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Abstract. NSR1, a 67-kD nucleolar protein, was origi- 
nally identified in our laboratory as a nuclear localiza- 
tion signal binding protein, and has subsequently been 
found to be involved in ribosome biogenesis. NSR1 
has three regions: an acidic/serine-rich NH2 terminus, 
two RNA recognition motifs, and a glycine/arginine- 
rich COOH terminus. In this study we show that 
NSR1 itself has a bipartite nuclear localization se- 
quence. Deletion of either basic amino acid stretch 
results in the mislocalization of NSR1 to the 
cytoplasm. We further demonstrate that either of two 
regions, the NH2 terminus or both RNA recognition 
motifs, are sufficient to localize a bacterial protein, 
B-galactosidase, to the nucleolus. Intensive deletion 
analysis has further defined a specific acidic/serine- 

rich region within the NH2 terminus as necessary for 
nucleolar accumulation rather than nucleolar targeting. 
In addition, deletion of either RNA recognition motif 
or point mutations in one of the RNP consensus oc- 
tamers results in the mislocalization of a fusion pro- 
tein within the nucleus. Although the glycine/arginine- 
rich region in the COOH terminus is not sufficient to 
bring B-galactosidase to the nucleolus, our studies 
show that this domain is necessary for nucleolar ac- 
cumulation when an RNP consensus octamer in one of 
the RNA recognition motifs is mutated. Our findings 
are consistent with the notion that nucleolar localiza- 
tion is a result of the binding interactions of various 
domains of NSR1 within the nucleolus rather than the 
presence of a specific nucleolar targeting signal. 

T n~ majority of nuclear proteins contain nuclear local- 
ization sequences (NLSs) ~ that are required for their 
entry into the nucleus. The sequence fits the consensus 

Lys-Arg/Lys-X-Arg/Lys (Chelsky et al., 1989). Nuclear 
transport is saturable (Goldfarb et al., 1986), occurs by 
selective entry, and requires energy (Newmeyer et al., 1986; 
Markland et al., 1987; Newmeyer and Forbes, 1988; 
Richardson et al., 1988). Once nuclear proteins enter the nu- 
cleus, they are found in different subnuclear regions; their 
final destination is most likely defined by their structural and 
functional interactions with proteins or nucleic acids. Some 
examples are: the nuclear filament proteins (lamins) that play 
a role in nuclear cytoarchitecture are thought to attach to the 
nuclear envelope by binding to the surface of the inner nu- 
clear membrane via a 54-kD protein (Bailer et al., 1991); 
transcription factors that activate expression of genes inter- 
act with specific DNA sequences; ribosomal proteins are 
found in the nucleolus where ribosomal DNA genes encod- 
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ing ribosomal RNA (rRNA) are located. Although the no- 
tion of functional interactions being the major determinant 
of the localization of splicing or transcription factors is 
widely accepted, some have suggested that the localization 
of nucleolar proteins may be due to the presence of specific 
nucleolar targeting sequences (NOS) (Garcia-Bustos et al., 
1991). Our manuscript addresses this question for the 
nucleolar protein NSR1, a nuclear signal binding protein in 
the yeast, Saccharomyces cerevisiae. 

Transcription of ribosomal RNA and subsequent assembly 
of ribosomes has long been associated with the nucleolus. 
However, understanding how ribosome assembly is carried 
out and in what regions of the nucleolus the various steps 
take place has remained largely enigmatic. Seminal experi- 
ments in Drosophila showed that the transcription of a single 
rRNA gene is sufficient to organize a nucleolus, even if this 
gene is transcribed from a euchromatic region (Karpen et 
al., 1988). These studies suggest that all the machinery for 
processing the precursor rRNA, for attracting ribosomal 
proteins, and for recruiting proteins involved in assembly of 
the mature ribosome is available to the misplaced gene. 
Thus, it seems reasonable to propose that nucleolar proteins 
are recruited to the nucleolus on the basis of interactions re- 
quired for their function, rather than by a specific targeting 
sequence. Indeed, reports from several different laboratories 
studying the sequences required for the localization of a vari- 
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ety of proteins that function in the nucleolus (viral proteins, 
an amphibian and two mammalian nucleolar proteins) have 
found no common motif (Dang and Lee, 1989; Nosaka et al., 
1989; Maeda et al., 1992; Peculis and Gall, 1992; Schmidt- 
Zachmann and Nigg, 1993). More importantly, there is evi- 
dence that some of the sequences identified are part of the 
functional domains of the various proteins. 

The arginine-rich consensus motif: Arg/Lys-X-X-Arg-Arg- 
X-Arg-Arg is required for the nucleolar accumulation of the 
viral proteins human immunodeficiency virus (HIV-1) Tat 
and Rev, and the human T cell leukemia virus type I (HTLV-1) 
rex-encoded protein (Rex), and is sufficient to direct bac- 
terial or cytoplasmic fusion proteins into the nucleolus 
(Siomi et al., 1988; Dang and Lee, 1989; Subramanian et 
al., 1991). However, further analysis identified the NOS of 
HIV Tat as necessary for its ability to transactivate genes 
expressed from the viral LTR (I-Iauber et al., 1989; Kup- 
puswamy et al., 1989; Ruben et al., 1989). Likewise, an al- 
teration of the NOS in Rex abolishes both its nucleolar 
localization and its biological function (Nosaka et al., 1989). 
Therefore, the NOS likely targets these viral proteins to the 
nucleolus by serving as functional domains for these proteins 
to interact with other macromolecules within the nucleolus. 

The arginine-rich consensus, however, is not present in en- 
dogenous nucleolar proteins that have been identified thus 
far, including: No38, a nucleolar protein found in amphibian 
oocytes; UBE a mammalian nucleolar transcription factor 
required for ribosomal RNA gene expression; and nucleolin, 
a mammalian nucleolar protein involved in ribosome bio- 
genesis. 

A deletion of 24 amino acids in the COOH-terminal do- 
main of No38 results in the inability of this protein to sort 
to the nucleolus (Peculis and Gall, 1992). However, the 24 
amino acids are not sufficient to target a nonnucleolar pro- 
tein to the nucleolus, suggesting that other domains of No38 
may be required for proper nucleolar localization. Deleting 
of the RNA recognition motifs and glycine/arginine-rich do- 
main prevented nucleolin from accumulation in the nude- 
olus, while the absence of the acidic NH2-terminal region 
had no affect (Schmidt-Zachmann and Nigg, 1993). How- 
ever, neither of the regions were sufficient to direct the cyto- 
plasmic protein, pyruvate kinase, to the nucleolus. A similar 
analysis of UBF has shown that at least two regions are re- 
quired for nucleolar accumulation, the HMG-boxl (neces- 
sary for rDNA binding), and an acidic area within the 
COOH terminus of the protein (Maeda et al., 1992). It was 
not determined if these two regions are sufficient to direct 
a nonnucleolar protein to the nucleolus. 

The idea that functional domains rather than nucleolar tar- 
geting signals determine subnuclear localization of a few vi- 
ral, as well as higher eucaryotic nucleolar proteins, led us 
to examine the sequences involved in the nucleolar localiza- 
tion of NSR1, a yeast nucleolar protein originally defined by 
our laboratory as a nuclear signal binding protein and subse- 
quently shown to be involved in pre-rRNA processing and 
proper ribosome assembly (Lee and Melese, 1989; Kondo 
and Inouye, 1992; Lee et al., 1992). NSR1 has three major 
regions: an acidic/serine-rich NH2 terminus, two RNA rec- 
ognition motifs (RRM), and a COOH terminus rich in gly- 
cine/arginine residues (GAR domain). The various regions 

of NSR1 were individually fused to a bacterial protein 
(B-galactosidase) to test whether they could support the ac- 
cumulation of the hybrid protein within the nucleolus. Using 
this approach, we have identified two regions of NSR1 that 
were sufficient: the NH2 terminus and both RRMs. Thus, 
our data are consistent with the view that multiple regions 
determine the presence of a protein in the nucleolus. 

Materials and Methods 

Construction of NSR1 Hybrid Derivatives 
DNA manipulations and microbiological techniques were carried out ac- 
cording to the method of Sambrook et al. (1989). The plasmids used in 
all the /3-galactosidase fusion constructs were derived from pLG669Z 
(Guarente and Ptashne, 1981). All constructs are shown in Fig. 1. In the 
initial construct, pN1Kpn (described as N), the CYC1 promoter in pLG669Z 
was replaced with a 1.3-kb XhoI-BamHI fragment containing the GALl- 
GALl0 bidirectional promoter and a 663-bp Kprd-EcoRI fragment from 
pWL1 (Lee et al., 1991) coding for the NH2-terlrlinal residues 1-187 of 
NSR1. The GALl promoter is oriented in front of the NSRI fragment. 

Previously described nested deletions of the NH2 terminus of NSR1 in 
pWL1, spanning to amino acid 187, were cloned in front of the B-galactosi- 
dase gene by modifying the KpnI site of pN1Kpn to a SphI site using linkers 
(pN1Sph). The EcoRI site at amino acid 187 was moditied to a BamHI site 
using linkers. A partial digestion with AluI deleted the small portion of the 
first RRM (spanning residues 169-187) from NA91 and NLS:SphI-AIuI. 
1-82/NLS was made using a NSR1 COOH-terminal nested deletion of 
pWLI by fusing residues 1-82 to the region of NSR1 containing NLSI and 
NLS2, residues 134-168. NA39 was obtained by PCR of residues 39-187 
using the NSRI fragment from pN1Kpn as template. 39-82/NLS was made 
using the same method a s  1-82/NLS by fusing residues 39-82 to 134-168. 

Oligonucleotide-directed in vitro mutagenesis was done based on the 
method described by Kunkel (1985). The following oligonuclcotides were 
used to generate mutant sequences using the NSRI fragment from pNIKpn 
as template: deletion of NLS1 (residues 139-142) AGAGTCTAACGAT- 
(deletion)-TCTGAGGACGCC; deletion of NLS2 (residues 159-162) 
GAGTCTTCCAAC-(deletion)-AATGAAGAAACC. NSR1AKKRK was con- 
structed by replacement of a 60-bp AccI-BamHI fragment from NAKKRK 
by a 1.0-kb AccI-BamHI fragment from pWL1 containing the distal portion 
of NSR1. 

~-galactosidase fusion constructs lacking the NH2 terminus of NSR1 
were made by fusing both NLSl and NLS2 of NSRI to either the RRM or 
the GAR domain using a nested deletion of pWL1 that deletes amino acid 
residues 1-133 (Fig. 1 B, 134-414). NLS/RRMI+2 deletes the sequences 
after an internal BstII site in NSRI. NLS/RRMA2 deletes the sequences af- 
ter a HphI site. Both the BsteII and HphI sites, respectively, were modified 
to BamHI sites using linkers, and the resulting SphI-BamHI fragments were 
cloned into pN1Sph. Using NLS/RRMI+2, NLS/RRMA1 was generated by 
deleting the sequences between two internal AccI sites. Point mutations in 
the RNP consensus octamer of RRMI were made by oligonucleotide- 
directed in vitro mutagenesis, described above, using the oligonucleotide 
AAGAGGTACCGATAGATCTCAAGGTTTC_KTd3TTACGT. The nucleotide 
changes are underlined and italicized. Parallel constructs of NLS/RRMI+2 
containing only NSR1 sequences were made by insertion of a stop codon 
after amino acid 367. To obtain NLS/GAR, the XbaI site in NSRI was 
modified to a MboI site using BamHI linkers, and a 224-bp MboI fragment 
containing the GAR domain was isolated and inserted into pNISph behind 
the amino acid residues 134-187 of NSR1. 

Strains and Media Preparation 
The haploid strains W303-1A (Mat a, ate2-1, canl-lO0, ura3-1, leu 2-3, 112, 
trp I-1, his3-11,15) or WLY353 (same as W303-1A except nsrl::HIS3) (Lee 
et al., 1992), were used in all experiments. Either W303-1A or WLY353, 
harboring pWL10 (Lee et al., 1991), was used as a control strain for wild- 
type NSR1 protein expression. Standard media preparation and yeast cell 
culture were carried out according to Sherman et al. (1986). Yeast transfor- 
mation was done using the lithium acetate procedure of Ito et al. (1983). 
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Figure L (A) and (B) Hybrid con- 
tructs containing NSR1 deletions 
fused to the #-galactosidase gene 
and NSR1 deletion mutants con- 
taining only NSR1 sequences. 
The intraceUular distribution of 
all the constructs are shown. The 
protein domains of the deduced 
NSRI sequence are displayed on 
top. The first four light gray 
boxes represent the acidic/serine- 
rich regions (ASR1--4); two 
shaded boxes in the middle de- 
note the two RRMs; the GAR do- 
main is shown as a black box. The 
sizes of the boxes are roughly 
proportional to their length in the 
protein. Small internal deletions 
and point mutations in several 
constructs are displayed directly 
above the affected domains. An * 
next to RRM1 indicates the 
amino acid changes Arg(R) ~ 
Gin(Q), Tyr(Y)~Leu(L), as de- 
scribed in Results. <> Indicates 
constructs in which immunofluo- 
rescence data are shown. Immu- 
no fluorescence data are not 
shown for the other constructs in 
which similar results were ob- 
tained. (C) The deduced amino 
acid sequence of the NH2 termi- 
nus of NSR1. ASR1--4 are under- 
lined. NLS1 and NLS2 are de- 
noted by four asterisks (*). 

Expression of NSR1 Hybrid Proteins and Deletion 
Constructs Containing Only NSR1 Sequences from the 
GALl Promoter; Preparation of Whole Cell Lysates 
and Subcellular Fractionations 

The yeast strain W303-1A was transformed to URA+ with the plasmids con- 
taining the B-galactosidase fusion constructs. NSR1 deletion constructs 
containing only NSR1 sequences were transformed into the nsrl- strain, 
WLY353. To induce expression, cells were first grown overnight in liquid 
synthetic media containing 2% rattinose and lacking uracil to OD~0 0.3. 
They were then switched into rich media+2% raflinose media (YPR) for 
2 h, and 2 % galactose (induced) or 2 % glucose (repressed) were added. 
Cells were grown for 5 h and harvested in exponential phase. In the case 
of strains containing the NSRI deletion constructs, since these proteins are 
greatly overexpressed, at 2 h after galactose induction, 1% glucose was 
added to decrease expression; cells were grown for an additional 3 h and 

harvested. Cells were washed with 10 mM Tris/1 mM EDTA, pH 8, contain- 
ing protease inhibitors (0.5 mM PMSE 5 t~g/ml leupeptin, 5/~g/rni pepsta- 
tin, 1 mM aminocaproic acid). Whole cell lysates were prepared by dissolv- 
ing cells in Laemmli buffer (containing 6 M urea and 0.5 mM PMSF). 
Subcellular fractionations were carried out using a method developed by 
Baker et al. (1988) to obtain pure cytosol. Fractions were then dissolved 
in Laemmli buffer. Samples from both these procedures were analyzed on 
a 10.5% SDS-polyacrylamide gel and transferred onto nitrocellulose paper 
as described previously (Lee et al., 1991). 

Immunoblotting and lmmunofluorescence Microscopy 
Immunoblotting was performed as described by Lee et al. (1991). The pri- 
mary antisera used were either monoclonal anti-/$-galactosidase antibody 
(Promega Corp., Madison, WI) at 2/~g/ml or 1:200 dilution of an aitinity- 
purified polyclonal antibody against NSR1. 
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Figure 2. Immunofluorescence localization of NSR1, N, N&KKQK, and NSR1AKKRK. The constructs are shown in Fig. 1 A. Indirect 
immunofluorescence was performed on the yeast strains WLY353 (the nsrl- strain) expressing NSR1AKKRK and W303-1A expressing NSR1 
or the hybrid proteins, as described in Materials and Methods. Antibody against NSR1 was used to detect the localization of NSR1 in 
a wild-type haploid strain, W303-1A (a-c), and the NSR1 deletion mutant lacking residues 139-142 (NLSI), NSRI&KKRK (j-l). Anti- 
fl-galactosidase antibody was used to detect the intracellular distribution of the hybrid proteins, N (d-f) and NAKKQK (g-i). Arrows 
are used to indicate the position of the nucleolar region within the nucleus. DAPI staining of DNA (a, d, g, j ) ;  FrIC staining (b, e, h, 
k); phase contrast (PH) (c, f, i, l). Bar, 2 #m. 
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After 3-h galactose induction, cells were prepared for indirect immu- 
nofluorescence by following published procedures for spheroplasting using 
Zymolase 100T (ICN Biomedicais, Inc., Costa Mesa, CA) (Pringle et al., 
1989). First antibody incubations were performed overnight at 4"C using 
a monoclonai anti-/~-galactosidase antibody diluted at 6.8 gg/ml in blocking 
buffer, or using a 1:30 dilution of an affinity-purified polyclonal antibody 
against NSR1. As secondary antibody, FITC-conjugated affinity-purified 
goat anti-mouse IgG diluted at 6.8 gg/ml, or FITC-conjugated affinity- 
purified goat anti-rabbit IgG diluted at 4.5/~g/ml, was used to visualize the 
cellular localization of the proteins. In the case of 1-82/NLS construct 
where the hybrid protein was underexpressed, a tertiary antibody, FITC- 
conjugated affinity-purified donkey anti-goat IgG (goat anti-mouse, goat 
anti-rabbit, and donkey anti-goat; Jackson ImmnnoResoarch Labs., Inc., 
West Grove, PA) diluted at 4.5/~g/rni was used. 1 gg/ml of DAPI was used 
to visualize nuclear staining. Slides were viewed with a fluorescence micro- 
scope (Optiphot; Nikon Inc., Garden City, NY). Kodak TMAX 400 film 
was used for all photomicroscopy. 

Cells containing the NSR1 deletion constructs, in contrast, were har- 
vested after 5 h in 2% galactose/l% glucose, as discussed in the previous 
section, since overexpression of the proteins resulted in protein levels 
greatly higher than the expression of NSRI or the hybrid proteins by immu- 
noblotting analysis, and by indirect immunofluoresconce, total cell staining 
was observed (data not shown). 

Results 

NSR1 Contains a Bipartite NLS 

Since NSR1 is a nucleolar protein (Fig. 2, a-c), we won- 
dered whether the subnuclear distribution of the protein 
could be attributed to a specific nucleolar signal, or to two 
overlapping or distinct signals for its nuclear versus nucleo- 
lar localization. 

Between the NH2-terminal domain and the domain con- 
taining the RNA recognition motifs are two putative NLS's, 
(139KKRKS and 1~TKKQK), that fit the highly basic con- 
sensus sequence for an NLS assigned by Chelsky et al. 
(1989). To determine if either of  the NLSs were functional, 
we tested whether they were necessary for the localization 
of a NSR1/#-galactosidase fusion protein. A hybrid protein 
was constructed that contained the NH2 terminus of NSR1 
(including the KKRK and KKQK sequences) and the bac- 
terial protein, ~-galactosidase. By indirect immunofluores- 
cence, this protein was found in the nucleolus (Fig. 2, d-f). 
Deletion of  either the KKRK or the KKQK sequence by in 
vitro mutagenesis resulted in mislocalization of the hybrid 
protein to the cytoplasm (Fig. 2, g-i), suggesting that NSR1 
contains a bipartite NLS (Robbins et al., 1991). 

A deletion of the KKRK sequence was also made in the 
NSR1 protein, and like the hybrid proteins, was found to be 
cytoplasmic. NSR1 is highly stable in the cytoplasm when 
it is mislocalized as analyzed by both immunofluorescence 
(Fig. 2, j- l)  and cellular fractionation (data not shown). 

A Combination of Different Regions within the NH~ 
Terminus, Rather Than a Specific Sequence, Is Required 
for Nucleolar Localization 

NSR1 has three well defined regions: an acidic/serine-rich 
NH2 terminus, a middle region containing two RNA recog- 
nition motifs, and a COOH-terminal  region containing a se- 
quence abundant in arginine/glycine repeats. We decided to 
test each region separately for its ability to target/~-galac- 
tosidase to the the nucleolus. 

Our assay for determining nucleolar localization was in- 
direct immunofluorescence. In yeast, the nucleolus forms a 

crescent that lines the nuclear envelope and occupies a size- 
able volume of the nucleus. In some visual planes the nucleo- 
lus will wrap around the nucleus such that viewed from 
above it will appear to lay on top of the nucleus. In a field 
of cells, those having this orientation will show overlap of 
the DNA (stained by DAPI) and the nucleolar antigen 
(stained by FITC). In most cases the orientation of the cells 
will be such that the nucleolar antigen will not overlap the 
DNA, and because the nucleolar region is not stained well 
by DAPI, the two staining patterns will be nearly indepen- 
dent. Our criterion for nucleolar staining is that most of  the 
cells in a particular field show distinct FITC and DAPI stain- 
ing, while in the case of  nuclear staining all cells in the field 
show an overlap between DAPI and FITC staining. 

A hybrid protein containing the NH2 terminus of NSR1, 
(residues 1-187; including the nuclear localization se- 
quences), fused to /~-galactosidase was observed in the 
nucleolus as discussed in the previous section (Fig. 2, d-f). 
The nucleolar localization of the fusion protein, despite the 
absence of the RNA recognition motifs (RRMs) and the 
GAR domain, suggested that a nucleolar targeting sequence 
may exist within the NH2 terminus of NSR1. We then car- 
ried out an extensive deletion analysis of  the NSR1 NH2 
terminus to determine if a specific amino acid sequence was 
responsible for the correct localization of the hybrid protein. 
A series of  existing deletions of the NH2-terminal domain 
of NSR1, made during the sequencing of the protein, were 
used for this study (Lee et al., 1991). Expression of the hy- 
brid proteins was confirmed by immunoblotting using anti- 
~/-galactosidase antibody (Fig. 3). 

The NSR1 NH2 terminus is highly repetitive and contains 
four separate clusters of  acidic/serine-rich residues (ASR or 

Figure 3. Expression of NSR1, NSR1AKKRK, and hybrid proteins 
containing deletions in the NSR1 NH2 terminus under the GALl 
promoter. Whole cell lysates were prepared from the yeast strains 
WLY353 expressing NSR1AKKRK and W303-1A expressing NSR1 
or the hybrid proteins. Proteins were separated on a 10.5% 
SDS-polyacrylarnide gel and transferred onto two nitrocellulose 
filters. One filter was stained with india ink, and the second filter 
was blotted with anti-NSR1 antibody (lanes 1 and 2) or anti-/3- 
galactosidase antibody (lanes 3-10), as described in Materials and 
Methods. The constructs are shown in Fig. 1 A. NSR1 0ane 1); 
NSR1AKKRK (lane 2); N (lane 3); NAKKRK (lane 4); NAKKQK 
(lane 5); NA39 (lane 6); NA54 (lane 7); NA91 (lane 8); 1-82/NLS 
(lane 9); 39-82/NLS (lane 10). 
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acidic/serine regions 1--4, Fig. 1 C), defined by us, as a 
stretch of serines and acidic amino acids lacking any basic 
residues and containing consensus casein kinase II sites. In 
fact, NSR1 is phosphorylated in vitro by casein kinase II (un- 
published results). Separating the first acidic/serine cluster 
from the second, and the second cluster from the third is the 
repeat TKKEESK. The third and fourth acidic/serine 
clusters are separated by one of the nuclear localization se- 
quences, KKRK. 

Initially, we decided to delete the beginning of the NSR1 
NH: terminus just prior to ASR1 because it was highly ba- 
sic and such regions had been proposed to be involved in the 
nucleolar localization of other proteins (Dang and Lee, 
1989). However, the loss of amino acids 1-39 (NA39) from 
the NSR1 NH2 terminus still resulted in the nucleolar local- 
ization of the hybrid protein (Fig. 4, a and b). Deletion of 
an additional 15 amino acids (NA54), which removed ap- 
proximately half of ASR1 resulted in the hybrid protein being 
distributed between the nucleolus and the nucleus (Fig. 4, c 
and d). Complete removal of ARS1 was accomplished by 
deleting an additional 37 amino acids (NA91), and resulted 
in predominately nuclear staining, though exclusion from 
the nucleolus was not observed (Fig. 4, e and f ) .  It was in- 
teresting that despite the continued presence of the three re- 
maining acidic/serine clusters (ASR2-4), total removal of 
ASR1 resulted in nuclear rather than nucleolar localization 
of the hybrid protein. 

Since the constructs above, except for the one lacking 
residues 1-91, all contain a small part of one of the RNA rec- 
ognition motifs, we could not rule out the possibility that the 
observed nucleolar localization was due solely to the incom- 
plete RRM. However, addition of this small region of the 
RRM to a hybrid protein that is nuclear does not confer the 
ability to localize to the nucleolus (see Fig. 1 A, NLS:SphI- 
AluI versus NLS:SphI-BamHI; immunofluorescence data 
not shown). 

To test ifASR1 is sufficient for B-galactosidase to be main- 
tained in the nucleolus, a hybrid protein (1-82/NLS) com- 
posed of the first 82 amino acids of the NSR1 NH2 terminus 
(containing the entire ASR1) and the NSR1 NLS within 
residues 134-168 fused to B-gaiactosidase was made, and 
was predominantly nucleolar (Fig. 4, g and h). Unfortu- 
nately, to maintain the internal bipartite NLS, ASR4 must 
be included in the hybrid protein. However, since a fusion 
protein with ASR2-4 is not found in the nucleolus, we as- 
sume that this region is not required for nucleolar local- 
ization. 

We were surprised to find that when we deleted residues 
1-39 in the shortened construct containing ASR1 and ASR4, 
it dramatically lowered the amount of B-galactosidase in the 
nucleolus (see Fig. 1 A, 39-82/NLS; immunofluorescence 
data not shown). We had already shown that residues 1-39 
are dispensable if the rest of the NH2 terminus is present, 

Figure 5. Expression of hybrid proteins lacking the NH2 terminus 
but containing the NLS of NSR1 with either the RRMs or the GAR 
domain and deletion mutants containing only NSRI sequences. 
Whole cell lysates were prepared from the yeast strains W303-1A 
expressing the hybrid proteins or WLY353 expressing the NSR1 de- 
letion mutants. The proteins were resolved on a 10.5% SDS-poly- 
acrylamide gel, transferred onto two nitrocellulose filters, and one 
filter was stained with india ink. The second filter was blotted with 
anti-/%galactosidase antibody (lanes 1-5) or antibody against NSR1 
(lanes 6-9). The constructs are shown on Fig. 1 B. NLS/RRM1 +2 
(lane I); NLS/RRMA2 (lane 2); NLS/RRMA1 (lane 3); NLS/ 
RRMI*+2 (lane 4); NLS/GAR (lane 5); 134-414 (lane 6); 134- 
414:RRMI* (lane 7); 134-367 0ane 8); 134-367:RRMl* (lane 9). 

but these residues clearly become important for nucleolar lo- 
calization in the shortened construct that contains the first 82 
amino acids of the NSR1 NH~ terminus and residues 134- 
168 of NSR1 containing the NLS. We interpret this as an 
indication that residues 1-39 have the ability to enhance 
binding within the nucleolus as compensation for the loss of 
binding interactions normally facilitated by the distal half 
(82-168) of the NH2 terminus. Thus, different combinations 
of regions within the NH~ terminus can result in the ability 
of/3-galactosidase to reside in the nucleolus. 

Both R N A  Recognition Motifs Are  Required:for the 
Nucleolar Localization of NSR1 

To assess whether the other regions of NSR1 (the RRMs and 
the GAR domain) could influence the subnuclear localiza- 
tion of ~-galactosidase, hybrid proteins lacking the NH2 
terminus but containing the NLS of NSR1 (residues 134- 
168) with either the RRMs or the GAR domain, were made. 
The constructs were transformed and expressed (Fig. 5), as 
described in Materials and Methods. The RRM fusion con- 
taining both RRMs was found in the nucleolus even in the 
absence of the NH~ terminus (Fig. 6, c and d). 

Figure 4. Immunofluorescence localization of NA39, NA54, NA91, and 1-82/NLS. Indirect immunofluorescence was performed on the 
wild-type haploid strain, W303-1A, expressing the hybrid proteins. Anti-/3-galactosidase antibody was used to detect the intracellular distri- 
bution of the/3-galactosidase fusion constructs NA39 (a and b), NA54 (c and d), NA91 (e and f) ,  and 1-82/NLS (g and h), as described 
in Materials and Methods. The small inset shown in d was added to more clearly show the difference in staining between NA54 versus 
NA39 and NA91. Arrows are used to indicate the position of the nucleolar region within the nucleus. DAPI staining of DNA (a, c, e, 
g); FITC staining (b, d, f, h). Bar, 2/tm. 
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Figure 6. Immunofluorescence localization of 134-414, NLS/RRMI+2, NLS/RRMA1, NLS/RRMI*+2, and NLS/GAR. Indirect im- 
munofluorescence was performed on WLY353 expressing the NSR1 deletion mutant, 134-414, which lacks the NH2-terminal residues 
1-133, and on W303-1A expressing the hybrid proteins, as described in Materials and Methods. Antibody against NSR1 was used to detect 

The Journal of Cell Biology, Volume 123, 1993 1088 



Deletion of the second RRM, leaving only the first RRM 
(RRM1), resulted in localization of the hybrid protein to the 
nucleus (see Fig. 1 B, NLS/RRMA2; immunofluorescence 
data not shown). To ensure that the amino acid requirements 
for nucleolar localization were not contained within the sec- 
ond motif, a deletion of the first RRM, leaving only the sec- 
ond RRM (RRM2), was constructed and was also found in 
the nucleus as analyzed by indirect immunofluorescence 
(Fig. 6, e and f ) .  Although RRMs are defined as loose con- 
sensus sequences that extend over an 80 amino acid area, the 
RNP consensus octamer lies within this region and is highly 
conserved. The alignment of RRM sequences by Kenan et 
al. (1991) indicate the conserved amino acids in RNP1 at po- 
sitions 52, 54, and 56. An Arg52~Gln change in the U1-A 
protein was found to abolish RNA binding (Nagai et al., 
1990). Based on these observations, we decided to mutate 
the first RNP consensus octamer (*Arg-Gly-*Tyr-Gly-Tyr- 
Val-Asp-Phe) changing *Arg52--Gln and *Tyr54~Leu. A 
hybrid protein containing the mutated RNP1 and the wild- 
type RNP2 fused to/3-galactosidase accumulated in the nu- 
cleus (Fig. 6, g and h). 

Our next series of experiments was directed at asking if the 
subnuclear localization of NSR1 itself would be similar to 
the NSR1/fl-galactosidase hybrid protein if the same dele- 
tions and mutations of the RRMs were made. To observe the 
localization of these mutant NSR1 proteins, they were ex- 
pressed in an nsrl-  strain and their cellular localization was 
detected using antibody against NSR1. NSR1 lacking only 
the NH2 terminus, like the bacterial fusion protein, was still 
located in the nucleolus (Fig. 6, a and b, and Fig. 1 B, 134- 
414). However, the NSR1 protein carrying the identical point 
mutations within RNP1 was still predominately nucleolar, 
not nuclear (see Fig. 1 B, 134-414:RRMl*; immunofluores- 
cence data not shown). This result was unexpected given the 
strong nuclear accumulation of the fusion protein carrying 
the same mutation. The major difference in the two con- 
structs was that the GAR domain was present in the NSR1 
protein but absent from the fusion protein. When an addi- 
tional NSR1 construct was made that lacked approximately 
two thirds of the GAR domain, but still contained the point 
mutations in RNP1, it now accumulated in the nucleus (see 
Fig. 1 B, 134-367:RRMl*; immunofluorescence data not 
shown). 

Despite the fact that the presence of the GAR domain was 
able to compensate for a mutation in RNP1, it was not 
sufficient, when fused to fl-galactosidase, to localize the hy- 
brid protein to the nucleolus (Fig. 6, i and j ) .  

Discussion 

NSR1 is a nucleolar protein which was originally identified 
by a ligand blot analysis in a search for proteins that 
specifically recognized nuclear localization sequences (Lee 
and Melese, 1989; Lee et al., 1991). The protein has since 
been shown to be involved in preribosomal RNA processing 
as well as in the correct assembly of ribosomal subunits 

(Kondo and Inouye, 1992; l e e  et al., 1992). Although the 
ligand blot data may suggest that NSR1 is involved in the nu- 
clear transport pathway, we have yet to define its role in vivo. 

A number of nucleolar proteins have been proposed to be 
involved in the transport of proteins into the nucleus by act- 
ing as receptors that continuously shuttle between the nu- 
cleus and cytoplasm (Borer et al., 1989; Meier and Blobel, 
1992). A putative shuttling protein must have a binding site 
for nuclear proteins and also a separate binding site for inter- 
acting with the nuclear pore proteins. NSR1 has a bipartite 
NLS. The presence of a functional NLS within NSR1 may 
seem incongruous with the protein having a role in the nu- 
clear transport pathway. However, most proteins that are 
structurally or functionally associated with the nucleus have 
an NLS or in some cases use the NLS of another protein 
(Schuster et al., 1986; Booher et al., 1989). Notably, dele- 
tion of part of the bipartite NLS within NSR1 results in a sta- 
ble cytoplasmic form of NSR1, a property expected for a 
shuttling receptor. 

Additionally, we have shown that multiple regions are 
likely to determine the subnuclear localization of NSRI: ei- 
ther different combinations of residues in the NSR1 NH2 
terminus, or the RRMs, when fused to a bacterial protein, 
are sufficient to allow the hybrid protein to accumulate in the 
nucleolus. 

A hybrid protein constructed by a fusion of the NH2 ter- 
minus of NSR1 with /%galactosidase was located in the 
nucleolus as analyzed by indirect immunofluorescence. An 
extensive analysis of the residues responsible for the ac- 
cumulation of the hybrid protein in the nucleolus showed that 
the largest of four acidic/serine-rich clusters (ASR1) was 
sufficient. However, the amino acids in all four ASRs are 
highly repetitive (aspartic, glutamic, and serine residues) 
and it is unlikely that a specific sequence within ASR1, that 
is absent in ASR2-4, would provide a unique signal for 
nucleolar targeting. 

ASR1 has the longest stretch of serine residues and could 
potentially be highly phosphorylated in vivo. However, 
ASR2--4 together should also be a highly acidic region and 
yet, curiously, it is not sufficient for/~-galactosidase to ac- 
cumulate in the nucleolus. Perhaps ASR1 is specifically re- 
quired for proper structural and functional interactions of 
NSR1 with other proteins within the nucleolus. Other data 
in our laboratory indicate that ASR1 is also the prime region 
for recognition of NLS peptide-conjugates in ligand blots 
(unpublished data). 

Although the NH2 terminus of NSR1 is sufficient to local- 
ize fl-galactosidase to the nucleolus, it is not necessarily re- 
quired. A construct containing the two RNA recognition 
motifs and lacking the NH2-terminal domain is also found 
in the nucleolus. We found that deletion of either RRM 
resulted in the nuclear location of the fusion protein. Addi- 
tionally, two point mutations in the RNA consensus octamer 
(RNP) of RRM1 resulted in the nuclear location of both a hy- 
brid protein (NLS/RRMI*+2) and NSR1 lacking the NH2- 
terminal and GAR domains (134-367:RRM1*). 

the localization of 134-414 (a and b). Anti-/~-galactosidase antibody was used to detect the intracellular distribution of the hybrid proteins 
NLS/RRMI+2 (c and d), NLS/RRMA1 (e and f) ,  NLS/RRMI*+2 (g and h), and NLS/GAR (i and j). Arrows are used to indicate the 
position of the nucleolar region within the nucleus. DAPI staining of DNA (a, c, e, g, i); FITC staining (b, d, f, h, j). Bar, 2 #m. 
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The observation that in the absence of the NH2 terminus 
both RRMs are required for the proper nucleolar localization 
of a hybrid protein as well as NSR1 itself may imply, that like 
nucleolin (Bourbon et al., 1983; Herrera and Olson, 1986; 
Ghisolfi et al., 1990), NSR1 recognizes a larger RNA, possi- 
bly ribosomal RNA. The disruption of NSR1, as well as 
GAR1, NOP1, U3, and U14 result in improper processing of 
preribosomal RNA (Li et al., 1990; Hughes and Ares, 1991; 
Tollervey et al., 1991; Girard et al., 1992; Lee et al., 1992). 
Unlike these proteins, NSR1 does not coimmunoprecipitate 
small nucleolar RNAs (snoRNAs). On the basis of the pres- 
ence of snoRNAs immunoprecipitating with GAR1, NOP1, 
and SSB1, it has been suggested that these proteins may form 
a snoRNP particle, similar to a small nuclear RNP (snRNP) 
particle, but involved with processing of preribosomal RNA 
rather than pre-mRNA (Tollervey et al., 1991; Girard et al., 
1992). Nucleolin, an abundant mammalian nucleolar pro- 
tein, is not thought to be a snoRNP protein and has been 
found to bind rRNA in vitro (Bourbon et al., 1983; Herrera 
and Olson, 1986). Nucleolin has also been shown to shuttle 
between the nucleus and cytoplasm (Borer et al., 1989), and 
it has been proposed to play a role in the nucleocytoplasmic 
transport of ribosomal proteins. Nucleolin and NSR1 share 
a similar organization of domains, and both have been shown 
to bind SV-40 T-antigen type NLSs in vitro (Xue et al., 1993) 
and to be involved in ribosome biogenesis (Bugler et al., 
1982; Bourbon et al., 1983; Lee et al., 1992). Data on the 
localization of nucleolin corroborate our findings with NSR1 
in that a nucleolar targeting signal was not identified. Unlike 
NSR1, the RNA recognition motifs were not sufficient to tar- 
get nonnucleolar proteins to the nucleolus (Schmidt-Zach- 
mann and Nigg, 1993). 

Finally, the highly basic residues interspersed with aro- 
matic amino acids that constitute the GAR domain have been 
suggested to bind RNA or proteins (Ghisolfi et al., 1992a). 
In the studies by Ghisolfi et al., a polypeptide corresponding 
to the nucleolin GAR domain was synthesized in Escherichia 
coli (Ghisolfi et al., 1992b). The authors demonstrated that 
the GAR domain is required for the efficient binding of RNA 
by the RNA recognition motifs, although it does not contrib- 
ute to the specificity of the interaction. We have shown that 
the native RRMs of NSR1 in the absence of the GAR domain 
are capable of allowing a fusion protein to accumulate in the 
nucleolus. Point mutations in the RNP1 of a hybrid protein 
(NLS/RRMI*+2) or in NSR1 lacking both the NH2 termi- 
nus and the GAR domain (134-367:RRMl*), result in the dis- 
tribution of these proteins to the nucleus. In other experi- 
ments we have also shown when the RNP octamer in RRM1 
is mutated, the GAR domain is necessary for the nucleolar 
accumulation of NSR1 lacking the NH2 terminus. These 
results support the idea that the GAR domain coupled with 
the mutant RRM are capable of stronger binding interactions 
within the nucleolus than either can carry out alone. 

Ghisolfi et al. also suggest that the GAR domain may carry 
a nucleolar targeting signal since it has been found to date 
only in nucleolar proteins (Ghisolfi et al., 1992a). However, 
our results clearly show that the GAR domain itself is unable 
to direct a fusion protein to the nucleolus. A hybrid protein 
constructed by making a fusion of the GAR domain with 
/3-galactosidase was located in the nucleus. 

In conclusion, nucleolar signals were first suggested to be 
extended NLSs that contained longer arrays of basic amino 

acid stretches (Dang and Lee, 1989). However, extensive 
mutational analysis of a number of proteins found in the 
nucleolus have been carried out and no consensus nucleolar 
targeting sequence, or NOS, has as yet been identified. Addi- 
tionally, the NOSs of the viral proteins, HIV Tat and the Rex 
protein of HTLV-1, and those of the higher eukaryotic 
nucleolar proteins UBF (a nucleolar transcription factor) 
and nucleolin (involved in ribosome biogenesis) were found 
to be functional domains necessary for their cellular activity 
(Hauber et al., 1989; Kuppuswamy et al., 1989; Nosaka et 
al., 1989; Ruben et al., 1989; Maeda et al., 1992; Schmidt- 
Zachmann and Nigg, 1993). We have demonstrated that all 
three regions of the NSR1 protein, depending on the circum- 
stances, can contribute to its accumulation in the nucleolus. 
Our findings, and the lack of other common sequences be- 
tween nucleolar proteins, lend increased support to the idea 
that unlike NLSs, nucleolar targeting does not occur via a 
specific consensus sequence. Like transcription factors that 
form protein complexes and bind to DNA, and proteins in- 
volved in the nuclear cytoarchitecture, the subnuclear ac- 
cumulation of nucleolar proteins appears to occur through 
specific binding interactions with other proteins and/or nu- 
cleic acids. 
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