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Abstract: Substandard and falsified medicines are often reported worldwide. An accurate and
rapid detection method for falsified medicines is needed to prevent human health hazards. Raman
scattering spectroscopy has emerged as a non-destructive analysis method for the detection of
falsified medicines. In this laboratory study, Raman spectroscopy was performed to evaluate the
applicability of the ultra-compact Raman scattering spectrometer (C13560). Principal component
analysis (PCA) was also performed on the Raman spectra. This study analyzed tadalafil (Cialis),
vardenafil (Levitra), and sildenafil (Viagra) tablets. We tested the standard product and products
purchased from the internet (genuine or falsified). For Cialis and Levitra, all falsified tablets were
identified by the Raman spectra and PCA score plot. For Viagra, the Raman spectra of some falsified
tablets were almost comparable to the standard tablet. The PCA score plots of falsified tablets were
dispersed, and some plots of falsified tablets were close to the standard tablet. In conclusion, C13560
was useful for the discrimination of falsified Cialis and Levitra tablets, whereas some falsified Viagra
tablets had Raman spectra similar to that of the standard tablet. The development of detection
methods that can be introduced in various settings may help prevent the spread of falsified products.

Keywords: Cialis; Levitra; Viagra; ultra-compact Raman scattering spectrometer; handheld; principal
component analysis; identification

1. Introduction

Substandard and falsified medicines have been increasing worldwide and have be-
come a global threat. “Falsified” medicines intentionally misrepresent the details of prod-
ucts, “substandard” medicines are authorized medical products that do not meet quality
standards, and “unregistered/unlicensed” medicines have not been approved for sale
under the relevant regulations and legislation, as per World Health Organization (WHO)
definitions [1]. Substandard and falsified medicines put people’s health at risk [2]. The
exact number of substandard and falsified medical products worldwide cannot be deter-
mined. However, according to an estimate published by the Center for Medicine in the
Public Interest in the United States of America, substandard and falsified medicine sales
exceeded 75 billion US dollars in 2010 [3]. The WHO Global Surveillance and Monitoring
System for substandard and falsified medical products reported that up to 2017, there were
1500 reports of substandard and falsified medical products [4]. These products include not
only pharmaceuticals, such as antibiotics, antidiabetic agents, and antimalarial drugs, but
also lifestyle medicines for beauty, diet, and erectile dysfunction (ED) [4–9]. The World-
Wide Antimalarial Resistance Network (WWARN) published the data of falsified medicines
from across the world [10]. Especially in low- and middle-income countries (LMICs), it
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is estimated that one-tenth of medicines are substandard or falsified [2,11]. Poor-quality
medicines cause patient harm, such as direct hazards to health and loss of trust in medical
care. Furthermore, substandard and falsified medicines cause economic damage, such as
lost earnings for genuine manufacturers and funding for criminal organizations. Therefore,
it is necessary to take measures to prevent the distribution of substandard and falsified
products.

The Asia Pacific Economic Cooperation indicated that it is important to develop
methods and techniques to detect and prevent falsified products in their Roadmap for
Supply Chain Security. However, the development of detection methods has been slow,
and no reliable method has emerged [12,13]. Conventionally, high-performance liquid
chromatography (HPLC) and thin-layer chromatography (TLC) have been used as phar-
maceutical analysis techniques, and these analyses can accurately qualify and quantify
active pharmaceutical ingredients (API). A handheld device has also been developed that
can not only be used in the laboratory or a special facility but also in the field. Minilabr

developed by Global Pharma Health Fund e.V. (Giessen, Germany), which is a rapid
analysis of TLC, has been used all over the world including in LMICs and evaluated for
its usefulness [14–16]. However, HPLC and TLC are destructive analyses (consuming
samples and failing to retain them), require machine operator training, and require the
availability of reference standards [17]. Because these destructive analyses require time and
a skilled operator, spectroscopic analysis has been widely used as an alternative method
in recent years [18]. Spectroscopy is a non-destructive technique and requires no special
training or pretreatment [17,19]. Spectroscopic analysis, including near-infrared and Ra-
man spectroscopy, has been applied in various fields, such as food [20–23], plants [24],
art [25], treatment [26,27], and medical products [28–41]. Raman scattering analysis is
included in the United States Pharmacopoeia and the European Pharmacopoeia, and many
major pharmaceutical companies worldwide use Raman spectroscopy to identify source
materials [18].

Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation
Scheme (PIC/S) are the co-operative agreements on Good Manufacturing Practices (GMP)
for pharmaceuticals; the aim of these agreements is to establish a common standard
for GMP and harmonize testing procedures. PIC/S indicates that the identity of the
batch of starting materials is certified only if it is tested on each sample taken from all
packages [42,43]. Therefore, an accurate and quick detection method for testing a large
number of samples is required. Portable analyzers can be used in the field and reduce the
number of samples that need to be tested in the laboratory [14,44,45]. Several handheld
Raman scattering analyzers with different functions, sizes, and prices have been developed,
and there are several reports that have evaluated their usefulness [7,8,14,44–51]. The
handheld Raman spectrometer is expected to be used in customs, warehouses, medical
institutions, and pharmacies, and is cheaper than fixed Raman spectrometers installed
in laboratories. However, when used in low-income institutions or LMICs, it is crucial
that the cost of the analyzer and the number of consumables required for each analysis is
low [52]. Therefore, we evaluated the usefulness of the ultra-compact Raman scattering
spectrometer (C13560, Hamamatsu Photonics K.K., Shizuoka, Japan) developed in Japan.
Compared with the handheld Raman scattering spectrometers that have already been
reported, the advantages of the ultra-compact Raman scattering spectrometer are its price
and size. Its size is similar to a smartphone, and it weighs only 90 g. In addition to its
small size, the cost of the ultra-compact Raman scattering spectrometer is low enough to
be affordable in many places and is one-tenth the price of the analyzer that we used in
previous studies [7,8]. However, it needs to be modified for application because it is an
Original Equipment Manufacturing (OEM) Raman spectroscopic module.

In this study, we examined the usefulness of the ultra-compact Raman spectrometer
as a non-destructive detection method. The method was applied to detect falsified ED
medicines that were in distribution; the authentic products were: tadalafil (Cialis), varde-



Pharmacy 2021, 9, 3 3 of 16

nafil (Levitra), and sildenafil (Viagra) [7–9]. In addition to the confirmation of the Raman
spectra, principal component analysis (PCA) was also performed to classify products.

2. Materials and Methods
2.1. Materials

This study analyzed three medicines for ED, including Cialis (20 mg tablet), Levitra
(20 mg tablet), and Viagra (100 mg tablet). Standard Cialis 20-mg and Levitra 20-mg tablets
were obtained through Japanese legal distribution [53,54]. The Viagra 100-mg tablet is an
unapproved dosage form in Japan, and thus standard Viagra 100-mg tablets were obtained
from the manufacturer and distributor, Pfizer Inc. (New York, NY, USA) [55,56].

We tested products obtained by purchasing over the internet in previous studies [7–9].
These products were previously judged as genuine or falsified. Authenticity was assessed
by the manufacturer of the product. The quality, such as the quantity of APIs and disso-
lution of the product, was confirmed in previous studies [7–9]. For Cialis tablets (n = 33),
one standard product, nine genuine products (GC1– GC9, n = 9), and 23 falsified products
(FC1–FC23, n = 23) were tested. For Levitra tablets (n = 23), one standard product, nine
genuine products (GL1–GL9, n = 9), and 13 falsified products (FL1–FL13, n = 13) were
tested. For Viagra tablets (n = 23), one standard product, four genuine products (GV1–GV4,
n = 4), and 18 falsified products (FV1–FV18, n = 18) were tested.

The ingredients used as excipients in Cialis, Levitra, and Viagra tablets were obtained
as much as possible [53,54,56]. Magnesium stearate was purchased from FUJIFILM Wako
Pure Chemical Corporation (Osaka, Japan). Talc was purchased from Maruishi Pharmaceu-
tical. Co., Ltd. (Osaka, Japan). Hydroxypropyl cellulose 150–400 cP and titanium oxide
were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Hydroxypropyl
methylcellulose was purchased from Alfa Aesar, Thermo Fisher Scientific (Lancashire,
United Kingdom). Lactose was purchased from KENEI Pharmaceutical Co., Ltd. (Osaka,
Japan). A reference standard for tadalafil and sildenafil citrate was purchased from the
United States Pharmacopeia (Rockville, MD, USA). A reference standard for vardenafil
dihydrochloride was purchased from LKT Laboratories, Inc. (St. Paul, MN, USA).

2.2. Raman Spectroscopy

The Raman spectra of the tablet surface were measured using the ultra-compact scatter-
ing spectrometer (C13560, Figure 1). The size of the device was 96 mm × 14.5 mm × 60 mm,
and the weight was 90 g. The laser excitation wavelength was 785 nm, the power was
15 mW, and the exposure time was one second. The spectral range of the detection area was
400–1850 cm−1. We used the focus guide provided by Hamamatsu Photonics to adjust the
focus of the laser under the same conditions each time. As a preparation for the measure-
ment, the dark was measured using a silicon substrate to subtract the dark data from the
measurement data. The silicon peak detected near 520 cm−1 was used for calibration [57].
We tested five tablets of the standard product and one tablet of the genuine or falsified
product. The surface of the tablet was measured five times, and the average of the intensity
at each wavenumber of spectra was used to analyze the Raman spectra. The non-curved
area of the tablet was irradiated with the laser, avoiding the manufacturer’s imprint. All
additive agents and reference standards were placed in a clear plastic bag and measured
five times from the outside of the package.
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Figure 1. Image of the ultra-compact scattering spectrometer (C13560).

2.3. Multivariate Analysis

PCA was performed using The Unscrambler X 10.5 (CAMO Software, Oslo, Norway).
As the pre-processing step, a Gaussian function filter method with a segment size set
to 15 for smoothing, baseline correction, and normalizing with the maximum value was
performed on all averaged spectra. In the PCA score plot, n-dimensional spectral data
were converted into two-dimensional data and shown as plots in the Figure. PCA score
plots and loading plots were used for grouping the products and to confirm spectral peaks
for identification.

3. Results
3.1. Analysis of Components

The Raman spectra of additive agents and reference standards are shown in Figure 2.
The reference standard for tadalafil, vardenafil dihydrochloride, and sildenafil citrate had
some peaks between 400–1700 cm−1, and the common point of the three spectra was the
peak around 1580–1600 cm−1 (Figure 2a–c). Sildenafil citrate had two large peaks with an
intensity higher than 20000 around 1240 and 1580 cm−1 (Figure 2c). Magnesium stearate
had small peaks around 1060, 1120, 1290, and 1430 cm−1 (Figure 2d). Talc had only one
peak, which was around 670 cm−1 (Figure 2e). Hydroxypropyl cellulose and titanium oxide
had two major peaks around 510 and 630 cm−1, but the intensity of the titanium oxide peak
was significantly higher than that of hydroxypropyl cellulose (Figure 2f,g). Hydroxypropyl
cellulose was contained in the Cialis tablet only, and titanium oxide was used in the Cialis,
Levitra, and Viagra tablets [53,54,56]. There were no peaks in the spectra of hydroxypropyl
methylcellulose, and the intensity decreased as the wavenumber increased (Figure 2h).
Lactose had small peaks around 470, 840, and 1080 cm−1 (Figure 2i).
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Figure 2. The Raman spectra of additive agents and reference standards. (a) tadalafil, (b) vardenafil dihydrochloride,
(c) sildenafil citrate, (d) magnesium stearate, (e) talc, (f) hydroxypropyl cellulose, (g) titanium oxide, (h) hydroxypropyl
methylcellulose, (i) lactose.

3.2. Analysis of Cialis

Figure 3 shows the Raman spectra of the standard, one genuine, and four falsified
Cialis tablets. The two major peaks of the standard and genuine tablets (GC1–GC9) were
obtained around 510 and 630 cm−1. The intensity of the peak around 630 cm−1 appeared to
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be more than twice as high as the peak around 510 cm−1 from the spectra baseline. Twelve
falsified tablets (FC1–FC12) showed peaks at the same wavenumbers as the standard tablet
but with differences in intensity. The intensity of the peak around 630 cm−1 was higher,
but not twice as high (as in the standard tablet), than the peak around 510 cm−1 in the
falsified tablets (FC1–FC12). One falsified tablet (FC13) had almost no peaks, and the
intensity of the spectra decreased as the wavenumber increased. In the other 10 falsified
tablets (FC14–FC23), no peaks were detected because there was fluorescence, and the
Raman spectra were flat. Tablets with no peaks could not be distinguished visually by
color differences. A curve toward the x-axis around 550–600 cm−1 was found in standard
and genuine tablets, but the spectra were horizontal in all falsified tablets (FC1–FC23).
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Figure 3. The Raman spectra of Cialis tablets. The black dotted line shows the spectra of the standard
tablet (the average data of five standard tablets). The black lines show one of the genuine tablets
(GC1), and the gray lines show four falsified tablets (FC1, FC13, FC14, FC19).

In the PCA, the principal component (PC)-1 and PC-2 explained about 99% (PC-1 =
87%, PC-2 = 12%) of the spectra (Figure 4). Because genuine tablets were very close to
standard tablets, standard and genuine tablets were considered to be similar. Ten falsified
tablets (FC14–FC23) were significantly different from standard tablets in PC-1. Thirteen
falsified tablets (FC1–FC13) were close to the standard tablet in PC-1 but different in PC-2.
It was not possible to identify falsified tablets by PC-1 alone. From the loading plot, PC-1
was affected by the intensity of the peaks around 430, 625, and 1460–1850 cm−1 (Figure 5a).
PC-2 was affected by the intensity of the peaks around 450, 570, 690–780 cm−1 (Figure 5b).
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3.3. Analysis of Levitra

Figure 6 shows the Raman spectra of the standard, one genuine, and four falsified
Levitra tablets. The two major peaks of the standard and genuine tablets (GL1–GL9) were
obtained around 510 and 630 cm−1. One falsified tablet (FL1) also showed peaks around
510 and 630 cm−1 but at a different intensity compared with that of the standard tablet.
Another falsified tablet (FL2) showed peaks around 1240, 1400, and 1520–1590 cm−1, which
were quite different from the standard tablet. FL1 and FL2 showed spectra similar to those
of sildenafil, and the major peak was clearly visible in FL2 (Figures 2 and 6), suggesting that
FL1 and FL2 are falsified tablets containing sildenafil. FL2 was visually different in color
from the other falsified tablets and contained the highest amount of sildenafil among the
falsified Levitra tablets obtained in a previous study [8]. In 11 falsified tablets (FL3–FL13),
no peak was detected because there was fluorescence, and the spectra were flat. Tablets
with no peaks could not be distinguished visually by color differences.
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Figure 6. The Raman spectra of Levitra tablets. The black dotted line shows the spectra of the standard tablet (the average
data of five standard tablets). The black lines show one of the genuine tablets (GL1), and the gray lines show four falsified
tablets (FL1, FL2, FL3, FL5).

Figure 7 shows the PCA score plot. PC-1 and PC-2 explained about 99% (PC-1 = 76%,
PC-2 = 23%) of the spectra. Because the standard tablet was inside the group of genuine
tablets, we could not distinguish between the standard and genuine tablets. One falsified
tablet (FL1), which showed peaks around 510 and 630 cm−1 (Figure 6), was close to the
group containing standard and genuine tablets. Another falsified tablet (FL2), which had
different spectra compared with the standard tablet (Figure 6), was distinguished in both
PC-1 and PC-2. Eleven falsified tablets (FL3–FL13) were significantly different from the
standard tablet in PC-1. PC-2 was also assessed because the contribution of PC-1 was 76%,
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but almost all falsified tablets, except falsified tablet FL1, could be found using PC-1 alone.
From the loading plot, PC-1 was affected by the intensity of the peaks around 410, 630,
and 1460–1810 cm−1 (Figure 8a). PC-2 was affected by the intensity of the peaks around
420, 740, 870–900, 990, and 1850 cm−1 (Figure 8b). Although the loading plots of PC-1
and PC-2 appeared similar, the absolute value of the loading weight of PC-1 was high
after 1450 cm−1, and the absolute value of the loading weight of PC-2 was high before
1000 cm−1.
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3.4. Analysis of Viagra

Figure 9a shows the Raman spectra of the standard, one genuine, and five falsified
Viagra tablets. The two major peaks of the standard, genuine (GV1–GV4) and some falsified
tablets were obtained around 510 and 630 cm−1. In addition, 17 of 18 falsified tablets (FV1–
FV15, FV17, and FV18) showed a small peak around 1000 cm−1 that was not found in
the standard and genuine tablets, but one falsified tablet (FV16) did not show this peak
(Figure 9b). Two falsified tablets (FV17, FV18) had no major peaks, and the intensity of
spectra decreased as the wavenumber increased. Because the spectra of some falsified
tablets (FV1–FV16) were similar to those of the standard tablet, it was difficult to visually
identify all of the falsified tablets.
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Figure 10 shows the PCA score plot. PC-1 and PC-2 explained about 99% (PC-1 = 94%,
PC-2 = 5%) of the spectra. Genuine tablets (GV1–GV4) were close to the standard tablet.
Two falsified tablets (FV17, FV18) with no major peak in Figure 9a were different from the
standard tablet in PC-1. The other falsified tablets (FV1–FV16) existed around the standard
and genuine tablets in PC-1 and/or PC-2. One falsified tablet (FV1) had almost the same
Raman spectra as the other falsified tablets (FV2–FV15), as shown in Figure 9a, but the
PCA score plot of FV1 was as close to the standard tablet as the genuine tablets. The score
range of PC-2 was about 0.6, indicating minimal differences. Therefore, it might be difficult
to completely distinguish between falsified tablets with PCA. PC-1 was affected by the
intensity of the peaks around 710–790 cm−1 because the absolute value of the loading
weight of PC-1 was high around 710–790 cm−1 (Figure 11a). PC-2 was affected by the
intensity of the peak around 460, 560, and 640 cm−1 (Figure 11b).
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4. Discussion

We have attempted to identify falsified medicines using an ultra-compact Raman
spectrometer. All falsified Cialis tablets could be identified by Raman spectra and PCA
(Figures 3 and 4). It was possible to identify falsified Levitra tablets by the spectra; how-
ever, one of the falsified tablets was close to the standard tablet in the PCA score plot
(Figures 6 and 7). Most of the falsified Viagra tablets showed peaks similar to those of
the standard tablet (Figure 9a). Falsified tablets did not overlap with the standard and
genuine tablets in the PCA score plot, but it was difficult to distinguish all the falsified
tablets from the standard tablet even using PCA (Figure 10). The tablets with no major
peaks because of fluorescence were all falsified tablets (Figures 3, 6 and 9), indicating that it
might be possible to identify falsified tablets by analyzing the Raman spectra as a first step.
Furthermore, it was shown that the standard and falsified tablets were different, and there
were also differences among falsified tablets, especially in the cases of Cialis and Levitra
tablets (Figures 3, 4, 6 and 7). A previous study using a different Raman spectrometer also
reported that the Raman spectra of falsified products did not belong to one group [7,8]. We
confirmed that the various types of falsified tablets were distributed in the market using an
ultra-compact Raman spectrometer.

Standard Cialis, Levitra, and Viagra tablets had peaks at the same wavenumbers,
specifically around 510 and 630 cm−1. Cialis, Levitra, and Viagra tablets are all film-coated
tablets and contain titanium oxide as a coating agent [53,54,56]. These peaks around
510 and 630 cm−1 might come from titanium oxide (Figure 2) [30,58–60]. The spectra
were significantly affected by titanium oxide because the titanium oxide peaks had high
intensities compared with the other additives around 510 and 630 cm−1. Because the
spectral intensity of titanium oxide increases in proportion to the concentration, some
falsified tablets with low intensity might contain less titanium oxide than the standard
tablet. Titanium oxide is used as an additive mainly for coloring and light blocking;
therefore, some falsified tablets might have poor light stability. In this study, the effect of
titanium oxide on the Raman spectra was substantial, and the presence of other additives
and APIs were not clearly observed in most cases (Figure 2). [61–63]. It was suggested that
the falsified tablets with different spectra from those of the standard tablet had a different
composition of coating agents. Moreover, sildenafil was detected in FL1 and FL2 (Figure 6).
Because FL1 and FL2 are falsified tablets containing sildenafil, sildenafil was likely detected
due to the failure of the coating layer or the mixing into the coating layer. Most falsified
Viagra tablets showed small differences compared with the standard tablet, suggesting
that the tablet surface of the falsified tablets was composed of similar ingredients as the
standard tablet (Figures 9 and 10). The loading weight of PC-1 and PC-2 for the Raman
spectra was weak around 510 and 630 cm−1 in most cases (Figure 5a,b, Figure 8a,b and
Figure 11a,b). PCA generates a new variable termed the PC that best represents the overall
variation. The loading score of the PCA was affected by other peaks, even though the
spectra appeared to be affected by titanium oxide.

Some falsified tablets were so similar to the standard tablet that we could not detect
all falsified tablets. There were several possible factors. Viagra tablets are supplied as a
blue and film-coated tablet. The intensity of blue light is at its maximum at 450 nm and
becomes weaker as the wavelength becomes longer. As the excitation wavelength of the
ultra-compact Raman spectrometer is 785 nm, the Raman scattered light of Viagra tablets
might be difficult to detect because of the blue coating [64,65]. It is important to select an
appropriate wavelength. In addition, Raman scattering analysis might be difficult when
the surface of the tablet is uneven or curved. Furthermore, in the PCA of Cialis and Viagra
tablets, the plots of standard and genuine tablets were slightly far apart and did not overlap
(Figures 4 and 10). Differences among the standard and genuine tablets might be affected
by the manufacturing country, plant, or process.

As a result of this study, from the viewpoint of the discrimination of falsified medicines,
there was a false negative falsified tablet that could not be distinguished from the standard
product even though it was a falsified tablet, suggesting a limitation in the detection of
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falsified tablets using the ultra-compact Raman spectrometer. However, the tablets with
completely different spectra from the standard tablet were falsified products. Therefore,
there was no false positive, and rapid non-destructive analysis using Raman spectroscopy
allows the number of medicines sent to the laboratory for testing to be reduced. One
of the significant advantages of this ultra-compact Raman spectrometer is that it can
be introduced in many settings because of its low cost. If the ultra-compact Raman
spectrometer was used in medical institutions and customs, it could prevent patients from
obtaining falsified medicines and suffering health hazards. The ultra-compact Raman
spectrometer also helps to prevent the spread of falsified products in resource-limited
settings and LMICs. Although the focus of this study was tablet medicines, the ultra-
compact Raman spectrometer is equipped with surface enhanced Raman scattering (SERS),
and thus it may also be useful for analyzing liquid samples, such as injections. The
emergence of more sophisticated falsified products and the development of detection
methods have occurred simultaneously for many years. Although disclosing information
regarding the standard product might help with duplicating products, it is considered
that publicizing these technological advances and efforts would lead to deterrence in the
production of falsified products. The existence of a free spectra library might be useful in
developing technologies to detect falsified medicines. We consider that continuing further
validation with various types of medicines is important for the implementation of this
technique at a large scale.

The products analyzed in this study were limited to medicines for ED purchased over
the internet in previous studies. There may be many kinds of falsified medicines being
marketed around the world. Validation experiments with other types of medicines are
required. Because the number of tablets in this study was limited, data were only obtained
from one tablet in each case; given that falsified medicines with poor quality do not have
the same properties among packages or batches, this approach might require measuring
multiple tablets per product.

5. Conclusions

An ultra-compact Raman spectrometer was used to detect falsified medicines for ED.
Although successful for Cialis and Levitra, there was only limited success at identifying
some falsified Viagra tablets. Therefore, the limitation of identification should be considered.
Detecting falsified medicines in the field using a portable analyzer could help to prevent the
spread of falsified medicine and protect the health of patients. Low-cost analyzers could be
used in various settings, such as LMICs, medical institutions, and customs.
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