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Filial imprinting is a dedicated learning process that lacks explicit reinforce-
ment. The phenomenon itself is narrowly heritably canalized, but its content,
the representation of the parental object, reflects the circumstances of the new-
born. Imprinting has recently been shown to be evenmore subtle and complex
than previously envisaged, since ducklings and chicks are now known to select
and represent for later generalization abstract conceptual properties of the
objects they perceive as neonates, including movement pattern, heterogeneity
and inter-component relationships of same or different. Here, we investigate
day-old Mallard (Anas platyrhynchos) ducklings’ bias towards imprinting
on acoustic stimuli made from mallards’ vocalizations as opposed to white
noise, whether they imprint on the temporal structure of brief acoustic stimuli
of either kind, and whether they generalize timing information across the two
sounds. Our data are consistent with a strong innate preference for natural
sounds, but do not reliably establish sensitivity to temporal relations. This
fits with the view that imprinting includes the establishment of representations
of both primary percepts and selective abstract properties of their early percep-
tual input, meshing together genetically transmitted prior pre-dispositions
with active selection and processing of the perceptual input.
1. Background
Newborn nidifugous birds such as ducks and chickens quickly learn to identify
their mother and follow her around for protection, warmth and foraging
information, a phenomenon known as filial imprinting [1].

As a learning mechanism, imprinting is notable because it lacks explicit
(observable) reinforcement [2] and exposes nature and nurture in one sweep;
the mechanism itself is inherited and narrowly pre-specified, but the content of
what is learned reflects the circumstances of the newborn. Research has shown
that (i) sensory pre-dispositions are crucial, facilitating neonates’ orientation
towards relevant features of the environment [3,4] and that (ii) abstract concepts
can be acquired by ducklings through imprinting [5]. These discoveries suggest
that imprinted target representations are better treated as multidimensional vec-
tors of perceptual objects’ affordances than as libraries of sensory percepts [6].
This novel interpretation makes biological sense, considering that successful
algorithms for identifying a suitable target must be robust with respect to scale,
perspective and shape while exploiting all available information to infer identity
[1,7,8]. Here, we investigate the potential roles played by predisposed sound
preferences and sensitivity to the temporal structure.

We may expect precocial newborns to use their sensory input to form a ‘con-
cept’ of the parental object that will serve as a target for following. The sensory
dimensions thatmay be expected to participate in such concepts should of course
be defined and constrained by the ‘umwelt’ of the organism [9], which must
include temporal information. Neuroscientists have identified neural codes for
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Figure 1. Experimental environment. (a). Training set-up: pairs of ducklings were exposed for 2 h to a single compound stimulus, broadcast from a speaker revolving
around the arena. (b) Compound sound stimuli (normalized amplitude traces) varied along with two dimensions, sound type and duration of a silent gap between two
brief sound bursts. Sounds bursts could be composed of snippets of duck sound or white noise bursts (rows), separated by silent gaps lasting either 0.2 or 1.2 s, thus
creating compounds of either 1 or 2 s total duration (columns). (c) Testing set-up: following a 30 min consolidating period in the dark, ducklings were tested individually
in a water pool with speakers at fixed locations, broadcasting two different stimuli compounds. (d ) Example of testing conditions for a particular imprinting exposure
stimulus (see Extended figure S1 in the electronic supplementary material for a complete depiction of all testing conditions). Across conditions, targets were the same as
the imprint, except in the last ‘time’ condition (time, bottom example), when the ducks were tested for preference between two stimuli made up of a sound novel to
them. Depending on the testing condition, competitor stimuli could differ from the target in both sound and gap duration (sound and time); only sound (sound); only
gap duration (‘time’, top example); or again only gap duration, but with both target and competitor made up with novel sounds (‘time’, bottom example).
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spatial (morphological) properties of perceived objects [10],
but the encoding of data along the fourth dimension, time, is
relatively less well known [11,12]. For this reason, exploring
how temporal features of sensory input participate in the rep-
resentation of imprinting objects should enrich understanding
of how imprinting works, while adding evidence for how
fundamental is the ability to keep track of events in time (see
also [13]).

Drawing inspiration from psychophysical timing protocols
[14,15], we exposed day-old ducklings to acoustic compound
stimuli that varied in the period of silence between two
sounds (calls) (figure 1a). To take into account innate pre-dispo-
sitions [16], the calls were either made from duck vocalizations
or white noise bursts, depending on treatment (figure 1b).
Focusing on the duration of silent gaps rather than duration
of sounds controls for differences in amount of sound energy,
thus isolating sensitivity to temporal structure.
2. Methods
(a) Subjects
Two hundred and eighty-four domesticated mallard ducklings
(Anas platyrhynchos domesticus) of unknown sex were supplied
by Foster’s Poultry, Gloucestershire, as eggs, and returned to the
supplier as young birds after participating in the experiments.
The eggs were assigned to four imprinting groups and four
test conditions, resulting in 16 subgroups. The group size was
the result of finding a compromise between the numbers used
in the previous studies (e.g. [5]) and our drive to reduce the
number of experimental animals, as part of our compliance to
the 3Rs. Group sizes (minimum 12, maximum 20 individuals)
were affected by hatching rates.
(b) Incubation and hatching
Eggs were incubated for 25 days in a Brinsea Ova-Easy 190 incuba-
tor at 37.7°C and 40% humidity and moved to a Brinsea Ova-Easy
hatcher for the last 3 days of incubation at higher humidity
regimes (65% or more). Hatching took place in the dark and
ducklings remained in the hatching chamber for 12–24 h, as the
peak sensitive period is between 13 and 40 h of age [17].
(c) Experimental design
The four imprinting groups resulted from a factorial design com-
bining two sound types and two silent gap durations. Stimuli
were made out of either two snippets from a female duck voca-
lization or two white noise bursts (all 0.4 s long), separated by
short (0.2 s) or long (1.2 s) silent gaps (figure 1b). Total stimulus
duration was thus 1 or 2 s, respectively. Preference tests (see
figure 1c,d for examples and electronic supplementary material,
Extended figure S1 for full experimental design), contrasted a
target and a competitor stimulus. The target shared the duration
of the silent gap with the imprinted stimulus (called the ‘imprint’
below) but between calls of either the same or the alternative
sound type, and at test time the competitor differed from the
target in either both dimensions (sound type and gap duration)
or only one of them. Tests thus offered a choice between (i) a
target identical to the imprint and a competitor differing in
both sound and gap duration; (ii) a target identical to the imprint
and a competitor made of the alternative sound but sharing the
original gap duration; (iii) a target identical to the imprint and a
competitor made out of the original sound but with the alterna-
tive gap duration; and (iv) a target made of the alternative sound
and the original gap duration against a competitor made of the
alternative sound and the alternative gap duration. The discrimi-
nant dimensions in the four conditions were, respectively: sound
and time, sound only, time only and again time only but between
novel sounds.
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Figure 2. Preference in tests. Preference index (means ± s.e.m.; n = 284, see
main text for details) as a function of imprinting exposure sound (duck sound
in white, white noise in black) and discriminant dimension in testing condition
(from left to right, sound and time, sound only, time between familiar sounds
and time between novel sounds). The same colour scheme as in figure 1.
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(d) Stimulus design
Stimuli were generated using Audacity software (audacityteam.
org). The duck sound was made by extracting a 0.4 s snippet of
female adult mallard vocalization from the Macaulay Library at
the Cornell Lab of Ornithology audio file (ML 133222). Session-
long sequences were compiled into mp3 files using custom
Matlab code (2020a,Mathworks). Variable inter-stimulus intervals
were drawn from a normal distribution (u = 15, σ = 5 s).

(e) Imprinting exposure
Following previous protocols [5,18], we combined priming that
enhances imprinting responses in chickens and ducklings [19,20]
with 2 h-long imprinting exposure periods. Pairs of ducklings (pair-
ing reduces stress)were exposed in an arena (130 × 130 cm, figure 1a)
to a revolving wireless speaker (EasyAcc, model LX-839) repeatedly
playing the corresponding imprinting stimulus (see figure 1b, elec-
tronic supplementary material, Extended figure S1, and
Experimental design, above). The speaker was suspended 15 cm
above the floor by a thin fishing line attached to a revolving boom.
Each revolution lasted approximately 40 s, with a diameter of 1 m,
as themovementhasbeenshowntoenhance imprinting [21]. Follow-
ing imprinting exposure, and Bateson’s (1966) protocol [1], duckling
pairs were placed in a dark chamber for a 30 min retention interval.

( f ) Testing
Individual ducklings were tested for 10 min in a water pool (180 ×
180 cm, figure 1c), with two test stimuli. The combination of
imprinting exposure on a dry arena with testing on water mimics
natural circumstances for imprinting and locomotory mode
during ulterior following responses. One of the two stimuli (the
‘target’) always shared the gap duration of the imprint, but could
be made of the same (test conditions (i), (ii) and (iii)) or the alterna-
tive sound (test condition (iv)), while a ‘competitor’ differed in
either only sound (test condition (ii)), only silent gap (test condition
(iii)) or both (test conditions (i) and (iv), see figure 1d). Test stimuli
were placed in two diametrically opposed fixed locations (position
of target and competitor stimuli balanced across subjects). The
combination of four imprinting and four testing conditions
means that there were 16 subgroups (figure 1d; electronic
supplementary material, Video S1 and Extended figure S1).

(g) Data acquisition, processing and analyses
The video was recorded using Sony wireless 4 K action cameras
(FDR-X3000 R) at 30 Hz. A colour thresholding method was
implemented using custom Bonsai code [22] to track the position
of the duckling and each speaker. Position data were down-
sampled to 1 Hz, rotated and normalized relative to the
position of the speakers using custom Matlab code (2020a, Math-
works), so that speakers were always at the x,y positions [−1,0]
and [1,0] (see electronic supplementary material, Extended
figure S2). The first 20 s of each test were discarded to allow
the duckling to get used to being in water for the first time.
We then computed the second-by-second Euclidean distance in
pixels between the duckling and each of the speakers (schematics
in figure 1b). For every animal, we computed a preference index
‘Delta’ by subtracting the average Euclidean difference for the
competitor speaker from the average Euclidean distance to
the target one, so that positive Deltas correspond to target and
negative ones to competitor preference (−2≤Delta ≤ 2). Violin
plots included in the electronic supplementary material,
Extended figure S3, were created using [23].

We used a three-way ANOVAwith Delta (i.e. preference) as a
response variable and the following three categorical input vari-
ables: imprinting sound (two levels: duck sound or white noise),
imprinting silent gap duration (two levels: short or long) and test
condition (four levels: sound, gap duration, both and gap
duration between novel sounds), and all pairwise interactions
to test for preference (R aov function):

Preference � Imprint Sound Type
þ Imprint Silent Gap Duration
þ Test Conditionþ [all pairwise interactions]:

The interaction plot shown in the electronic supplementary
material, Extended figure S4was built usingR function (cat_plot);
for details see: https://www.rdocumentation.org/packages/
interactions/versions/1.1.3/topics/cat_plot
3. Results
The overall experimental design is summarized for reference in
figure 1. Please refer to figure 1d for testing examples, and elec-
tronic supplementary material, Extended figure S1 for full
description. Note that we define the stimulus that each duck
experienced during the imprinting exposure as the ‘imprint’
and to the stimulus that individualswould choose if expressing
a preference for the relevant tested variable as the ‘target’. The
target was the same as the imprint, except in one of the ‘time’
conditions, when ducks were tested for preference between
two stimuli made up of a sound novel to them.

Figure 2 (see electronic supplementary material, Extended
figure S3 for individual animal data) shows that on average
ducklings preferred the stimulus constructed with a natural
duck call (white bars) over that constructed of white noise
regardless of which one was experienced in the earlier
imprinting phase. In the two time-testing conditions, when
the sound did not serve as discriminant, but only the dur-
ation of the silent gap could identify the target, they
displayed a weak overall bias for the target, as would be
expected from imprinting on temporal structure, but this
bias does not reach statistical reliability across the different
sound compositions. This suggests that there may be some
sensitivity to the temporal relation that would require further
testing, but kind of sound is likely to play a major role.

https://audacityteam.org
https://audacityteam.org
https://www.rdocumentation.org/packages/interactions/versions/1.1.3/topics/cat_plot
https://www.rdocumentation.org/packages/interactions/versions/1.1.3/topics/cat_plot
https://www.rdocumentation.org/packages/interactions/versions/1.1.3/topics/cat_plot
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The interaction between sound type used during imprint-
ing exposure and test condition (electronic supplementary
material, Extended figure S4) was highly significant
(F3,271 = 8.049, p < 0.001; figure 2), as was the main effect of
sound type (F1,271 = 29.473, p < 0.001), but not that of temporal
structure. In particular, figure 2 shows that, overall, ducklings
did show a weak bias towards the gap duration experienced
during imprinting, but the trend is vulnerable to both sound
type and the requirement to generalize to novel sounds at test
time, hence cannot be considered to be proven.
rnal/rsbl
Biol.Lett.17:20210381
4. Discussion and conclusion
Overall our results point to the complexity of information pro-
cessing during imprinting. In particular, they do not reliably
establish whether ducks imprint on the temporal relation
between acoustic stimuli and/or if they generalize to temporal
intervals between acoustic stimuli across sound types. In a
condition testing preference between an imprinted stimulus
and a competitor differing in both sound type and temporal
gap, ducklings systematically approached the test stimulus
made of duck vocalizations, even when this meant rejecting
their previously experienced duration. In the two testing con-
ditions when only time duration could serve as discriminant,
they showed aweak bias towards the imprinted duration, even
when tested with novel sounds, but these results can at the
moment only be considered to be suggestive and worthy of
further investigation. With hindsight, it is possible to identify
reasons why, even if time properties of the imprinting stimuli
did play a role in forming the parental concept, our tests may
have failed to demonstrate it reliably. First, we asked for
discriminations between durations of a silent gap between
sounds, rather than imprinting and testing with duration of
sounds. We chose duration of silences because this controls
for non-temporal factors such as the amount of acoustic
energy, and because it highlights the connection with rela-
tional concept imprinting rather than perceptual imprinting,
but it is clearly a more difficult task. Second, we generated
stimuli by sampling natural vocalizations and white noise,
and found the strongest temporal responses when using the
former. This is consistent with an attentional interpretation:
if ducklings pay more attention to sounds with the power
spectrum and other physical features typical of their species,
then they may also be secondarily more sensitive to time
features simply because they attend more closely to such
signals. Third, the durations between which our ducklings
were asked to discriminate silent gaps were 0.2 and 1.2 s.
These durations were chosen because given their substantial
ratio (1 : 6) they should be discriminable, but we have no a
priori knowledge of the absolute range of durations to which
neonate ducks show greater sensitivity.

In summary, ducklings clearly imprint more easily on
sounds with the properties of duck vocalizations than white
noise, but further evidence must be collected to reliably estab-
lish whether they also imprint on the temporal relation
between sounds. Overall, this confirms the appeal of envisa-
ging imprinting as the establishing of representations of
parental targets constituted by concept vectors with multiple
attributes. Such a process articulates innate pre-dispositions
with sensitivity to experience and perceptual datawith abstract
relations. The dimensions of such vectorial representations are
only starting to be mapped.
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