per-cluster methods as a result of the model ex-

hibiting over reliance on gene-specific features. The per-gene and

per-cluster versions show comparable performance, and thus further

analyses are carried out using the per-gene evaluation. Additionally,

we assessed the performance of an alternative model utilizing per-

cluster cross-validation with 25% sequence similarity and found

similar performance to the 50% sequence identity threshold (data

not shown). Figure 4B shows the performance of MutPred-LOF on

the two types of loss-of-function variants separately. We see that the

performance of stop gain variants is significantly lower than frame-

shifting variants, which have higher collective performance. We

observed that models developed specifically for each variant type

show similar, but worse collective performance than a single unified

model (data not shown). Finally, we compared the performance of

MutPred-LOF against three currently available tools in Figure 4C.

We define a set of proteins which contain both neutral and patho-

genic variants as bi-class proteins, and similarly derive a set of vari-

ants contained in those proteins as the bi-class subset. We observe

that MutPred-LOF and CADD show reduced performance on the

bi-class subset compared to the full set of variants whereas the other

methods show significantly degraded performance on subset of vari-

ants in bi-class proteins. This suggests that MutPred-LOF is less de-

pendent on the global protein-specific attributes that may simply be

reflective of the signatures of disease genes. Although we have car-

ried out as stringent a comparison as possible, community-wide as-

sessments such as the Critical Assessment of Genome Interpretation

(CAGI) will be able to further establish performance of all available

methods on a common set of variants in the future.

3.3 Performance of feature sets
We investigated the predictive capacity of each individual feature

subset on the performance of MutPred-LOF for frameshifting and

stop-gain variants. To accomplish this, we generated a neural net-

work model with the same parameters as the full MutPred-LOF but

with a reduced feature set, shown in Table 3. Values in Table 3 cor-

respond to features discussed in Section 2.3. Here we also observe

metal binding and predicted GO terms show performance on par

with conservation-based features. Any individual feature subset,

particularly vector quantized functional features, are not sufficient

to discriminate between pathogenic and neutral variants. However,

if any feature set is removed from the training data then the AUC of

the full model drops by several points (data not shown).

3.4 Phenotype-specific impact on structural and

functional features
We identified structural and functional features that exhibit differ-

ences between pathogenic variants and the neutral background, re-

flected in a P-value with respect to a given feature. To ascertain the

discriminative capacity of these P-values for individual proteins, we

identified and analyzed several proteins that can represent typical

use cases. For these examples, we selected proteins which contain

both pathogenic and putatively neutral variants, to highlight func-

tional differences underlying proteins with both disease-causing and

neutral loss-of-function variants.

3.4.1 pcdh19

Several mutations in Protocadherin-19 (PCDH19) are included in

the training data, including two putatively neutral variants from

ExAC and dozens of pathogenic variants from HGMD, all of which

have been predicted accurately in cross-validation. Mutations in

PCDH19 have been identified as causative for early infantile epilep-

tic encephalopathy 9, a disease shown to exhibit variable expressiv-

ity (Depienne and LeGuern, 2012). In this case, the two neutral

variants occur towards the carboxyl-terminus representing an ideal

use case of MutPred-LOF on a bi-class protein. In particular, the

neutral variants occur in the final 50 amino acids of the protein and

do not directly impact the primary Protocadherin-19 domain in the

protein. Additionally, MutPred-LOF uncovers several molecular

mechanisms significantly disrupted by these pathogenic variants

including calcium binding, phosphorylation and palmitoylation,

that are not identified in the neutral variants.

3.4.2 sim1

The Single-minded homolog 1 (SIM1) protein similarly contains

both a pathogenic variant and several putatively neutral variants.

Previously discovered loss-of-function mutations in SIM1 result in

haploinsuffciency and subsequent hypodevelopment of paraven-

tricular nuclei in the hypothalamus, and have been associated with

severe early-onset obesity and Prader-Willi-like syndrome features

(Bonnefond et al., 2013). The pathogenic variant abolishes the

majority of a PAS domain, including a ubiquitination site

(P0 ¼ 0:0265), whereas the neutral variants impact a portion of the

C-terminal single-minded domain. These putatively neutral variants

may still be associated with obesity if derived from obese ExAC par-

ticipants, depending upon the inclusion criteria for particular stud-

ies. The neutral variants impact the C-terminal Single Minded

domain, which has proposed relationship to transcriptional regula-

tion of SIM1 and therefore may still have some clinical relevance

(Ramachandrappa et al., 2013).

3.5 Performance on de novo variants in

neurodevelopmental disorders
We applied MutPred-LOF to de novo loss-of-function variants that

have been observed in whole exome and whole genome sequencing

of families affected by neurodevlopmental disorder (de novo variant

set and MutPred-LOF scores are available on the website). In this

setting, the case variants may include a large fraction of non-

pathogenic variants and so the performance of MutPred-LOF on this

set cannot be accurately assessed in a binary classification frame-

work (Jain et al., 2017). To this end, we utilized a Fisher’s exact test

to determine if there is a significantly higher proportion of LOF vari-

ants predicted to be pathogenic in the case samples than in the con-

trol samples, shown in Figure 4D. For the threshold associated with

5% false positive rate, we find that 56% (547/970) of the case LOF

variants are scored with high confidence to be pathogenic compared

to only 46% (79/172) of the control variants (P¼0.0071). For the

threshold associated with 10% false positive rate, we find that 86%

(839/970) of the case variants are scored with high confidence to be

pathogenic compared to only 80% (137/172) of the control variants

(P¼0.0152). The excess of LOF variants has been previously

observed in the patients with autism compared to their healthy sib-

lings (Iossifov et al., 2012). The fact that we observe a significantly

higher fraction of predicted pathogenic LOFs in the patients com-

pared to controls suggests that LOF variants may have an important

role in neurodevelopmental diseases.
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4 Discussion

Understanding the repertoire of molecular alterations consequent to

genetic variation is essential to advancing personalized medicine

(Rost et al., 2016). Severe alterations in mRNA transcripts resulting

from stop variants and frameshifting indels are particularly chal-

lenging because of their potentially major impact on the sequence of

translated proteins as well as on their structure and function. To ad-

dress these challenges, we assembled a large data set of human gen-

etic variants and analyzed specific types of molecular alterations

that could potentially be causative of underlying diseases. Using in-

sights from this analysis, we developed a computational model

MutPred-LOF, an extension to our variant predictor MutPred (Li

et al., 2009), to discriminate between pathogenic and tolerated puta-

tively loss-of-function variants. MutPred-LOF exploits detailed evo-

lutionary and functional information to classify LOF variation
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Fig. 4. Receiver operating characteristic (ROC) curves and Areas Under the ROC Curves (AUC). (A) Cross-validation performance of MutPred-LOF with per-variant,

per-protein, and per-cluster cross-validation; (B) Cross-validation performance of MutPred-LOF for frameshifting and stop gain variants separately; (C) The per-

formance for other methods based upon the testing set. Black curves represent the performance of MutPred-LOF0. The dotted line represents performance of

each model on the subset of variants from bi-class proteins; (D) Proportion of high-scoring de novo variants implicated in neurodevelopmental disorders in the

case and control datasets based upon 5 and 10% false positive rate thresholds. The P-value derived from Fishers exact test is shown above

Table 3. Per-feature evaluation: top ten performing feature sets

Feature set Full model

Predicted GO Terms 0.729

Maximum conservation 0.707

Metal binding 0.660

Structure and dynamics 0.652

Enzyme activity 0.645

Regulation 0.641

Macromolecular binding 0.633

Homology counts 0.614

Post-translational modification 0.611

Signal peptide and transmembrane 0.610

For each set of features we train ensembles of neural networks with the

same parameters in all models. The performance (AUC) of a model trained on

a feature set is used to estimate the performance of each feature separately.
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from different and disparate contexts including severely pathogenic

variation, pathogenic recessive variants in a heterozygous state, vari-

ants tolerated due to gene redundancy and sequencing errors

(MacArthur et al., 2012). In addition to providing a classification

score for pathogenic vs. tolerated variants, MutPred-LOF provides

hypotheses regarding affected molecular events that might be re-

sponsible for pathogenicity of the variant.

4.1 Evolutionary conservation vs. structure and function
In the course of our study, we were particularly interested in under-

standing the influence of evolutionary conservation as well as

structural and functional impact of the variant. Because pathogenic

loss-of-function variants cover a relatively small subset of human

genes, we found that a straightforward analysis may be misleading

and is likely to recover signatures of known disease genes (Dalkilic

et al., 2008), instead of properly accounting for the combined influ-

ence of the gene and variant features. To effectively include protein

structure and function, we incorporated over 50 computational mod-

els that output positional propensities for several major types of struc-

tural and functional features. These models were integrated via a

vector quantization-like approach into a rich feature representation.

The estimated accuracy of MutPred-LOF suggests that the inclusion of

additional features was beneficial in the modeling process.

4.2 Positive-unlabeled learning framework
Technically, our classification setting falls under the category of

positive-unlabeled learning (Denis et al., 2005), with a further cav-

eat that a fraction of positive data might be incorrectly labeled.

Recent advances in machine learning suggest that, under mild as-

sumptions, the traditional supervised models trained on positive vs.

negative examples provide the same ranking as the (non-traditional)

models trained on positive vs. unlabeled examples (Blanchard et al.,

2010; Elkan and Noto, 2008; Menon et al., 2015). Moreover, if the

class prior probability is known or can be estimated, one may fur-

ther exploit the following: (1) there exists a monotonic relationship

between the traditional and non-traditional posterior class distribu-

tions (Jain et al., 2016) and (2) the performance accuracy in the

non-traditional setting can be corrected to reflect the performance

accuracy in the traditional setting (Jain et al., 2017). Given these

theoretical results, we decided to use the entire ExAC database as a

set of ‘negative’ examples in our training procedure, with the reason-

ing that filtering out a subset of variants (e.g., rare variants) is more

likely to be harmful by biasing the sample than class label noise.

4.3 A note on terminology
Loss-of-function variants are defined here as frameshifting and stop

gain variants. The term can be considered a misnomer, due to the

potential for the interpretation that ‘loss of function’ implies axio-

matic loss of functional activity. Instead, we use the term to refer to

a class of variants that are likely to result in profound impact on the

protein, similar to the term ‘protein disrupting variant’. Loss-of-

function variants, although frequently causing disease, are likely

present in every human genome. Misinterpretation of the impact of

a variant that would appear to result in loss of molecular function

can lead to attributing phenotype to the wrong root molecular

cause.

By using this terminology, we sought to emphasize that the ex-

tent of impact on function lies on a spectrum from the absolute abo-

lition of function, to reduction of functional capacity and, finally,

no phenotypic consequence. Adding an additional layer of complex-

ity, we allowed for the fact that functional impact may or may not

result in pathogenicity. One of the objectives behind the develop-

ment of MutPred-LOF is to clarify the relationship between molecu-

lar function and pathogenicity by allowing potential users to make a

more informed assessment based upon both pathogenicity predic-

tion and impacted molecular function. To this end, we provided two

separate scoring mechanisms, and embrace the complexity underly-

ing loss-of-function variation.

4.4 Limitations
While MutPred-LOF showed good performance, shortcomings in

the training data and method development may be a limitation.

Context-based genetic information such as zygosity or haplotype are

typically not known since publicly available databases are com-

monly stripped of this information to maintain participant anonym-

ity. The mutational context including rescuing frameshifting

mutations and relevant variation within the gene or pathway is im-

portant to consider in causative variant discovery. Population bias

and undiscovered pathogenic variation in the neutral data set may

also have unintended impact on the final model. Finally, in the

method development step, we do not encode properties of the mu-

tant protein sequence, thereby excluding outcomes such as splice

site disruptions that may not damage the entire protein sequence

downstream of the variant. Reduced performance on bi-class vari-

ants highlights difficulties in discrimination between variants in bi-

class genes will continue to be of particular difficulty and should be

further emphasized.

4.5 Final thoughts
We believe that our analysis provides new insights into the under-

standing of loss-of-function variants, especially the interplay be-

tween protein-specific and variant-specific features. MutPred-LOF

encodes both types of features and shows the ability to differentiate

between disease-causing and tolerated loss-of-function mutations,

especially those occurring in the bi-class proteins. As such, MutPred-

LOF allows for the specialized interpretation of one of the most

impactful forms of genetic variation to facilitate variant and genome

interpretation.
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