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Abstract: In this paper, we used an EEG system to monitor and analyze the cortical activity of
children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This
complex cognitive task simultaneously involves several cognitive processes and systems: visual
search, working memory, and mental arithmetic. We revealed that adults found numbers on average
two times faster than children in the beginning. However, this difference diminished at the end
of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band
power at the end of the task. This indicates the shift from procedural strategy to less demanding
fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects
enhanced reliance on the top–down mechanisms, cognitive control, or attentional modulation rather
than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the
children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the
completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained
results were essential for developing passive brain–computer interfaces for monitoring and adjusting
a human state in the process of learning and solving cognitive tasks of various types.

Keywords: Schulte table; EEG sensors; age differences; sensor-level analysis; attentional modulation;
cortical activity monitoring; brain–computer interface; human cognitive state; cognitive task

1. Introduction

The nervous system develops through several processes, some of which are complete
before birth, while others continue throughout childhood and adolescence into adulthood
(see Refs. [1–3] for the literature review). White and gray matter show complex patterns of
change over the human lifespan [4]. The volume and integrity of white matter gradually
increases from childhood to adulthood in many cortical regions [5]. In contrast, gray matter
volume increases from infancy through childhood, peaking during adolescence in the
frontal, parietal, and temporal areas [6]. Changes in cognitive functions accompany the
ongoing development in white and gray matter, including improvements in the intelligence
quotient [7], memory [8], attention [9], and executive functions [10].

Neuropsychological and behavioral performance in daily activities mostly relies on
the interaction between different cognitive functions rather than their particular aspects.
Goal-directed behavior requires sensory information processing and decision making to
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give a reasonable behavioral response [11]. On the one hand, our decisions depend on the
quality of sensory input. On the other hand, they are affected by top–down mechanisms,
including context-related expectations and prior knowledge. Thus, substantial evidence
or high capacity of the top–down component reduces cognitive demands at the decision-
making stage and facilitates the decisions. The evidence accumulation process involves
different cognitive functions. For instance, selective attention allows focusing on decision-
relevant features and tuning out unimportant details [12]. Cognitive control also aims at
the prioritization of relevant over irrelevant information. Working memory maintains these
priorities, so that processing resources are allocated with higher priority to the relevant
information [13]. Thus, the active involvement of the particular cognitive functions at the
earlier stages decreases the cognitive load on the other components at the latter stages.
Mechanisms of interaction between the cognitive processes during mental tasks change
with age. Uncovering the ways in which they change will substantially complement and
advance our knowledge about brain development.

To address this issue, we subjected children and adults to the Schulte table (ST)
with the simultaneous recording of their brain electrical signals with EEG sensors and
response time. Performing this task relies on several cognitive processes, including visual
search, working memory, and mental arithmetic, so the ST is appropriate for the stated
goals. Monitoring cortical activity during cognitive task completion with an EEG system
allows obtaining objective information about the brain’s functioning and the occurring
cognitive processes with a reasonable spatial and good time resolution [14–16]. At the same
time, electroencephalography is an easy-to-use and safe non-invasive technology that is
especially important when working with children.

The applied motivation of the present study is the development of fundamental basics
of functioning of passive brain–computer interfaces (BCIs) for monitoring and adjusting a
human state in the process of learning and solving cognitive tasks [17]. In this context, it is
crucial to reveal age-related changes in cognitive processes and their interactions, allowing
to calibrate and optimize BCIs for the corresponding age group. Such studies, in particular,
are in demand for neuroeducation [18,19].

2. Materials and Methods
2.1. Participants

Twenty conditionally healthy volunteers (no diagnosed diseases of the nervous system,
no prescribed drugs), non-smokers, right-handed, with normal or corrected-to-normal
visual acuity, who were also amateur practitioners of physical exercise participated in the
experiment. The volunteers never participated in neurophysiological experiments before.
There were two groups of participants: 12 children (9 males, 3 females, aged 7–8) and
10 adults (7 males, 3 females, aged 18–20). For 48 h before the experiment, all subjects were
asked to maintain a healthy lifestyle with 8 h of sleep, a limited consumption of alcohol
and caffeine, and mild physical activity. The data of two children were excluded from
further consideration since one of them misunderstood the task, and the EEG records of
the second were too noisy.

The age groups were selected based on the following considerations. Since we pay
special attention to the development of BCIs for education, it was essential to select
the contrast age groups relevant to the performed task (ST). The first group consisted
of second-grade schoolchildren; the task was difficult for them because they were just
beginning to master arithmetic operations. On the contrary, the volunteers from the second
group, consisting of 1st–2nd-year students of IT specialty from Innopolis University, could
efficiently complete the ST since their arithmetic skills were predominantly at a high level.

The participants (and their parents—for children) received instructions about the
experiment, including a description of the experimental design, its goals, methods, and
potential inconveniences caused by participation. They were able to ask any related
questions and were given appropriate answers and clarifications. Each participant filled
and signed informed voluntary consent before their participation in the experiment—the
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adults signed informed consent blank by themselves, while for children, informed consent
blank was signed by the parents. All experimental procedures were performed according
to the requirements of the Declaration of Helsinki. The design and methodology of the
experiment were approved by the Ethics Committee of Innopolis University.

2.2. Experimental Task and Related Discussions

The cognitive task was in the form of a Schulte table—a simplified version of the
Zahlen–Verbindung-test (ZVT). Similar to ZVT, the ST is the matrix of randomly arranged
elements—the size of the matrix is 5 × 5 in this case, and elements are represented with
numbers from “1” to “25” (Figure 1A). The main difference between the ZVT and the
ST is that in the latter case, accomplishing implies finding the numbers in descending
order, i.e., 25, 24, . . . , 2, 1 as quickly as possible. We supposed that performing this
task relied on several cognitive processes, including visual search, working memory, and
mental arithmetic.

Visual search involves an active scan of the visual environment for a particular object,
target, and among other objects, distractors. Accomplishing ST consists of a series of visual
search tasks where each number has to be found among the other numbers. The memory
task involves the presentation of a material that participants must recall after a certain
amount of time or use to reply to an exercise presented to them. To find a number in ST,
participants scan the table and memorize the locations of numbers. After several rounds
of scanning, they collect more numbers in memory. Thus, in the course of the task, the
accomplishing rate becomes dependent on the working memory capacity: the higher the
capacity, the higher the processing performance. Mental arithmetic comprises arithmetical
calculations using only the brain resources, with no help from supplies, such as pencil
and paper, or devices. One of the most robust phenomena in mental arithmetic is the
problem size effect, which indicates that the response time increases as the magnitude of
the operands in an arithmetic problem increases [20]. For single-digit problems, 2 + 3 or
8 + 7, the larger the product of the operation results, then the higher RT is necessary to
produce a correct answer [21]. We suppose that subjects perform arithmetical calculations
before finding numbers in the ST. For instance, to find numbers 24 and 4, they calculate
“25 − 1” and “5 − 1”, respectively. Thus, at the beginning of the ST accomplishment, the
result of this operation is a two-digit number, whereas at the end of ST, it becomes one-digit.

There is plentiful evidence that these cognitive processes change with age. For instance,
the ability to organize a visual search rapidly develops until age twelve [22]. Visual search
performance relies on top–down and bottom–up components. The former characterizes
the effect of prior knowledge about the target on the rate of its detection. A match between
the sensory input and a target determines the detection rate. A bottom–up component
represents a match between the local features (e.g., color, orientation) of the target item and
sensory input [23]. The 6-to-7-year-old children have a smaller capacity for both top–down
and bottom–up components. As a result, they are unable to guide the search appropriately.
Moreover, they cannot monitor across the multiple features of a salient target and instead
focus on the single local feature [23]. It evidences a development from middle-to-late
childhood in both the top–down and bottom–up components of attentional systems used
in visual search.

The working memory performance also depends on age. First, the working memory
capacity increases during childhood development [24]. Second, to retain the information
in working memory, distracting stimuli must be ignored. This critical ability to ignore the
distractors also improves during childhood [25]. Working memory capacity is low at a
young age, and children are more susceptible to interfering stimuli. In contrast, adults are
more accurate during the working memory task and less distractible than children.
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Figure 1. (A) An example of the Schulte table. The arrows show the accomplishment process.
(B) Illustration of the experimental setup. The subject uses a stylus to accomplish the Schulte table on
the tablet us screen. (C) Experimental design includes accomplishing the five different Schulte tables.
(D) The schematical illustration of the response time taken to find the number “22” as the time spent
between pointing number “22” and pointing the preceding number “23”.

Regarding mental calculation, children perform longer operations than adults [26].
Moreover, the problem size affects children and adults in different ways. Usually, a response
to small problems is faster and more accurate than to larger ones due to the differences in
the strategy [27]. Small problems are solved using fact retrieval. Large problems engage
a time-consuming quantity-based procedural strategy, such as counting or decomposing
into smaller problems. Rivera et al. [28] reported that younger children recruited more
working memory and attentional resources during arithmetic to engage in procedural prob-
lem–solving strategies, even for the small addition and subtraction problems. Throughout
development, children develop an increasing reliance on fact retrieval and decreasing
reliance on procedural strategies [29]. Finally, the mental calculation requires a working
memory [30], and children’s mental arithmetic may be constrained by working memory
resources rather than their arithmetical competence [31].
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To dissociate the effects of different cognitive processes, we divided the ST accom-
plishment time into three conditions—each of which involved searching eight numbers.
We suggested that the arithmetical problem size was unchanged between the first and the
second conditions, but decreased in the third condition due to the reduced numerical size of
operands and answers. Then, we supposed that the working memory load enhanced in the
second condition in contrast to the first condition due to the growing number of items in the
memory set array. Finally, we assumed that the amount of distracting information remained
constant across conditions since every target was among the twenty-four distractors.

2.3. Experimental Procedure

The experimental procedures took place during the first half of the day in a well-lit
room. The subject was sitting in a comfortable chair while the Schulte tables were presented
on the tablet computer (Figure 1B). The ST had the 10× 10 Sm dimensions, and the distance
between the table and the subject’s eyes varied in the range of 0.3–0.4 m. The subjects used a
stylus to point to the number, enabling us to record the time when each number was pointed.
The subjects were instructed not to connect the respective cells by drawing a line, but only
point out each found number with a stylus. All participants successively completed five
different tables (Figure 1C). During the experiment, a professional psychologist monitored
the whole process. The following table was presented 10 s after the previous table had
been finished. To characterize the behavioral performance, we introduced the response
times RT j

i taken to search for the i-th number in the j-th table. Here, j = 1 . . . 5 represented
the table i = 24 . . . 1 corresponded to the number in the table. Thus, RT1

22 reflected the time
spent between the pointing of number “23” and number “22” in the first table (Figure 1D).
We did not consider the RT j

25 since it included the subject’s preparation for the task and
exhibited large variation between the subjects.

2.4. EEG Recording and Processing

The EEG data were obtained using the electroencephalograph “actiCHamp” (Brain
Products, Germany) with the“ActiCap” active Ag/AgCl electrode sensors. Thirty-one EEG
channels were arranged on the scalp according to a “10–10” scheme. A ground electrode
was put at the forehead in the position of the “Fpz” EEG electrode—the reference electrode
situated on the right mastoid. Before electrode mounting, we applied abrasive gel to clean
the scalp skin and increase its conductivity. Then, we placed EEG electrodes with the
help of conductive gel. The impedances were monitored during the experiment, and their
values were <25 kΩ. EEG data were recorded with a sampling of 1000 Hz and filtered.
We used a band-pass filter with 0.016 Hz and 100 Hz cut-offs and a notch filter at 50 Hz.
EEG contamination caused by electrocardiogram (ECG) and electrooculogram (EOG) was
removed via the independent component analysis (ICA). We used the EEGLAB toolbox
for MATLAB to apply ICA for the recorded EEG data. Each EEG dataset of 31 channels
was decomposed into 31 independent components using the “runica” function. Then, we
found the component with the artifact by comparing initial EEG signals (segments with
artifacts) with each of the independent components. We removed the component with
artifacts by using the “Remove component” tool.

The EEG signals can also be affected by muscle artifacts. It is known that muscle
artifact contamination can obscure some important rhythms on EEG such as alpha or beta,
so advanced methods for recognizing and eliminating such artifacts were developed [32].
However, these methods commonly require additional biological signals to be recorded
along with EEG, such as electromyogram (EMG) or ECG. In the present study, we aimed to
obtain results that would help develop passive brain–computer interfaces, so we tried to
keep the experimental recording setup appropriate for such interfaces and as minimalistic
as possible. Additionally, muscle activity contamination is notoriously high during intense
physical activity such as sports exercises. In our experiment, the subject was sitting calmly
at the table in a primarily static pose, so we believe muscle artifacts should not be very pro-
nounced. However, any trials with substantial muscle artifact contamination were rejected
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and completely removed from the dataset. Moreover, the conducted statistical analysis of
the obtained data significantly reduces the effect of artifacts on the revealed effects.

For the spectral analysis, we used the wavelet transform, which has proven itself
in the analysis of bioelectric signals and has an optimal ratio of temporal and frequency
resolution [33]. We calculated the wavelet power (WP) in the frequency band of 1–70 Hz
using the Morlet wavelet [33]. For wavelet analysis, we used the Fieldtrip toolbox [34]. To
compare the wavelet power between children and adults, we normalized the spectra on
the mean power in the 1–70 Hz frequency band.

2.5. Statistical Analysis

The RT j
i were non-normally distributed in both age groups (children and adults)

according to the Shapiro–Wilk test. To analyze the RT j
i between the different tables and

within the table we used the repeated measures ANOVA with the Greenhouse–Geisser
correction. The post hoc analysis was performed via the nonparametric Wilcoxon signed-
rank test.

To compare the RT j
i between the age groups and between (or within) the tables,

we used the mixed-design ANOVA. The post hoc analysis was performed using the
nonparametric Mann–Whitney U test. To address the multiple comparison problem when
comparing RT j

i across numbers i = 24 . . . 1, tables j = 1 . . . 5, and three conditions, we used
the cluster-based correction with the randomization technique [35].

The values of RT averaged within the conditions were normally distributed across the
children and adults. We used the mixed-design ANOVA to analyze their change across
the conditions and between the age groups. The post hoc analysis was performed via an
independent-samples t-test. The equality of variances was tested via Levene’s test. The
mean values of the wavelet power in the different frequency bands were also normally
distributed across the subjects. Therefore, we used ANOVA to evaluate their change across
the conditions.

The topograms of WP were considered in the time-frequency-spatial domain and
compared for different experimental conditions with the help of a cluster-based permuta-
tion test to overcome the multiple comparisons problem [35]. In the pairwise comparison,
critical a α-level was set to 0.05, while in the cluster-level statistics, it was set to 0.025, which
corresponded to a 0.05 false alarm rate in a two-sided test. Finally, the minimal number
of the elements in the cluster was set to 2, and the number of permutations was equal to
2000 [35,36]. This number of permutations was sufficient since it was empirically found
that their increase does not change the results obtained for the considered problem. For
topogram comparison, we again used the FieldTrip toolbox [34].

Section 3 provides a description of the tests that we used and their parameters.

3. Results
3.1. Response Time

First, we performed a within-subject analysis of the response times, RT j
i , that the

subjects took to find the i-th number in the j-th Schulte table. We used a repeated measures
ANOVA with the number i = 24 . . . 1 and the table, j = 1 . . . 5 as two within-subject factors.
Children demonstrated a significant effect of the number: F(5.2, 46.8) = 4.38, p = 0.002
and an insignificant effect of the table: F(2.3, 21.1) = 1.5, p = 0.245. The interaction
effect, number × table, was insignificant: F(4.8, 43.1) = 4.38, p = 0.301. Adults demon-
strated a significant effect of the number: F(5.7, 51.6) = 9.07, p < 0.001 and the table:
F(4, 36) = 5.38, p = 0.002. Similarly with the children, the interaction effect, number × ta-
ble, was insignificant: F(6, 54) = 1.51, p = 0.191. Due to the insignificant interaction effect
in both groups, we concluded that each table was performed in a similar way. Therefore,
we further considered RTi as the averaged RT j

i across all tables for children and adults.
Then, we compared the response times, RT j (Figure 2A), taken to accomplish the j-th

Schulte table between the age groups, children vs. adults, via the mixed-design ANOVA
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with the table j = 1 . . . 5 as the within-subject factor. We found a significant effect of age:
F(1, 18) = 29.03, p < 0.001 evidenced that the adults took less time (M = 37.7 s, SD = 12.8)
to accomplish the table than the children (M = 72.3 s, SD = 20.1). We also observed the
insignificant effect of the table: F(2.6, 47) = 1.62, p = 0.201 and an insignificant interaction
effect, as the age group × RT: F(2.61, 47.03) = 1.41, p = 0.252. The obtained results
manifested that the adults performed all tables faster than children.
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Figure 2. (A) The response times RT j of the j-th table accomplishment for the children and adults.
Data are shown as the mean ± SD and the individual values (∗p < 0.05 via a mixed-design ANOVA
with the GreenHouse–Geisser correction). (B) the response time, RTi taken to find the i-th number in
the Schulte table. Data are shown as mean ± SE for children and adults. Accomplishment time is
divided into three intervals marked as condition1, condition2 and condition3. Each condition includes
searching for eight numbers. (C) The mean RT in three conditions for the children and adults
(∗p < 0.05 via a mixed-design ANOVA).

Finally, we compared the response times, RTi (Figure 2B), taken to find the i-th number
in the Schulte table between the age groups via the mixed-design ANOVA with the number,
i = 24 . . . 1, as the within-subject factor. We observed a significant effect of the age:
F(1, 18) = 25.83, p < 0.001 and the number: F(23, 41) = 8.0, p < 0.001. We also found
a significant interaction effect, age group × RT: F(23, 41) = 1.705, p = 0.023. Thus, we
reported the different ways of accomplishing the table for children and adults.

The mean RT in three conditions were compared between the age groups via a mixed-
design ANOVA (Figure 2C). We found a significant effect of the condition: F(2, 36) = 39.98,
p < 0.0001 and a significant interaction effect, condition × age group: F(2, 36) = 8.2,
p = 0.001. The post hoc analysis with a paired-samples t-test revealed that children’s RT
in condition1 (M = 3.2 s, SD = 0.96) and condition2 (M = 3.6 s, SD = 1.06) did not differ:
t(9) = 2.25, p = 0.05, but their RT in the condition3 (M = 2.21 s, SD = 0.69) was lower than
in condition2: t(9) = −5.5, p < 0.0001. Adults’ RT in the condition1 (M = 1.68 s, SD = 0.36)
and condition2 (M = 1.77 s, SD = 0.45) did not differ: t(9) = 1.07, p = 0.312; however,
similarly to children, their RT in the condition3 (M = 1.26 s, SD = 0.27) was lower than
in condition2: t(9) = −7.2, p < 0.0001. Finally, the children’s RT exceeded the adults’ RT
under all conditions (p < 0.002).

We analyzed how the RT changed within the conditions by contrasting it at the
beginning and the end of each condition. In the condition1 (Figure 3A), the effect of the
time-moment (begin vs. end) was insignificant: F(1, 18) = 0.041, p = 0.843. The interaction
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effect, time-moment × age group was also insignificant: F(1, 18) = 0.015, p = 0.904. For
the condition2 (Figure 3B), the effect of the time moment was insignificant: F(1, 18) = 1.280,
p = 0.273, as well as the interaction effect: F(1, 18) = 0.283, p = 0.601. For condition3
(Figure 3C), we found a significant effect of the time moment: F(1, 18) = 18.0, p < 0.001,
and a significant interaction effect: F(1, 18) = 18.0, p = 0.008. The post hoc analysis with
the paired samples t-test revealed that children decreased their RT from 3.89 s (SD = 2.19) to
1.02 s (SD = 0.33): t(9) = 4.01, p = 0.003. The adults’ RT decreased from 1.47 s (SD = 0.29)
to 0.76 s (SD = 0.16): t(9) = 7.49, p < 0.001. The analysis of the pairwise differences
showed that all subjects followed the group tendency in both age groups. Finally, the
Mann–Whitney U-test revealed that children demonstrated greater RT change (M = 2.86 s,
SD = 2.25) than the adults (M = 0.7 s, SD = 0.29): Z = 2.79, p = 0.004 (Figure 3C).

3.2. Brain Activity

First, we compared the wavelet power (WP) of children and adults between the
three conditions. For both the children and adults, no differences were found between
condition1 and condition2. On the contrary, when contrasting children’s WP in condition3
and condition2, we found a significant positive cluster with p = 0.037 in the frequency band
of 11.25–13.5 Hz. For this frequency band, we averaged the WP and contrasted it between
the conditions. As a result, we observed a significant cluster with p = 0.006, including
EEG sensors in the parietal (P3, P4, Pz) and parieto-central (CP5, CP1, CP2, CP6) regions.
The analysis of the pairwise differences revealed that the WP in this cluster was higher
under condition 3 in all children (Figure 4A). Regarding the adults, a significant positive
cluster with p = 0.037 was observed in the frequency band of 31.75–32.75 Hz. Testing the
averaged WP in this band, we observed a significant cluster (p = 0.003), including EEG
sensors in the frontal (F3, F4, Fz), central (C3, C4, Cz) and fronto-central (FC5, FC1, FC2,
FC6) areas. An analysis of the pairwise differences revealed that the WP in this cluster was
higher under condition3 in 10/12 adults (Figure 4B). These results evidenced that neither
children nor adults exhibited changes in the WP between condition1 and condition2. Thus,
for the further analysis, we averaged WP across these conditions.

The WP of adults was contrasted to that of children under conditions1,2 and condition3.
The children demonstrated a higher WP across all frequencies and conditions due to the
higher amplitude of EEG signals. Thus, we compared the normalized wavelet power
(NWP) in children and adults (see methods). Under conditions1,2, we found two positive
clusters with p = 0.007 and p = 0.0182 in the frequency ranges of 8.5–20.75 Hz and
56.25–70 Hz. Based on the obtained results, we defined the frequency bands of interest as
α: 8.25–12 Hz, β1: 12–21.5 Hz, and γ: 56.25–70 Hz. The mean NWP in these bands was
compared between the adults and children. In the α-band, a significant cluster (p = 0.0002)
included occipital (O1,O2, Oz), left-lateralized parietal (P7, P3, P4, Pz), sensorimotor (CP5,
CP1, CP2, C3, Cz, FC5, FC1, FC2), as well as left temporal (TP9, T7, FT9), and frontal
midline (Fz) EEG sensors. The NWP of this α-cluster in adults (M = 1.48, SD = 0.2) was
higher than in children (M = 0.96, SD = 0.25) (Figure 5A). In the β-band, a significant
cluster (p = 0.0019) included the left-lateralized parietal (P7, P3, Pz) and parieto-central
(CP5, CP1, Cp2) sensors, as well as the bilateral central (C3, C4, Cz) and fronto-central (FC1,
FC2) sensors, left temporal (TP9) and right-lateralized frontal (F4, Fz) sensors. The NWP
of this β-cluster in adults (M = 0.97, SD = 0.18) was higher than in children (M = 0.64,
SD = 0.23) (Figure 5B). In the γ-band, a significant cluster (p = 0.006) included EEG
sensors in the right-lateralized sensorimotor (P4, CP6, C4, FC6) and frontal (F4) areas.
The NWP of this γ-cluster in adults (M = 0.49, SD = 0.14) was higher than in children
(M = 0.27, SD = 0.14) (Figure 5C). Under condition3, we only found one positive cluster
with p = 0.0302 the frequency range of 9.25–12.25 Hz. Testing the averaged NWP in this
band, we observed a significant cluster (p = 0.0002) including the left-lateralized parietal
(P7, P3, Pz), sensorimotor (CP5, CP1, CP2, C3, Cz, FC5, FC1), the frontal (F7, Fz), and the
left temporal (TP9, T7, FT9) EEG sensors. The NWP of this α-cluster in adults (M = 1.32,
SD = 0.18) was higher than in children (M = 0.92, SD = 0.26) (Figure 5D).
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Figure 3. The RT of children and adults under condition1 (A), condition2 (B), and condition3 (C). The
left column reflects the RT taken to find each number within the condition. The individual scores
of children and adults are shown with their mean values (colored circles). Linear approximation
illustrates the way that the mean RT changes within the condition. The middle column shows the
individual RTs of children and adults taken to find the first and the last number within the condition.
The right column demonstrates the difference between the RT taken to find the last and the first
number. Data are shown as the mean ± SD and the individual values for the children and adults
(∗p > 0.05 via the Mann–Whitney U-test).
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Figure 5. (A–D) Significant clusters reflect the difference between the adults’ NWP and children’s
NWP in the α-, β-, and γ-bands for conditions1,2, and in the α-band for condition3. Topograms
illustrate t-values. The NWP in these clusters is also shown as the mean ± SD and individual scores
for children and adults.

4. Discussion
4.1. Behavioral Results

We demonstrated that adults accomplished ST faster than children. Children and
adults took, respectively, 3.5 s and 1.75 s to find numbers 24–17 as well as numbers 16–9. In
contrast, finding the remaining numbers, 8–1, took less time for both children (2.2 s) and
adults (1.2 s). Finally, we reported that children rapidly enhanced their search speed at the
end of the task. For the last eight numbers, the search time decreased by 70% for children
and 40% for adults. As we hypothesized in the Introduction, ST completion relies on
memory, arithmetic, and visual search abilities. The reaction time analysis reveals that the
memory component may not change through the task. If the subjects gradually memorized
the locations of numbers when scanning the table, they would increase their search speed
for numbers 16–9 compared to the numbers 24–17. In contrast, we reported a similar
search speed for 16–9 and 24–17. Additionally, a famous work by Horowitz and Wolfe [37]
reported that search efficiency is not impaired even if the scene is continually shuffled
while the observer is trying to search through it. Switching from two-digit to one-digit
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numbers might also affect visual search performance. While the number of distractors was
constant throughout the task, the low-level features of the target changed. The single-digit
numbers differed from the two-digit ones in terms of physical size and structure. Thus,
they better captured the bottom–up attention, decreasing the search time for children and
adults. When the numbers became one-digit, the children reduced the search time by
70%, which was significantly higher than in adults. We hypothesized that the arithmetical
problem size was the main factor limiting the completion speed of children.

4.2. Results of EEG Analysis and Brain Activity

In both children and adults, EEG power remained similar for numbers 24–17 and 16–9.
For numbers 8–1, the adults demonstrated higher frontal β-band power, and the children
showed higher parietal α-band power. Adults exhibited higher α-band power than children
in the left hemisphere, with the maximal difference achieved at the left temporal electrodes
through the task. We supposed that the observed behavioral and electrophysiological signs
together reflected the arithmetical strategy changes under the decreasing problem size. At
the beginning of the task, the subjects performed a subtraction from a two-digit number
resulting in a two-digit answer. In contrast, at the end of the task, the operands and the
results became single-digit. Using various strategies in problems of various sizes can be
seen as a major contributing factor to the problem size effect [38,39]. For small problem
solutions, fact retrieval is usually enough. However, for large problems, procedural
strategies are more appropriate. According to the review [40], different arithmetic strategies
are associated with different electrophysiological signatures. The works [41,42] showed
that retrieval strategies are tied to the more extensive synchronization of the θ-rhythm
(4–8 Hz) in the left hemisphere. Moreover, the procedural strategies were associated with
desynchronizing the lower α-rhythm (8–10 Hz) in the parieto-occipital area.

The recent work [43] suggests that the cortical network responsible for arithmetic
processing involves the frontal and parietal regions. Frontal gyri are tied to cognitive
activity, used in mental calculation, such as working memory and planning. There are
three significant parietal regions: the intraparietal sulcus (IPS), which is associated with
magnitude processing of numerals; the superior parietal lobule (SPL), which supports
attention processes in the general domain; and the left angular gyrus (AG), which is tied to
verbal processing in the general domain and long-term memory information retrieval.

Thus, high parietal α-band power at the end of the task may reflect the increased re-
liance of children on the fact-retrieval strategy when the problem size is small. Event-related
desynchronization (ERD) in the α-band tends to generally increase with task difficulty.
Given the strong correlation between the α-band ERD and task difficulty, we assume the
α-band ERD would be more pronounced for procedural problems than retrieval problems.
In their work [44], De Shedt et al. reported that procedural problems were tied to more
pronounced alpha ERD across all cortex, with the most noticeable difference observed
bilaterally in parietooccipital regions. The authors concluded that the present α-band
ERD result suggests that procedural problems are more demanding than simple retrieval
problems and thus require higher cortical activation. They also mentioned that earlier
fMRI studies showed more pronounced bilateral parietal activation in complex (vs. simple)
arithmetic problems as well as in procedural (vs. retrieval) problems (see Ref. [44]). In con-
trast, high frontal β-band power in adults might reflect enhanced reliance on the top–down
mechanisms, e.g., cognitive control [45] or attentional modulation [46] rather than a change
of arithmetical strategy.

Finally, the adults demonstrated high EEG power over the left hemisphere through the
task. According to Ref. [41], it is an EEG-biomarker of the retrieval strategy. The maximal
difference between the adults and children was observed at the left parieto-temporal
electrodes, possibly reflecting the left AG, a core area of the fact-retrieval strategy.
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4.3. Educational Aspects

Thus, we suggested that the arithmetical problem size affected children more than
adults. On the one hand, this effect may be a result of internal mechanisms of brain
development. On the other hand, educational aspects may influence the arithmetic skills of
children. The child’s thinking undergoes vital changes during the primary school age: from
the visual-effective to the visual-figurative and further to the verbal-logical form. Studying
mathematics contributes to the development of thinking by forming abilities of abstract
representation of the surrounding world. When studying mathematics, children meet the
concept of numbers and learn to solve arithmetic problems [47]. This part, traditionally
called arithmetic, forms the basis for studying mathematics in primary school.

Halberda et al. [48] emphasized the importance of the sense of the number for the
formation and development of mathematical thinking that may become a critical back-
ground to grow formal mathematical abilities. Moreover, the association between success
in processing numbers and broader mathematical competence may also be moderated by
participant age [49]. The main goal of studying arithmetic in primary school is developing
computational skills and abilities in children usually brought to automatism. These skills
and abilities develop when mastering specific computing techniques that allow a child
to consistently perform a system of operations leading to a calculated result. Having
computational skills means knowing operations and their order that guaranty the correct
and quick solution of arithmetical problem [50].

When accomplishing the Schulte table task, adults operate with two-digit numbers
using fact-retrieval. This is an appropriate brought to automatism technique to effectively
solve this problem. We hypothesized that the children participating in the experiment
do not fully master the appropriate skill to operate with numbers greater than 10. In
other words, they used a demanding procedural strategy instead of fact-retrieval. We
assume two reasons for this effect. First, children of primary school age barely have enough
experience with two-digit numbers, and the corresponding skills have not yet been brought
to automatism. Moreover, the Schulte table task is unusual for them. As a result, children
utilize high mental efforts for its successful solution. The second possible explanation
lies in the differences between teaching two-digit numbers to modern schoolchildren and
representatives of the older generation. The adult participants learned arithmetic using
the abstract concept of numbers and the corresponding arithmetic operations with them.
In contrast, modern educational techniques in primary school used the visual perception
of information. Facing two-digit numbers, pupils in Russia are usually offered pictures
with objects located ten in each row. Moving to the perception of a two-digit number as a
number with digits, pupils begin to operate with ten as a counting unit using the specially
designed illustrations. It is believed that this model is visual and easy to understand.
However, such clarity can likely slow down the perception of two-digit numbers at the
level of abstraction. Consideration of these issues requires further research and analysis
with younger schoolchildren.

The main limitation of this study is that we are considering two age groups (albeit
representative ones). This limits our findings on age-related changes in cognitive processes
to the age range from 7 to 20 years old. Nevertheless, we believe that this period of human
life is the most important for improving many cognitive skills. Considering a more diverse
set of age groups is significant research that we plan to conduct in the future.

5. Conclusions

On the behavioral level, we observed that adults performed the Schulte table faster
than children. For both children and adults, the mean RT in the second condition was equal
to one in the first condition. Finally, both children and adults reduced their RT within the
third condition, but this effect was more significant in children.

On the neural level, we revealed in children the shift from a procedural strategy
to a less demanding fact-retrieval in the third condition when operating with one-digit
numbers. This conclusion is supported by higher parietal α-band power in the third



Sensors 2021, 21, 6021 13 of 15

condition discovered in a within-subject analysis of the EEG spectral power of children.
Adults predominantly relied on the top–down mechanisms, cognitive control, or attentional
modulation rather than a change in arithmetic strategy in Schulte table performance. This
is supported by higher frontal β-band power in the third condition in adults.

Finally, based on the results of a between-subject analysis, we concluded that adults
mostly use the fact-retrieval strategy during the whole experiment. The higher left-
lateralized α-band power in adults compared to children during all conditions confirms it.
We suppose that children experienced difficulties at the beginning when operating with
two-digit numbers. For the one-digit numbers, their performance increased and reached
adults’ scores.

The obtained fundamental results are essential for advancing our knowledge about
brain development, including age-related changes in cognitive processes during mental
tasks. Since the completion of the Schulte table involves a whole set of elementary cogni-
tive functions, the revealed effects are essential for developing passive brain–computer
interfaces [17,51] for monitoring and adjusting a human state in the process of learning
and solving cognitive tasks of various types during educational process. In particular, the
identified patterns of neural activity (biomarkers) associated with different strategies for
solving tasks are important for developing algorithms that underlie the functioning of
BCIs, which adapt to different age groups.
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