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Introduction
Machine learning (ML) has been used for decades in genomics 
and bioinformatics. Among many other examples, protein 
modeling with hidden Markov models dates back to 1992,1 
and the book of P. Baldi and S. Brunak2 Bioinformatics: the 
machine learning approach was published in 1998. In regulatory 
genomics specifically, position weight matrices (PWMs), 
which are the most common models for transcription factor 
(TF) binding sites, appeared in the late 1980s.3,4 In the follow-
ing years, many algorithms have been proposed in the literature 
to estimate the parameters of a PWM from sequence exam-
ples.4-7 Today, PWMs of hundreds of TFs are available in data-
bases such as JASPAR8 and HOCOMOCO9 and can be used 
to predict binding affinities and to identify potential binding 
sites in genomes.

In recent years, several ML approaches have been proposed 
to go beyond single TF binding sites, by modeling entire regu-
latory sequences spanning hundreds or even thousands of base 
pairs. These models range from linear models10 to random for-
ests (RFs),11 kernel methods,12,13 convolutional neural net-
works (CNNs),14,15 and more advanced deep learning 
approaches.16,17 Notably, deep learning approaches adapted 
from methods initially developed for image and natural lan-
guage processing have attracted considerable attention in the 
field. All these studies take place in a supervised framework, 
where the goal is to train a model able to predict a signal meas-
uring gene expression (RNA-seq, CAGE, etc), TF binding, or 
histone marks (ChIP-seq, ATAC-seq, etc) on the basis of the 
DNA sequence only. Despite the supervised framework, in a 
large number of studies, these models are not really used as 

predictors. Instead, the goal is to use the model to deduce, and 
to some degree assess, new biological knowledge and hypoth-
eses about gene regulation; hypotheses that have then to be 
experimentally validated. Along with the availability of a huge 
quantity and diversity of genomic, transcriptomic, and epige-
netic data, these approaches have allowed very interesting pro-
gress in regulatory genomics. Maybe one of the most striking 
results is the fact that gene expression can be predicted with 
often high accuracy, albeit not perfectly,18-20 from the sequence 
only, which means that a large part of the instructions for the 
control of gene expression likely lie at the level of the DNA. 
This is in contradiction with a common belief that gene expres-
sion first depends on chromatin marks that are not necessarily 
controlled by the DNA sequence.21 Actually, several of the 
early works in the field have shown that epigenetic marks can 
be predicted from the sequence alone, often with very good 
accuracy.11,13,15

Beyond this very general result, other biological hypotheses 
can be deduced from ML models. As we will see in this review, 
different strategies/methods can be used to deduce and assess 
interesting biological hypotheses with these models. Certain 
general knowledge, such as the cell specificity of a regulatory 
mechanism, can be quite easily tested by learning different 
models for different conditions and comparing their accuracy. 
However, for more specific knowledge, such as the DNA motifs 
involved in a specific regulation, we have to directly analyze the 
learned model, and this knowledge-extraction process is highly 
dependent on the model type. In addition, because this putative 
knowledge must be validated with wet-lab experiments (for 
example using CUT&RUN, ChIP-seq, or ChIP-nexus to 
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validate the binding of a specific TF, STARR-seq to validate 
enhancers, etc), it is important to have a measure of importance 
associated with each of the extracted hypotheses. However, we 
will also see that the different models do not provide the same 
kind of importance measure. Specifically, for some models, 
these measures can be considered as objective, in the sense that 
they rely directly on the error of the model, estimated from the 
data. For other approaches, however, these estimates are more 
subjective, as they are computed solely on the basis of the signal 
predicted by the model, with no link to the associated error.

There are several recent reviews devoted to deep learning 
approaches for modeling genomic sequences.22-25 In addition, 
several other articles address the problems of model interpreta-
tion in ML—see, e.g., references.26-29 This review differs from 
these articles on several points: (1) it is specifically dedicated to 
the modeling of genomic sequences involved in the regulation 
of gene expression; (2) it presents a wide variety of models, 
without being restricted to deep learning approaches; and (3) it 
makes an inventory of methods and practices that can be used 
to extract different levels of biological knowledge from these 
models. This review is intended for biologists and computa-
tional biologists who are curious to know how ML can be used 
to deduce new biological hypothesis about gene regulation. 
Special attention has been paid to explaining the mathematical 
concepts simply and intuitively but also in a sufficiently detailed 
way so that readers without knowledge of ML should be able 
to fully understand the advantages and limitations of the dif-
ferent approaches. This article does not intend to provide an 
exhaustive list of methods and approaches that use ML to 
study regulatory sequences. Rather, the aim is to develop and 
provide the reader with the technical concepts necessary to 
understand this literature. Most of the works presented below 
have been selected either because they provide a good illustra-
tion of the type of analyses that can be done, or because they 
are, to our knowledge, among the firsts to introduce a specific 
type of ML model in regulatory genomics, or to interpret a 
given type of ML model.

This review is organized as follows. We first present differ-
ent types of models, ranging from linear models to neural net-
works, for predicting chromatin features and expression signals. 
The following sections discuss how these models are used to 
infer new biological hypothesis and give some examples of 
knowledge that was gained from these studies. We first give a 
brief literature tour on the identification and prioritization of 
nucleotide variants. Next, we describe simple approaches that 
are used to assess very general hypotheses with these models. 
Finally, the last section is devoted to the extraction of more 
complex DNA features, and to the measures of importance 
that are associated with these features.

ML for Regulatory Genomics
Given a genome-wide experiment (RNA-seq, ChIP-seq, 
ATAC-seq, etc) monitoring a specific signal (gene expression, 

TF binding, histone mark, etc) in a specific condition (cell type, 
time point, treatment, etc), the aim is to learn a model able to 
predict this signal based on the DNA sequence alone. We have 
a set of sequences X = {x1, . . ., xN}, each sequence xi being asso-
ciated with a signal yi. For classification problems (e.g., when 
predicting TF binding or histone mark), yi is limited to 2 values 
(e.g., –1/+1) indicating whether the ith sequence is or is not 
bound by the studied factor in the ChIP-seq experiment. For 
regression problems (e.g., when predicting a gene expression 
signal) yi is a continuous value that measures the expression 
associated with ith sequence (in this case, sequences may be, 
e.g., gene promoters or enhancer sequences). Therefore, the 
goal is to learn a prediction function f (x) that predicts the sig-
nal associated with sequence x. An important remark is that 
the function f is associated with a specific experiment and 
therefore with specific conditions: If the conditions change 
(e.g., if the cell is treated with a new drug), the function f may 
no longer be a good fit of the cell and another predictor should 
be learned from data monitoring these new conditions.

An important and difficult question that inevitably arises in 
classification problems is how to select the negative sequences. 
In general, generating random negative sequences should be 
avoided, even using sophisticated random models that preserve 
GC content or even higher levels of di- or tri-nucleotide distri-
butions, as these sequences will always imperfectly mimic true 
genomic sequences. Rather, negative sequences should be true 
genomic sequences that have been carefully sampled for the 
problem or the biological question at hand. For example, if the 
goal is to identify the sequence features that determine the 
binding of a particular TF, the positive sequences will be those 
bound by the TF in a specific ChIP-seq experiment. For the 
negative sequences, several options will be available11: We could 
use unbound sequences of the same type as those used in the 
positive set (e.g., originating from promoter and enhancer 
sequences, using the same proportion as observed in the posi-
tive sequences). Another possibility would be to use sequences 
with similar epigenetic contexts (i.e., similar histone marks or 
similar chromatin opening marks), or sequences that are not 
bound by the TF of interest but that are bound by other TFs in 
the same cell type. The choice of negative sequences usually has 
a large impact on the measured accuracy of the model, and for 
this reason, it is often difficult to compare the accuracy of dif-
ferent ML approaches, even when they are applied to data 
from the same experiment. On the contrary, as we will see in 
the following, the choice of the negative sequences is one of the 
convenient tools at our disposal to derive new biological knowl-
edge using ML.

Note that even when the purpose of the study is not to make 
predictions per se, the prediction framework keeps several 
interests: First, in comparison to simple correlation analyses 
that can also identify some links between sequence features and 
the target signal, predictive models enable the combination of 
several DNA variables and hence reveal cellular mechanisms 
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that cannot be studied with simple correlation analyses. Second, 
when estimating the accuracy of the model we also assess the 
amount of information that has been captured by the model—
and, maybe more importantly, what remains to be captured. To 
avoid any optimistic bias, a golden rule in ML is that the accu-
racy estimate must be computed on left-out sequences, i.e., 
positive and negative sequences that were not used to train the 
model. These sequences are called test sequences, as opposed to 
the training or learning sequences. Another important issue is 
the choice of the measure of accuracy. For regression problems, 
a popular choice is to compute the correlation between meas-
ured and predicted signals on the test sequences, although 
alternatives such as the percentage of variance explained are 
also often used. For classification problems, the most popular 
choices are the area under the receiver operating characteristic 
(ROC) curve (AUROC) and the area under the precision-
recall curve (AUPR), see Box 1.

In the following, we present different types of methods that 
have been proposed in this context: support vector machines 
(SVMs), RFs, linear models, and CNNs.

Support vector machines

One of the first studies dedicated to the prediction of ChIP-seq 
signal based on long regulatory sequences was the kmer-SVM 
approach,12 latter upgraded in gkm-SVM.13 SVMs are among 
the most successful methods of ML.30 They work by searching 
for a hyperplane that best separates the training examples 
according to their classes. However, rather than searching for a 
hyperplane in the original space of the data, SVMs work in a 
usually much higher dimensional space (with possibly infinite 
dimension). As a result, although the separating hyperplane is 
by definition linear in the enlarged space, it can define non-
linear boundaries in the original space (see Figure 1). The beauty 
of SVMs is that we do not need to define the enlarged space. 
The only thing we have to define is a kernel function that meas-
ures the similarity of any pair of examples. The “trick” is that the 
position of a new example relative to the separating hyperplane 
can be computed by a linear combination of the similarity of 
this new example with all training examples, i.e.:

f x b y K x xi
i i

i

N

( ) = +
=
∑α ( , ),
1

 (1)

with b and αi the parameters of the SVM estimated by the 
learning algorithm, yi the class of the ith sample of the training 
set (–1 or +1), and K(x, xi) the result of the kernel function 
between sample x and the ith example of the training set. The 
sign of f (x) gives us the position of x relative to the hyperplane 
(up or down) and hence the predicted class of the sample. 
Moreover, only some training examples are associated with an 
αi different from 0 (the so-called support vectors), so, in practice, 

Box 1. Measures of accuracy for classification problems.

In classification problems, ML approaches often learn a 
prediction function f(x) that returns a real-valued output y. The 
returned value is then used to predict the class (–1 or +1) of the 
example x by applying a predefined threshold t: If y ≥ t, then x is 
classified as +1; otherwise, x is classified as –1. Given a predictor 
f and a threshold t, we can estimate several statistics related to 
the accuracy of the predictions:

•  The true positive rate (TPR, or recall) is the proportion of 
positive examples of the test set that are predicted as 
positive, i.e., for which f(x) ≥ t.

•  The false positive rate (FPR) is the proportion of negative 
examples of the test set that are (erroneously) predicted 
as positive.

•  The precision is the proportion of examples predicted as 
positives that are really positives. Precision and recall 
(TPR) are usually antagonistic statistics: When one 
increases, the other one often tends to decrease.

The above statistics depend on the threshold t used to classify an 
example as positive. As the value of this threshold actually 
depends on the problem at hand (in some classification 
problems, we may prefer to have a high recall, whereas, in others, 
a high precision is more important), the accuracy of a predictor is 
usually measured using ROC or precision-recall curves:

•  The ROC (receiver operating characteristic) curve plots the 
TPR as a function of the FPR, by varying the threshold t. 
The area under this curve (the AUROC) is a statistic that 
summarizes the whole curve, with an AUROC of 1 
corresponding to a perfect classifier that would classify all 
true positives as positives, and all true negatives as 
negatives. On the opposite, random predictors, as well as 
predictors that always predict the same class, have an 
AUROC of 0.5.

•  The precision-recall (PR) curve plots the precision as a 
function of the recall (TPR). As for the ROC, perfect 
classifiers have an area under the PR curve (AUPR) equal 
to 1.

The AUROC is sometimes erroneously presented as being 
biased for unbalanced problems, i.e., problems where the 
negative sequences outnumber the positive ones. Actually, one 
property of the ROC is that it is insensitive to these numbers, 
which means that a given predictor will have exactly the same 
ROC (and hence AUROC) regardless of the proportion of 
positives among all sequences (90%, 50%, 5%, . . .). On the 
contrary, the precision is highly dependent on this proportion, and 
the same predictor will have decreasing precision values as the 
proportion of negative sequences increases. Therefore, if the 
predictor is really aimed at predicting the classes of new 
sequences, the AUPR may be a better statistic than the AUROC, 
as monitoring the precision is important in this case. On the 
contrary, if the goal is to quantify the amount of biological 
knowledge gained by the model regardless of the proportion of 
positives/negatives, the AUROC is a convenient measure.

Figure 1. SVMs work in enlarged spaces. A toy example, illustrating the 

fact that a linear model in an enlarged space (the gray plane in the 3D 

space on the right) can define non-linear boundaries in the original space 

(the gray ellipse in the 2D space on the left), thus providing an accurate 

classifier for the 2 point classes (red vs. green).
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Expression (1) is computed without the need to compute the 
kernel function for all training examples.

Thus, the accuracy of the approach depends on the chosen 
kernel function K(x, x′) which must be meaningful for the 
problem at hand. The authors of kmer-SVM12 proposed a ker-
nel function based on the similarity of the k-mers present in 
the sequences. More formally, each sequence x is encoded by a 
vector that reports the number of occurrences of each of the 4k 
k-mers in x (for a given size k). Sequence pairs that have the 
same relative frequency for each k-mer have K(x, x′) = 1, 
whereas sequences that do not have any k-mer in common have 
K(x, x′) = 0. The method has been improved a few years later by 
the gkm-SVM approach that uses gapped k-mers (i.e., k-mers 
with a certain number of non-informative positions for which 
any nucleotide is possible),13 but the principle remains the 
same: Training sequences that most resemble the new sequence 
x in terms of (gapped) k-mers composition have more weight 
in Expression (1) and drive the predicted class toward their 
own class. The gkm-SVM approach has been applied to 467 
human ChIP-seq experiments from the ENCODE project.31 
For each ChIP-seq experiment, sequences associated with a 
ChIP-seq peak were extracted and used as positive sequences 
(authors report an average sequence length of around 300 bps), 
whereas the same number of random genomic sequences were 
used as negative sequences. Then, an SVM (one for each ChIP-
seq experiment) was learned to discriminate between these 2 
sets, and the accuracy of each of these 467 SVMs was estimated 
by the AUROC (see Box 1). The approach showed AUROC 
above 80% on the test set for most ChIP-seq experiments.

Random forests

Another method that has been proposed for the prediction of 
ChIP-seq signal is RFs.11 RFs32 had considerable success and 
attention in the ML literature in the last 20 years. RFs are an 

extension of decision trees, which are certainly among the oldest 
approaches in ML.33 A decision tree encodes a set of tests that 
can be done on the features of a given example to predict its 
class (see Figure 2). As the name suggests, these tests are organ-
ized in a tree structure that provides the order in which the tests 
are done (from the root to the leaves). Each node corresponds to 
a binary test on a specific feature of the samples (e.g., “is feature 
#3 > 0.66?”), and the 2 edges that follow the node correspond to 
the 2 possible outcomes of the test. Thus, each path from the 
root to a leaf corresponds to a series of tests that lead to the 
prediction of the class associated with that leaf (which is the 
majority class of the training examples that belong to this leaf ). 
Learning a decision tree involves deciding the tests associated 
with each node (typically which feature and which threshold on 
this feature?), and several algorithms have been proposed to 
build trees with minimum prediction error. Decision trees are 
accurate on certain problems and have the great advantage of 
being simple to understand and interpret. However, they are 
known to be quite unstable (a slight change in the training data 
can lead to very different trees) and they can be relatively inac-
curate on some problems.32 Random forests have been proposed 
to overcome these issues, at the price, however, of an indubitable 
loss of readability. An RF is a combination of many (sometimes 
hundreds or even thousands) decision trees. All these trees are 
independently learned on the same problem, with a dedicated 
algorithm that integrates a stochastic procedure to ensure that 
all trees are different. Once learned, the RF can be used to pre-
dict the class of a new sample with a very simple procedure: 
Each tree is used to predict the class, and the most popular class 
is proposed by the forest. This voting scheme removes the insta-
bility problem, and, if the learned trees are sufficiently inde-
pendent, the accuracy of the forest can be much higher than 
that of single trees32.

The Epigram approach11 uses RFs to predict the presence 
of 6 histone marks in different human cell types from DNA 

500 / 500
score PWM #5 > 80

190 / 415
score PWM #12 > 70

180 / 200
score PWM #21 > 85

310 / 85
positive

150 / 20
positive negative negative

Figure 2. A toy decision tree inspired from the Epigram method.11 The learning set involves 1000 sequences (500 positive + 500 negative, see left table). 

Each sequence is described by the score of 50 PWMs. The decision tree learned from these sequences encodes a set of rules that classify a sequence 

as positive if the score of PWM#5 is > 80, or if the score of PWM#12 and #21 are > 70 and 85, respectively. Numbers at the top of each node provide the 

repartition of training sequences in the 2 classes.
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sequences. An RF is learned for each mark based on the peaks 
identified by dedicated ChIP-seq experiments. Sequences 
associated with the peaks were used as positive sequences 
(sequence length is around 1000 bp). Negative sequences were 
genomic regions not covered by a peak, with different strategies 
for the selection. Before learning an RF, a de novo motif finding 
algorithm was applied to the training sequences to identify 
motifs that are more present in one class than in the other. 
Then, each sequence was described by the score obtained by 
the different motifs, and the RF learning algorithm was run on 
these data. As for SVM, the accuracy of the approach was 
measured by the AUROC, with accuracy above 80% for most 
histone marks and cell types.

Linear and logistic models

Logistic models are one of the oldest and most used approaches 
for binary classification problems. For a given example x = (x1, ..., 
xM) described by M variables, a logistic model expresses the prob-
ability that x belongs to the first class with a linear expression

P x S a b xi i
i

M

( | ) • ,1
1

= +










=
∑  (2)

where P (1|x) is the probability that example x belongs to 
the first class, S is the sigmoid function, and a and bi are the 
regression coefficients that constitute the parameters of the 
model. Although being quite simple, logistic and generalized 
linear models have gained considerable interest in domains 
with high-throughput data (like genomics), thanks to the 
development of modern regularization methods.34 For prob-
lems with a high amount of data, and in situations where the 
number of variables—i.e., M in Expression (2)—may be larger 
than the number of examples, these models can be trained very 
quickly and without being much affected by over-fitting. The 
LASSO penalty especially35 is a powerful regularization tech-
nique that allows one to train a model and select the most 
important features at the same time—ie, many regression coef-
ficients of Expression (2) (a and bi) are set to zero by the learn-
ing algorithm—which is of obvious interest when we are also 
interested to understand how a predictor works.36

As for SVMs and RFs, the accuracy of the approach essen-
tially depends on our ability to provide to the learning algorithm 
a set of variables that contains meaningful information for the 
discrimination problem. For example, our group proposed such 
an approach to predict TF binding with a logistic model named  
TFcoop.10 In TFcoop, each sequence was described by the affin-
ity scores of all PWMs of the vertebrate JASPAR database8 and 
the relative frequency of every dinucleotide. Affinity scores and 
dinucleotide frequencies were computed on 1 kb sequences. The 
data thus resemble that used in Epigram,11 except that in this 
latter the PWMs were trained de novo, and the dinucleotides 
were not used as predictive variables. TFcoop was applied on 409 

ChIP-seq experiments from ENCODE. The positive sequences 
were either the promoters (±500 bp around the TSS) or the 
enhancers (±500 bp around the peaks defined by the FANTOM5 
project)37 with a peak in the studied ChIP-seq experiment, 
whereas the negative sequences were the promoters or enhancers 
without a peak. The accuracy was assessed by the AUROC, and 
was similar to that of a CNN approach named DeepSea (see 
below) on the same problem.

Convolutional neural networks

Deep learning has shown considerable success in image  
recognition and many other domains, including biology and 
regulatory genomics. It has also led to very interesting devel-
opments in ML theory, by showing that models with a num-
ber of parameters largely exceeding the number of learning 
examples can be trained in certain conditions without being 
affected by the so-called over-f itting problem.38,39 The sim-
plest form of neural networks is the feedforward neural net-
works (see Figure 3A). These networks are defined by a 
(potentially very large) set of neurons, inter-connected and 
organized in layers. The first layer is connected to the input 
values of the network, whereas the last layer encodes its out-
put. In the classical feedforward network, each neuron takes 
in input the output of the neurons of the previous layer (hence 
these layers are often referred as fully connected). It then com-
putes a weighted sum of these values using its own set of 
weights, applies a simple activation function that realizes a 
non-linear transformation of this sum, and dispatches the 
computed value to the neurons of the following layer. When 
new values are applied to the input layer of the network, the 
outputs of all neurons are computed iteratively layer by layer 
until reaching the last one. For classification problems, the 
last layer is usually composed of a single neuron that produces 
a value in between 0 and 1 representing the probability that 
the example provided in input belongs to the positive class. 
The architecture of the network (the number of layers, neu-
rons, and all the connections between them) as well as the set 
of weights associated with each neuron and the form of the 
activation functions define the parameters of the network. As 
for other ML approaches, specialized learning algorithms are 
used to train a neural network by minimizing its prediction 
error on learning examples.

In regulatory genomics, most neural networks are CNNs. 
Contrary to simple feedforward networks, CNNs also embed 
specific neurons called f ilters that realize convolutional opera-
tions (see Figure 3B). This operation is very similar to the 
weighted sum of classical neurons, except that the sum does 
not involve all neurons of the previous layer but only a small 
group of adjacent neurons (typically a dozen). The operation is 
repeated at each position of the previous layer, moving the filter 
1 position at a time. Because the same filter is applied to every 
position of the previous layer, convolution filters effectively 
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constitute a way to reduce the number of parameters of the 
model when the same local operations are applied to different 
regions of a layer. Hence, 1 filter produces a number of outputs 
that are roughly equal to the size of the previous layer. As with 
classical neurons, the parameters of the filters, i.e., their sizes, 
forms, and weights, must be inferred by the learning algorithm. 
Convolutional neural networks typically possess 1 or several 
convolutional layers. Each layer involves several convolutional 
filters that are applied in parallel. As for classical neurons, all 
outputs of a convolutional filter are run through a non-linear 
activation function. Contrary to classical neurons, however, this 
step is often followed by a pooling function that summarizes 
(pools) several adjacent outputs. One of the most common 
pooling functions is max pooling, which simply takes in input 
a number N of adjacent outputs of the filter, and returns a sin-
gle value corresponding to the maximum of these values, thus 
decreasing the input size (see Figure 3B). This operation not 
only reduces the number of parameters of the neural network 
but also inevitably induces a loss of resolution, which may be 
impactful, e.g., when modeling TF interactions as these often 
occur at base-pair resolution.

Contrary to the above ML approaches, the big interest of 
CNNs is that they take raw data in input and directly learn the 
most interesting features for discriminating the 2 classes, by 
way of the filters of the convolutional layers. In regulatory 
genomics, the raw data is the DNA sequence (or RNA in cer-
tain cases). As CNNs only work on numbers, the sequence is 1 

hot encoded by replacing each nucleotide with a boolean vector 
of size 4 (e.g., A, T, G, and C are encoded as 1000, 0100, 0010, 
and 0001, respectively). Hence, a DNA sequence of length M 
is encoded as a 4 × M boolean matrix (see Figure 3B). The 
CNNs used for regulatory genomics have usually 1 or more 
convolutional layers, followed by several fully connected feed-
forward layers. The filters associated with the first layer are 
thus directly applied to the sequence and can be viewed as 
models of DNA motifs. Actually, the weighted sum of a filter 
defines exactly the same operation as the function used to com-
pute the score of a sequence for a given PWM. Hence, math-
ematically speaking, the filters of the first layer are nothing 
more than a set of PWMs that are applied at each position of 
the sequence. All these scores are then combined in the follow-
ing layers, which allows the network to represent potentially 
any motif combination.

One of the first CNN approaches proposed for regulatory 
genomics was  DeepBind.14 The authors designed a CNN with 
1 convolutional layer, followed by a pooling layer and a feedfor-
ward network that combines the scores of the different filters. 
The network was trained on many datasets measuring the 
binding of various DNA and RNA-binding proteins (PBM, 
SELEX, ChIP/CLIP). Notably, it was trained on 506 ChIP-
seq data from the ENCODE project.40 Positive sequences 
were 101 bp sequences associated with a ChIP- seq peak, 
whereas the negative sequences were obtained by randomly 
shuffling the dinucleotide of the positive sequences. As for 

(a) (b)

Figure 3. Neural networks. (A) An example of feedforward network with 4 layers. The first layer is connected to 9 input values (in black). The last layer 

involves a single neuron that outputs a value between 0 and 1. The width and color of the lines represent the weights and signs associated with the inputs to 

each neuron. (B) An extract of a convolutional neural network that scans DNA sequences. The input sequence is encoded as a 1-hot matrix. A filter of length 

5 scans the inputs and computes a convolution at each position. The figure shows 2 convolutions done at 2 different positions with the same filter; filter 

weights that are associated with non-null input values in the convolution operations are overlined in black. A non-linear activation function then filters the 

convolution results by removing all values below a given threshold. Finally, the results of these operations are pooled by groups of 4, reducing the output of 

the convolution to only 4 values. In the figure, only 1 filter is represented, although each convolution layer usually involves dozens or hundreds of filters with 

their own activation and pooling operations. The results of all filters are then combined in the following layers of the network (not represented here).
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previous approaches, the accuracy of the CNNs was estimated 
by the AUROC.

The same year, Zhou and Troyanskaya15 proposed another 
CNN approach named DeepSEA. DeepSEA has 3 convolu-
tional/pooling layers followed by a fully connected layer. It was 
applied to 690 TF binding profiles, 125 DHS profiles, and 104 
histone-mark profiles from ENCODE and the Roadmap 
Epigenomic projects.40,41 For each predictor, the positive 
sequences were the sequences associated with the mark, 
whereas the negative sequences were randomly selected among 
the sequences that were not associated with the mark but that 
were associated with another mark in another data. CNN accu-
racies were estimated by the AUROCs. DeepSEA takes input 
sequences of 1 kb length, much longer than DeepBind (100 bp) 
but very similar to the size of the sequences used by Epigram 
(see above), and reports median AUROC in between 85% and 
95% depending on the type of profiles

Following DeepSEA, Quang and Xie16 proposed DanQ. 
DanQ has a single layer of convolutions that identify the motifs 
present in the input sequence, but this convolution is followed 
by a layer of recurrent neural network known as long short-term 
memory (LSTM). As for convolutional filters, in a recurrent 
network, the same function is applied to every input. However, 
contrary to CNN, this function also has a memory of its previ-
ous outputs. In this way, the computed output value depends 
both on the current input and on the previous outputs. In 
DanQ, the LSTMs take in input the result of the convolution 
filters at every position of the sequence. Hence, the output of 
the LSTM depends both on the value of the filters at the cur-
rent position and on the output of the LSTM at the previous 
positions. Moreover, DanQ implements 2 LSTMs: one that 
reads the sequence forward, and one that reads the sequence 
backward. The LSTM layer is then followed by a fully con-
nected layer. DanQ was applied exactly to the same data as 
DeepSea. Its accuracy, measured by AUROC and AUPR, 
showed a slight but constant improvement over DeepSea.

Rather than addressing a simple classification problem 
where the aim is to predict whether or not a sequence has a 
specific mark/TF, several other CNN approaches have been 
proposed to predict the read coverage along the sequence, i.e., 
the expected number of reads at each base pair.42-45 This was the 
approach used by BPnet42 for example. According to its authors, 
training the model on the entire profile enables them to capture 
subtle regulatory features that are not captured when training 
on binary signal, a behavior also reported in reference.44

Numerous other CNN approaches have been proposed in 
the following years to predict TF binding and chromatin 
marks, but also gene expression signal, from the sequence. 
Although former approaches used sequence lengths that rarely 
exceed 1000 bp, a clear tendency of the following approaches 
was to propose new architectures that can handle increasing 
sequence lengths to capture long-range interactions with dis-
tant regulatory sequences (enhancers/silencers).

In 2018, Zhou et al46 proposed the ExPecto approach, which 
capitalizes on the DeepSea method.15 The approach involves 3 
steps. (1) A CNN model similar to that used in DeepSea is 
learned on 2002 genome-wide histone marks, TF binding, and 
chromatin accessibility profiles (data from ENCODE and 
Roadmap Epigenomics projects). (2) These 2002 model tracks 
are used to scan 40 kb regions centered on gene TSSs. The 
score of these tracks at 200 positions along the 40 kb sequences 
provides a very large set of 200 × 2002 features describing each 
gene. This set is reduced to 10 × 2002 features by a spatial 
transformation that uses exponential decay functions. (3) These 
features are used as input to train different linear models that 
predict the RNA-seq signal associated with each gene in 218 
tissues and cell types (selected from GTEX,47 ENCODE, and 
Roadmap Epigenomics projects). In each experiment, the 
accuracy of the model was measured by the correlation between 
the predicted and measured RNA-seq signal. ExPecto shows 
prediction accuracy with a median 81.9% correlation across the 
218 models.

Another CNN approach proposed in 2018 was Bassenji.48 
The model takes very large sequences of 131 kb in input. The 
network uses standard convolution/pooling layers, followed by 
dilated convolution layers. Contrary to standard convolutions 
that realize a weighted sum on the output of adjacent neurons 
of the previous layer, in the dilated convolution, the sum 
involves neurons spaced by several positions. Moreover, the 
network involves several dilated layers with gaps increasing by 
a factor of 2, which enables the model to potentially capture 
combinations spanning an exponential number of bps. The 
approach was applied not only to various DNase-seq and his-
tone modification ChIP-seq but also to 973 FANTOM5 
CAGE experiments. For these latter, the goal was to predict 
the CAGE signal measured on 128 bp sequences associated 
with a TSS. The accuracy was measured by the correlation 
between the measured and predicted signal and the authors 
report an average correlation of 85%.

Besides pure CNN approaches, one of the most recent 
developments in the field was the Enformer approach43 that 
uses self-attention techniques developed for natural language 
processing.17 The Enformer model uses several standard con-
volutional layers to identify motifs in the input sequence. The 
output of these convolutional layers then goes through several 
multi-head attention layers that share information across the 
motifs and can model long-range interactions, such as those 
between promoters and enhancers. Enformer uses very long 
input sequences of 196 kb and predicts 5313 and 1643 differ-
ent genomic signals (DNAse, ChIP-seq, and CAGE expres-
sion data) for the human and mouse genome, respectively.

Identifying and Prioritizing Genomic Variants
Maybe one of the most common applications of ML, and espe-
cially deep learning, for regulatory genomics has been the iden-
tification and prioritization of genomic variants from 



8 Bioinformatics and Biology Insights 

genome-wide association studies (GWAS) and expression 
quantitative trait loci (eQTL) studies. Genome-wide associa-
tion studies use statistical methods to identify genetic variants 
associated with common diseases and traits. This involves the 
analysis of thousands of variants in large cohorts of individuals, 
often split into cases and controls, to identify variants associ-
ated with the trait of interest (i.e., genomes with this variant 
have often this trait/pathology). Similarly, eQTL studies iden-
tify associations between genomic variants and the expression 
of specific genes (genomes with this variant often show over-
expression of gene X). GWAS and eQTL studies have identi-
fied thousands of variants statistically associated with a 
physiological trait or an expression profile, which are available 
in dedicated databases.49,50 However, because variants are not 
independent (an effect called linkage disequilibrium), many var-
iants are often present together in the same genomes. As a con-
sequence, it is widely believed that only a few GWAS or eQTL 
variants are truly causal.50 In these conditions, an interesting 
idea is to use the ML models described above for the identifi-
cation and prioritization of causal variants. In its simplest form, 
the procedure involves taking a specific model—predicting, 
e.g., if a sequence is bound by a given TF—and computing the 
prediction of this model at a given locus using (i) the reference 
genome and (2) the mutated genome associated with a specific 
variant (e.g., a specific SNP). Variants that increase or decrease 
significantly the predicted signal are more likely to have a 
strong effect on the cell and hence to be causal.14-16, 46 Using 
this principle, the authors of DeepBind proposed a new 
genomic representation called mutation maps to visualize the 
effect that every possible point mutation in a sequence may 
have on binding affinity.14

More sophisticated approaches have also been proposed to 
identify variants using a combination of ML models. For 
example, a deep learning model that uses the score of ∼600 
DeepBind TF models has been trained to discriminate between 
high-frequency variants (assumed as neutral) and disease-asso-
ciated variants from GWAS studies.14 This model takes in 
input the score of the ∼600 DeepBind models both for the 
wild-type sequence (reference genome) and the mutant 
sequence. Similarly, a boosted logistic regression classifier and 
a boosted ensemble classifier have been trained to discriminate 
between high-frequency SNPs and putative disease-associated 
variants from GWAS and eQTL studies using the epigenetic-
mark predictions of DeepSea and DanQ, respectively.15,16

Finally, it is important to note that several recent studies 
highlighted the limitations of state-of-the-art approaches 
for predicting the effect of personal variants.18-20 Specifically, 
although approaches such as Enformer43 or Bassenji48 can 
quite accurately predict gene expression levels across genes in 
different cell types, they show some limitations to explain 
expression variation between individuals.19,20 Furthermore, 
despite the use of very wide sequence windows (196 kb for 
Enformer), their ability to account for the effect of distal 

enhancers when predicting gene expression still appears 
limited.18

Assessing Regulatory Hypotheses with ML Models
Besides the prioritization of genomic variants, the ML 
approaches presented here, along with many others and the 
concordant development and availability of various omics data, 
have enabled several advances in regulatory genomics over the 
past decade. For this, the supervised framework offers the pos-
sibility to test various hypotheses by simply training a model 
and estimating its accuracy on specific problems. This can be 
done in various ways. One approach is to directly control the 
nature of the input of the model. For example, Agarwal and 
Shendure51 studied the size of the promoter sequences using 
the Xpresso model. Xpresso is a CNN model that takes in 
input sequences of –7/+3.5 kb centered on the TSS. In their 
study, the authors showed that although the large sequence 
–7/+3.5 kb around the TSS provides the best accuracy, most of 
the promoter information for the control of mRNA expression 
likely lies in –1.5/+1.5 kb because this sequence provides 
approximately the same accuracy as the longer –7/+3.5 kb. 
Similarly, our group studied the importance of long-biased 
sequences in the control of gene expression using the DExTER 
approach.52 DExTER is a linear model that aims to predict 
mRNA levels based on the presence of long sequences enriched 
for a specific short k-mer (e.g., TAA) around the gene TSS, 
excluding any other information such as TFBS motifs. The 
approach has been applied to various eukaryotes in different 
cell types and conditions. For the malaria parasite, the approach 
showed a surprising accuracy of more than 70% correlation 
between measured and predicted expression, suggesting that 
long-biased sequences may play a predominant role in control-
ling gene expression for this organism.

Another procedure to test different hypotheses is to control 
the way positive and negative examples are selected. For exam-
ple, Zheng et al53 study TF binding with a CNN. The original-
ity of this study is that the sequences are selected in a way that 
ensures that the TF motif is present in both the positive 
(bound) and negative (unbound) sequences. In this way, the 
predictive model cannot simply use the presence/absence of the 
target motif to discriminate the sequences, and the good accu-
racy of the approach showed that other features are likely 
involved in the binding site recognition mechanism of the 
studied TFs. To go one step further, the authors restricted all 
sequences to be within DNaseI hypersensitive sites (a mark of 
accessible chromatin). They trained a new model and observed 
a drop in the accuracy, suggesting that DNA features related to 
open chromatin are likely involved in this recognition process.

Rather than controlling the sequences used for learning the 
model, another simple technique that can be used to test some 
hypotheses is to compare the accuracy achieved by a given 
model on different sets of sequences. For example, Agarwal 
and Shendure51 studied the impact of enhancers on the 
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prediction of Xpresso. Xpresso only uses the sequence located 
around the TSS for the prediction and hence cannot handle 
distal regulatory elements. Given that enhancers are frequently 
associated with large domains of H3K27Ac activity, the authors 
identified a set of 4277 genes that overlap H3K27Ac marks 
and observed that the predicted expression level on these genes 
is markedly smaller than the measured expression, a trend that 
was not observed for the other genes. Thus, the expression of 
genes under the control of enhancers seems to be underesti-
mated by the Xpresso model, which could therefore provide a 
coarse filter to help identify these genes.

Finally, a very useful tool available in the ML toolbox is 
swap experiments. Model swapping is used to test hypotheses 
related to the specificity of a regulation mechanism. The proce-
dure involves learning different models on different conditions 
(says conditions A and B) and comparing the accuracy of the 
model learned on A when it is applied to B, to the accuracy of 
the model learned and applied on B. In practice, an important 
point to which practitioners must pay close attention is that the 
sequences used for testing in one condition were not used for 
training in the other one, to avoid any bias in the accuracy esti-
mates during swaps. This technique was extensively used in the 
TFcoop analyses.10 Given 2 ChIP-seq experiments targeting 
the same TF in 2 cell types, a TFcoop model predicting whether 
a sequence is bound or not by the TF was learned for each cell 
type. Then the 2 models were swapped. In some cases, both 
models got the same accuracy, but for some TFs, the model 
learned on cell type A was not as good on cell type B as the 
model directly learned on cell type B, meaning that the rules 
governing the binding of the TF were not the same in the 2 cell 
types. Similarly, for a given ChIP-seq experiment, a model was 
learned for enhancer sequences and another model for pro-
moter sequences. The swap experiment revealed that the 2 
models are generally not interchangeable, and hence that the 
rules are different depending on the nature of the regulatory 
sequence (promoters vs. enhancers). On the contrary, models 
for mRNA promoters, lncRNA promoters and pre-miRNA 
promoters appeared to be perfectly interchangeable. Agarwal 
and Shendure51 also did swap experiments between human and 
mouse. Namely, they trained one Xpresso model on mouse and 
one on human using comparable RNA-seq experiments and 
observed on a set of orthologous genes that the model learned 
on mouse has the same accuracy on human as the model 
directly learned on human (and conversely), meaning that the 
regulatory principles are likely very close in both organisms.

Breaking the Regulatory Code: Interpreting ML 
Models
Finally, the most ambitious application of ML is obviously to 
break the regulatory code and determine the rules used by the 
cell to regulate expression. A first step toward this goal is to 
identify all regulatory elements involved in the regulation pro-
cess in question. Note that the term regulatory element has to be 

understood in its broadest sense here. It may stand for standard 
motifs of TF binding sites, but it can also refer to other features 
known to be involved in gene regulation, like low complexity 
regions such as short tandem repeats,54 or long-biased 
sequences like CpG islands,55 as well as any other kind of 
“sequence patterns” that we can think of, such as, e.g., the DNA 
shapes.56 In addition to the regulatory elements, breaking the 
regulatory code also means determining how these elements 
are combined, and what rules they follow in terms of repetition, 
position, and orientation on the DNA sequence. Getting down 
to this level of detail involves analyzing the learned model to 
understand how it works. This is referred to as model interpreta-
tion in the ML community. There are several definitions of 
interpretability in the ML literature, and these definitions are 
often considered domain-specific.27,28,57,58 In the context of 
regulatory genomics, model interpretation has also several 
meanings, and we will see that the term covers different 
approaches that do not provide the same kind of information. 
The general problem is as follows: We have a predictive model 
that has been learned for a specific problem, and we want to 
understand how it works. There are at least 3 different ways to 
attempt this. The first and more direct approach is to explain 
the model by analyzing its different components and extracting 
the rules used to make its predictions. A second approach is to 
explain the predictions of the model rather than the model 
itself, i.e., given a sequence and a prediction, we want to explain 
why the model predicts this value for this sequence. A third 
alternative is to try to explain the model by exploring its behav-
ior on synthetic sequences. Theoretically, the 3 approaches are 
possible for any type of model. However, as we will see, linear 
models and RFs can often be partially explained by a direct 
analysis of their components. For CNN models, on the con-
trary, this is more difficult to do, which is why different meth-
ods belonging to the second and third categories have been 
developed.

Explaining model components

In some cases, the model may be simple enough to be directly 
analyzed as a whole. This view of interpretability argues for 
simple and sparse models (i.e., with few parameters). This may 
be possible for some very small decision trees and linear mod-
els, but this is generally not the case for the regulatory models 
described above. Moreover, even for a simple linear model, it is 
known that interpretation is not obvious, as the sign of the 
coefficient associated with a specific variable (which is tempt-
ing to interpret as the sign of the association between this vari-
able and the predicted signal) may change depending on the 
identity of the other variables included in the model.

A less stringent view of interpretability corresponds to 
models that can be broken down into different modules that 
are further analyzed.27,28 For regulatory genomics, this corre-
sponds to the case where we can extract the DNA features used 
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by the model for its predictions. Note that a DNA feature may 
be more complex than simply the identity of a regulatory ele-
ment. For example, in the DExTER method, the predictive 
features also encode information about the position of the 
regulatory elements on the DNA sequence.52 Hence, DNA 
features may potentially encode complex information related to 
the number of repetitions, position, and orientation of regula-
tory elements on the DNA sequence. Obviously, extracting the 
DNA features used by a model is relatively easy to do for all 
models that directly take these DNA features in input, such as 
logistic/linear models and RFs. On the contrary, for CNN 
approaches the task is more difficult as we will see below.

RFs and linear models. In these models, extracting the DNA fea-
tures involves identifying which variables provided in the input 
are the most important for the predictions. ExPecto is an exam-
ple of a linear model where such interpretation is quite easy.46 In 
this article, the authors observed that, in most cases, the ExPecto 
models predict expression with features related to TFs and his-
tone marks, but not with DNase I sequence features. Note that 
the DNA features extraction may be further facilitated if the 
learning algorithm directly includes a feature selection procedure 
such as the LASSO,35,36 which drastically decreases the number 
of predictive features used by the model.

Rather than simply providing the list of features used by 
the model, it is much more useful to also provide a measure of 
importance associated with each feature.59-61 For RFs, this is 
usually done by shuffling the values of each variable. Namely, 
the accuracy of the model is first estimated on the test set. 
Then, the values of the ith variable are randomly shuffled, and 
the loss of accuracy induced by this noise is used as a measure 
of the importance of the ith variable in the model.32,61 By 
repeating this process, the relative importance of each variable 
is estimated. A very similar procedure also exists for linear/
logistic models. In this procedure, the value of the coefficient 
associated with the ith variable is set to zero (which is equiva-
lent to simply removing this variable from the model) and, as 
for RFs, the loss of accuracy induced by this operation is used 
as a measure of variable importance. In both cases, this meas-
ure can be considered objective, as it is based on the loss of 
accuracy when removing information carried by each variable. 
Note, however, that this approach (as all other methods 
described below) assesses the importance of a feature for the 
model, but not necessarily its importance in the cell. For 
example, if 2 TFs have similar PWMs (which is quite com-
mon), the model may erroneously give all the importance to 
one of the TF and none to the other one (see the “Conclusions” 
section for a discussion about this point). Nevertheless, it is 
an effective and useful approach to assess new biological 
hypotheses in silico. It has been extensively used for analyzing 
the binding differences of 1 TF in 2 different conditions (e.g., 
2 cell types or 2 treatments), or of 2 paralogous TFs with 
similar PWMs using the TFscope approach.62 TFscope is a 
logistic model that integrates 3 kinds of variables that model 

(1) the core motif, (2) the nature and position of binding sites 
of co-factors, and (3) the large nucleotidic environment 
around the core motif. The importance of each feature in the 
different comparisons was assessed with the importance 
measure described above. For comparisons involving 1 TF in 
2 conditions, the co-factors, and to a lesser extent the nucleo-
tidic environment, were often (but not always) the most 
important features explaining the differences of binding sites. 
For paralogous TFs (2 TFs in the same cell type), the picture 
is different, and subtle differences in the core motif can some-
times explain the binding site differences.

Convolutional neural networks. Approaches based on CNNs 
take raw sequences in input, so the DNA features are not 
directly provided to the model. However, as we have seen, the 
filters of the first convolutional layer correspond to PWMs 
modeling DNA motifs. Hence, we could think that the DNA 
features used by the model are actually encoded in the first con-
volutional layer and that we could extract these filters to get the 
information. It is however not so simple in practice. Koo and 
Eddy63 studied the way CNNs build representations of regula-
tory genomic sequences. They showed that the filters of the 
first layer actually encode partial motifs which are then assem-
bled into whole DNA features in the deeper layers of the CNN. 
Hence, extracting the DNA feature associated with a specific 
filter is not as immediate. However, some attempts have been 
made in this direction. The authors of DeepBind14 proposed an 
interesting approach where all sequences that pass the activa-
tion threshold of the filter of interest are extracted and aligned 
on the position producing the maximum activation signal for 
this filter (see Figure 4A). Then a PWM of predefined length 
m is learned from this alignment using standard PWM-learn-
ing methods.64 The same approach was also used for the DanQ 
model.16 The reconstructed PWMs were then aligned to motifs 
available in known-motif databases8 using the TOMTOM 
algorithm.65 Of the 320 filters learned by the DanQ model, 
166 significantly matched known motifs. Hence, extracting the 
PWMs learned by a CNN seems possible at least partly, 
although the above approach does not completely warrant 
against the “partial motif ” problem. An open question that 
remains is how to associate a measure of importance to these 
PWMs? Theoretically, a CNN filter can be easily turned off, so 
it could be possible to estimate the accuracy of the CNN with 
and without the filter to have a measure of the importance of 
this filter for the predictions. However, as the CNN may model 
the same motif using different filters (or even using several fil-
ters that are combined in the deeper layers), turning a filter off 
does not warrant that the associated motif is also off, which 
may lead to underestimating its importance.

Explaining model predictions

Because of the partial motif problem, directly explaining a CNN 
remains a difficult question. Hence, several methods have been 
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proposed to explain the predictions of the model rather than 
directly explaining the model. This involves using the model on 
a specific sequence and identifying the nucleotides that have the 
highest weight for the computation of the predicted value. The 
simplest method (known as input perturbation or in silico 
mutagenesis) is similar to the mutation maps proposed for vari-
ant identifications. It involves systematically simulating every 
single-nucleotide perturbation of the input sequence, and 
recording the effect induced on the predicted value14,15,53 (see 
Figure 4B). Computing model prediction on every variant that 
can be obtained from single-nucleotide perturbations of a 
sequence may, however, induce high computational cost, 

specifically if the sequence is long, or if the analysis is repeated 
over many sequences. Backpropagation-based approaches have 
been proposed as more computationally efficient alternatives. 
The idea is to propagate an important signal from the output 
neurons to the inputs through the different layers of the model 
using a backpropagation algorithm. In this way, a single pass is 
sufficient to compute the contribution of each nucleotide to the 
output value. These contributions can then be visualized using 
saliency maps (see Figure 4B). Several approaches have been pro-
posed on this idea (e.g., references.66-68). In Zheng et al.,53 a 
simulation-based study is used to benchmark these different 
approaches in the context of regulatory genomics.

(a)

(b)

(c)

Figure 4. Three approaches for the interpretation of CNNs. (A) explaining model components. The aim is to identify the motif encoded by each filter of 

the CNN (the figure illustrates the case for the first filter, in green). A set of sequences (e.g., the training sequences) are presented to the CNN and all 

sub-sequences that pass the activation threshold of the filter are identified (highlighted in green on the figure). The sub-sequences are then extracted and 

aligned (middle) and used to build a PWM logo (right) representing the motif encoded by the filter. (B) explaining model predictions. The aim is to 

estimate the importance of each nucleotide of a target sequence (top left). The output value of the sequence is computed. In the example, the CNN 

computes a probability of binding, and the output value of the target sequence is P (1|x) = 0.8. For each nucleotide of the target sequence all possible 

mutations of that nucleotide are simulated in silico and output values are recomputed (the figure illustrates the case of the nucleotide A at position 5). The 

difference between the output of the original sequence and of all sequences with a different nucleotide at this position measures the importance of that 

nucleotide. The procedure is repeated at each position to estimate the importance associated with each nucleotide of the target sequence, which is 

represented by the height of the letters (bottom). Note that some nucleotides may have negative values if the mutations tend to increase the output value. 

(C) exploring model behavior on synthetic sequences. Two sets of synthetic sequences are generated, and the output value of the CNN is computed 

for each sequence. In the example, all sequences embed a TGATT motif. In addition, the sequences in the second set also have an ATTGC motif located 

6 nucleotides on the right of the TGATT motif. The difference in output between sequences from the first and second set thus measures the importance of 

motif ATTGC when used in combination with motif TGATT. Note that the procedure could be repeated by generating additional sets of sequences with 

different numbers of nucleotides between the 2 motifs, to investigate the importance of the distance between these motifs.
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By looking at the contribution scores of each nucleotide, 
one can identify the sub-sequences and regions that appear to 
be the most important for the prediction. Moreover, these sub-
sequences can be further compared with known motifs to iden-
tify potential TFs involved in the regulation of the predicted 
signal. Hence, these approaches may highlight potentially 
interesting genomic information hidden into a specific 
sequence. However, it is important to note that because contri-
bution scores are computed independently for each nucleotide, 
there is no warranty that the most important regions identified 
this way are really the most important regions for CNN predic-
tion. Moreover, this analysis is restricted to the input sequence 
and is not sufficient to understand the general mechanisms 
used by the cell to regulate gene expression at different loci. For 
this, further analyses are needed. A possible approach is to 
compute the contribution of every nucleotide of all positive 
sequences and to extract the recurrent DNA motifs from these 
contribution maps. A first method is to use these maps to com-
pute the average importance of every k-mer of a fixed length. 
The most important k-mers are then identified and compared 
with known TF motifs using approaches like TOMTOM.65 
This is, for example the approach used in Zheng et al.53 to 
identify several co-factors that likely explain the binding differ-
ences between positive and negative sequences of 38 TFs. 
Another more sophisticated approach is to directly learn DNA 
motifs (using PWMs or close models) from the contribution 
maps. This is the aim of the TF-MoDISco method that seg-
ments the contribution maps into seqlets (a kind of weighted 
k-mers) and then clusters the seqlets in different motifs.69 This 
approach has been used in Avsec et al.42 to identify core motifs 
and potential co-factors in 4 ChIP-seq experiments.

Thus, different approaches based on prediction explanation 
can also be used to identify motifs that are likely encoded into 
the structure of the CNN. However, in our opinion, an impor-
tant difference with approaches based on the analysis of model 
components is that these methods lack an objective measure of 
importance associated with each motif. Indeed, it is not possi-
ble to turn the discovered motifs off in the CNN, and thus we 
cannot measure the accuracy of the model with and without a 
motif. Another problem is that there is no warranty that all 
important motifs used by the CNN were identified by the 
extraction procedure. Actually, it is even possible that some 
regulatory elements learned by the CNN but which were not 
identified by the motif extraction approach—eg, because these 
elements do not fit the kind of motifs searched by the extrac-
tion procedure—are actually more important for model predic-
tions than the identified motifs.

Exploring model behavior on synthetic sequences

In the above sections, we have seen methods to extract some of 
the motifs that have been learned by a CNN for predicting a 
given signal. However, these interpretation methods are limited 
to the identification of simple motifs and cannot handle more 

sophisticated DNA features, such as the number of repetitions 
of a motif, the combination of several motifs, or their relative 
position on the sequence. For this, other approaches based on 
synthetic sequences have been proposed.

The first approach for this was the DeMo dashboard,67 which 
was inspired by the work of Simonyan et al.66 to interpret CNNs 
in the context of image recognition. DeMo aimed to predict TF 
binding with a CNN. To identify the genomic features captured 
by the CNN, the authors proposed to construct the best syn-
thetic sequence that would maximize the binding probability 
according to the CNN. The idea was to provide the users with an 
archetype of the sequences with the highest binding probability, 
which supposedly bears the DNA features required for the bind-
ing. The idea was interesting but may miss certain features, espe-
cially if several (exclusive) rules govern the binding.

To go one step forward, Koo et al.70 proposed an approach 
named global importance analysis that samples a large number of 
synthetic sequences with and without a specific DNA feature 
and uses the learned CNN as an oracle to predict the binding 
associated with each sequence. If the predicted binding signal 
is statistically higher for the sequences that embed the studied 
DNA feature than for the others, the feature is considered 
important (see Figure 4C). The approach is interesting in that 
it can be used to assess any feature. For example, Koo et al.70 
used it to show that increasing the number of repeats of the 
RBFOX1 motif increases the binding probability of the 
sequence according to their model. Similarly, they also showed 
that including some GC bias in sequence 3’ end also increases 
this probability. The approach was also used in Avsec et al.42 to 
study the sinusoidal pattern that seems to regulate the distribu-
tion of the binding sites of the Nanog TF and its co-factors 
along the DNA sequence. It is important to understand that 
this approach is not a fully automatic method that would 
extract all DNA features captured by a CNN. Rather, specific 
hypotheses have to be constructed before being assessed by 
generating appropriate synthetic sequences. In this sense, the 
approach is similar to that of the ML models that directly take 
meaningful DNA features in input: In both cases, one can dis-
cover solely what has been formerly hypothesized.

One drawback of this importance measure is that it can 
sometimes lead to incorrect conclusions if the feature being 
tested is correlated with the functional element (e.g., if we test 
the hypothetical motif ATGCCA, while the true motif is actu-
ally GCCAA). Another drawback is that it is somewhat sub-
jective, as it is only dictated by the model, with no link to its 
accuracy. The main issue is that the approach does not comply 
with a fundamental assumption in ML, which states that the 
training and test sets must be representative of the samples to 
classify. Here, the synthetic sequences do not follow exactly the 
same distribution as the sequences used to train the model and 
to estimate its accuracy. As a result, this accuracy may be an 
optimistic estimate of the accuracy of the model on the syn-
thetic data. In other words, even if the model is quite good on 
the test sequences, it may be inaccurate on the synthetic 
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sequences. This is related to the notions of extrapolation vs 
interpolation. Although ML models can be good at predicting 
a signal associated with a sequence that is close to other 
sequences in the training set (interpolation problem), when the 
sequence is far from any example of the training set (as the 
synthetic sequences can be) the problem is obviously more dif-
ficult, even if CNNs seem to be able to handle a certain level of 
extrapolation.71 Note that the approach can nonetheless pro-
pose interesting hypotheses, which then need to be validated 
experimentally; however, users/experimentalists should be 
aware that the probability that these hypotheses hold can be 
lower than the model accuracy may lead one to believe.

Conclusions
Over the past decade, several ML models have been applied to 
the modeling of long regulatory sequences and have led to sub-
stantial advances in our understanding of regulatory genomics. 
These studies take place in a supervised framework, which ena-
bles, among other advantages, a fair comparison of model per-
formance in terms of accuracy. From this perspective, deep 
learning approaches based on CNNs often show substantial 
improvement over simpler methods. This is especially true for 
the prediction of gene expression signal, where many efforts 
have been made to allow CNNs to handle very long sequences 
to capture the effect of potential distant enhancers, although 
this remains a difficult task.18 Furthermore, it is important to 
keep in mind that although these approaches show impressive 
results for predicting gene expression levels across genes, their 
ability to explain expression variation between individuals is 
more limited.19,20

Besides model accuracy, we have seen that different levels of 
knowledge can be gained by these studies. The prioritization of 
nucleotide variants, which is of great interest in medical and 
therapeutic studies, can be deduced from model predictions 
without the need for sophisticated procedures of model interpre-
tation. Similarly, general hypotheses about the specificity or the 
extent of a regulatory mechanism can often be tested by training 
and swapping different models, or by changing the training or 
the test sets. On the contrary, identifying complex DNA features 
requires knowledge-extraction procedures that must be specifi-
cally adapted to the model at hand. The task is obviously easier 
for ML models that directly take these features in input than for 
CNN-based models that learn the predictive features from raw 
sequences. However, it would be inaccurate to consider these lat-
ter as complete black boxes, as several approaches are now avail-
able to extract such information. Notably, the oracle approach 
based on synthetic sequences looks like a promising avenue,70 
provided that the generated sequences remain close to the train-
ing sequences to avoid misleading conclusions. Actually, in our 
opinion, the main limitation of CNN models lies in the diffi-
culty to globally and objectively assess the importance of the 
extracted features. A related issue is the fact that we do not know 
with precision whether all important features have been extracted 

or if the CNN actually uses additional important features that 
were not identified.59

We have presented in this review some approaches for iden-
tifying the DNA features used by a specific model to make its 
predictions. A question that is rarely addressed in these studies is 
the stability of the model. DNA features are often highly corre-
lated. For example, motifs of TFs of the same family are often 
very close. Moreover, motifs of co-factors often appear together 
at the same loci. Similarly, certain motifs are strongly enriched in 
DNA sequences with specific nucleotide or dinucleotide con-
tent. These strong correlations induce that different models with 
different DNA features may have close accuracy. As a result, the 
model that has been learned is not necessarily the only “good” 
model, a problem sometimes referred to as the Rashomon effect in 
ML (after the 1950 Japanese movie directed by Akira 
Kurosawa).72,73 From this perspective, by aggregating the predic-
tions of many models, ensemble ML approaches—and hence 
RFs—are less prone to this issue.72 For other methods, analysis 
of model stability74-76 or computing Shapley values77 can help. 
However, this requires repeating the learning procedure several 
times using slightly different learning sets, which can involve 
prohibitive computing time for very complex models.
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