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An integrated genomic analysis of 
anaplastic meningioma identifies 
prognostic molecular signatures
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Anaplastic meningioma is a rare and aggressive brain tumor characterised by intractable recurrences 
and dismal outcomes. Here, we present an integrated analysis of the whole genome, transcriptome and 
methylation profiles of primary and recurrent anaplastic meningioma. A key finding was the delineation 
of distinct molecular subgroups that were associated with diametrically opposed survival outcomes. 
Relative to lower grade meningiomas, anaplastic tumors harbored frequent driver mutations in SWI/
SNF complex genes, which were confined to the poor prognosis subgroup. Aggressive disease was 
further characterised by transcriptional evidence of increased PRC2 activity, stemness and epithelial-to-
mesenchymal transition. Our analyses discern biologically distinct variants of anaplastic meningioma 
with prognostic and therapeutic significance.
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Meningiomas arise from arachnoidal cells of the meninges and are classified as grade I (80% of cases), grade II 
(10–20%) or grade III (1–3%). Grade III meningiomas comprise papillary, rhabdoid and anaplastic histological 
subtypes, with anaplastic tumors accounting for the vast majority of grade III diagnoses1,2. Nearly half of anaplas-
tic meningiomas represent progression of a previously resected lower grade tumor, whereas the remainder arise 
de novo3,4. Recurrence rates are 5–20% and 20–40%, respectively, for grade I and II tumors2,5. By contrast, the 
majority of anaplastic meningioma patients suffer from inexorable recurrences with progressively diminishing 
benefit from repeated surgery and radiotherapy and 5-year overall survival of 30–60%4,6.

A recent study of 775 grade I and grade II meningiomas identified five molecular subgroups defined by driver 
mutation profile7. In keeping with previous smaller studies, mutually exclusive mutations in NF2 and TRAF7 were 
the most frequent driver events, followed by mutations affecting key mediators of PI3K and Hedgehog signal-
ling7,8. Recurrent hotspot mutations were also identified in the catalytic unit of RNA polymerase II (POLR2A) in 
6% of grade I tumors7. More recently, a study comparing benign versus de novo atypical (grade II) meningiomas 
found the latter to be significantly associated with NF2 and SMARCB1 mutations9. Atypical meningiomas were 
further defined by DNA and chromatin methylation patterns consistent with upregulated PRC2 activity, aber-
rant Homeobox domain methylation and transcriptional dysregulation of pathways involved in proliferation and 
differentiation9.

Despite the high mortality rate of anaplastic meningiomas, efforts to identify adjuvant treatment strategies 
have been hampered by a limited understanding of the distinctive molecular features of this aggressive subtype. 
A recent analysis of meningioma methylation profiles identified distinct subgroups within Grade III tumors pre-
dictive of survival outcomes, though the biology underpinning these differences and any therapeutic implications 
remain unknown10. Here, we present an analysis of the genomic, transcriptional and DNA methylation patterns 
defining anaplastic meningioma. Our results reveal molecular hallmarks of aggressive disease and suggest novel 
approaches to risk stratification and targeted therapy.

Results
Overview of the genomic landscape of primary and recurrent anaplastic meningioma. We 
performed whole genome sequencing (WGS) on a discovery set of 19 anaplastic meningiomas resected at first 
presentation (‘primary’). A subsequent validation cohort comprised 31 primary tumors characterised by targeted 
sequencing of 366 cancer genes. We integrated genomic findings with RNA sequencing and methylation array 
profiling in a subset of samples (Supplementary Table S1). Somatic copy number alterations and rearrangements 
were derived from whole genome sequencing reads, with RNA sequences providing corroborating evidence for 
gene fusions. Given the propensity of anaplastic meningioma to recur, we studied by whole genome sequencing 
13 recurrences from 7 patients.

Excluding a hypermutated tumor (PD23359a, see Supplementary Discussion), the somatic point mutation 
burden of primary anaplastic meningioma was low with a median of 28 somatic coding mutations per tumor 
(range 11 to 71; mean sequencing coverage 66X) (Supplementary Fig. S1). Mutational signatures analysis of 
substitutions identified in whole genome sequences revealed the age-related, ubiquitous processes 1 and 5 as 
the predominant source of substitutions (Supplementary Fig. S2)11. The rearrangement landscape was also rel-
atively quiet, with a median of 12 structural rearrangements (range 0–79) in the 18 primary tumor genomes 
(Supplementary Fig. S3, Table S3). Somatic retrotransposition events, a significant source of structural variants in 
over half of human cancers, were scarce (Supplementary Fig. S4, Table S4)12. Analysis of expressed gene fusions 
did not reveal any recurrent events involving putative cancer genes (Supplementary Table S5).

Recurrent large copy number changes were in keeping with known patterns in aggressive meningiomas, nota-
bly frequent deletions affecting chromosomes 1p, 6q, 14 and 22q (Fig. 1b, Supplementary Table S6)7,9,13.

Driver genes do not delineate subgroups of anaplastic meningioma. Over 80% of low grade men-
ingiomas segregate into 5 distinct subgroups based on driver mutation profile7,9. In anaplastic meningioma, how-
ever, we found a more uniform driver landscape dominated by deleterious mutations in NF2 (Fig. 1a). A key 
feature distinguishing anaplastic meningioma from its lower grade counterparts were driver events in genes of 
the SWI/SNF chromatin regulatory complex (Fig. 1a; Supplementary Fig. S7). The SWI/SNF (mSWI/SNF or 
BAF) complex is the most commonly mutated chromatin-regulatory complex in cancer14,15, and acts as a tumor 
suppressor in many cell types by antagonising the chromatin modifying PRC216–18. The most frequently mutated 
SWI/SNF component was ARID1A, which harbored at least one deleterious somatic change in 12% of our cohort 
of 50 primary tumors (Supplementary Table S1). ARID1A has not been implicated as a driver in grade I or grade 
II meningiomas7,9. Single variants in SMARCB1, SMARCA4 and PBRM1 were also detected in three tumors 
(Supplementary Fig. S7). In total, 16% of anaplastic meningiomas contained a damaging SWI/SNF gene muta-
tion. By contrast, SWI/SNF genes are mutated in <5% of benign and atypical meningiomas7,9.

In the combined cohort of 50 primary tumors, we found at least one driver mutation in NF2 in 70%, similar 
to the prevalence reported in atypical meningiomas and more than twice that found in grade I tumors7,9. As 
observed in other cancer types, it is possible that non-mutational mechanisms may contribute to NF2 loss of 
function in a proportion of anaplastic meningiomas19,20. We considered promoter hypermethylation as a source 
of additional NF2 inactivation, but found no evidence of this (Supplementary Table S7). There was no significant 
difference in NF2 expression between NF2 mutant and wild-type tumors (p-value 0.960; Supplementary Fig. S8), 
suggesting that a truncated dysfunctional protein may be expressed.

Other driver genes commonly implicated in low grade tumors were not mutated, or very infrequently 
(Fig. 1a). Furthermore, and consistent with the most recent reports7,9, we did not observe an increased frequency 
of TERT promoter mutations, previously associated with progressive or high grade tumors21. Notably13, meth-
ylation analysis revealed CDKN2A and PTEN promoter hypermethylation in 17% and 11% of primary tumors, 
respectively (Fig. 1a). We did not find evidence of novel cancer genes in our cohort, applying established methods 
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to search for enrichment of non-synonymous mutations22. The full driver landscape of anaplastic meningioma, 
considering point mutations, structural variants with resulting copy number changes and promoter hypermeth-
ylation is presented in Supplementary Fig. S7.

The genomic landscape of recurrent tumors was largely static both with respect to driver mutations and struc-
tural variation. Driver mutations differed between primary and recurrent tumors for only two of eleven patients 
with serial resections available. For seven sets of recurrent tumors studied by whole genome sequencing, only two 
demonstrated any discrepancies in large copy number variants (PD23344 and PD23346; Supplementary Fig. S5). 
Similarly, matched primary and recurrent samples clustered closely together by PCA of transcriptome data, sug-
gesting minimal phenotypic evolution (Supplementary Fig. S6).

Differential gene expression defines anaplastic meningioma subgroups with prognostic and 
biological significance. We performed messenger RNA (mRNA) sequencing of 31 anaplastic meningioma 
samples from a total of 28 patients (26 primary tumors and 5 recurrences). Gene expression variability within 
the cohort did not correlate with clinical parameters including prior radiotherapy, anatomical location or clin-
ical presentation (de novo versus progressive tumor) (Supplementary Fig. S6). However, unsupervised hierar-
chical clustering demonstrated segregation of tumors into two main groups, hereafter referred to as C1 and C2 
(Fig. 2a). These groups were recapitulated by principal component analysis (PCA) of normalised transcript counts 
(Fig. 2b), which delineated C1 as a well-demarcated cluster clearly defined by the first two principal components 
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Figure 1. The landscape of driver mutations and copy number alterations in anaplastic meningioma. (a) The 
landscape of somatic driver variants in primary anaplastic meningioma. Somatic mutation and promoter 
methylation data is shown for a discovery cohort of 18 primary tumors characterised by whole genome 
sequencing. Mutations in recurrently altered genes, established meningioma genes and SWI/SNF complex 
subunits are included. Samples are annotated for chromosome 22q LOH, prior radiotherapy exposure, and 
clinical presentation (de novo verus progression from a lower grade meningioma). The bar plot to the right 
indicates mutation frequency in a validation cohort of 31 primary tumors sequenced with a 366 cancer gene 
panel. Asterisks indicate genes not included in the targeted sequencing assay. (b) Aggregate copy number profile 
of primary anaplastic meningioma. For the 18 tumors characterized by whole genome sequencing, the median 
relative copy number change was calculated across the genome in 10 kilobase segments, adjusting for ploidy. 
The grey shaded area indicates the first and third quantile of copy number for each genomic segment. The solid 
red and blue lines represent the median relative copy number gain and loss, respectively, with zero indicating 
no copy number change. X-axis: Chromosomal position. Y-axis: median relative copy number change. Potential 
target genes are noted. AM, anaplastic meningioma; LOH, loss of heterozygosity; RT, radiotherapy.
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(PC). Of note, all SWI/SNF mutations were confined to the poor prognosis (C1) subgroup (Fig. 2c). C1 consti-
tuted a more diffuse group on PCA, distinguished from C2 mainly along the first principal component. We next 
retrospectively sought follow-up survival data from the time of first surgery, which was available for 25 of the 28 
patients included in the transcriptome analysis (12 patients in C1, 13 in C2; mean follow-up of 1,403 days from 
surgery). We observed a significantly worse overall survival outcome in C1 compared to C2 (P < 0.0001; hazard 
ratio 17.0, 95% CI 5.2–56.0) (Fig. 2g; Supplementary Table S8). The subgroups were well balanced with respect 
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Figure 2. Transcriptomic classification of anaplastic meningioma. (a) Unsupervised hierarchical clustering and 
(b) principal component analysis of anaplastic meningioma gene expression revealed two subgroups (denoted 
C1 and C2). (c) Dendrogram obtained by unsupervised clustering annotated with clinical and genomic features. 
(d) Volcano plot depicting genes differentially expressed between C1 versus C2 anaplastic meningioma samples. 
X-axis, log2 fold change; y-axis, −log10 adjusted P-value. Genes with an adjusted P-value < 0.01 and absolute 
log2 fold change >2 are highlighted in red. (e,f) Box plots of (e) CXLC14 and (f) HOTAIR expression across 31 
anaplastic meningomas classified into C1 and C2 subgroups, 100 primary breast tumors, and 219 cancer cell 
lines from 11 tumor types. Upper and lower box hinges correspond to first and third quartiles, horizontal line 
and whiskers indicate the median and 1.5-fold the interquartile range, respectively. Underlying violin plots show 
data distribution and are color-coded according to specimen source (blue, cell line; green, primary tumor). 
X-axis indicates tumor type and number of samples; y-axis shows log10 TPM values. (g) Kaplan-Meier curves 
showing overall survival for 25 anaplastic meningioma patients in C1 and C2 subgroups for whom follow-up 
data was available. Dashes indicate timepoints at which subjects were censored at time of last follow-up. TPM, 
transcripts per kilobase million; AM, anaplastic meningioma; TNBC, triple negative breast carcinoma; wt, wild-
type; mt, mutated; PC, principal component.
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to potential confounding features such as gender, age, radiotherapy, anatomical location and amount of residual 
tumor remaining after surgery (Supplementary Table S9).

Recent work has demonstrated that anaplastic meningiomas segregate into 2–3 prognostically significant 
subgroups on the basis of methylation profile10. Unsupervised hierarchical clustering using methylation data 
available for a subset of the cohort (n = 19) demonstrated segregation into two main groups largely overlapping 
the subgroups delineated on the basis of gene expression profile, though correlation with survival outcomes was 
less marked (Supplementary Fig. S8).

Transcriptional programs segregating indolent and aggressive anaplastic meningi-
oma. Nineteen hundred genes underpinned the differentiation of anaplastic meningioma into subgroups C1 
and C2, which could be reduced to only 6 transcripts selected on the basis of PCA coefficient and differential 
expression analysis (see Methods; Supplementary Tables S10 and S11, Fig. S9). Pathway enrichment analysis 
was most significant for evidence of epithelial-mesenchymal transition (EMT) in the C1 tumors, with concord-
ant loss of E-cadherin (CDH1) and upregulation of CXCL14, both prognostic biomarkers in diverse other can-
cers (Supplementary Table S12, Fig. 2d–f)23–25. EMT, which involves reprogramming of adherent epithelial cells 
into migratory mesenchymal cells, is critical for embryogenesis and tissue plasticity, and can play an important 
role in malignant progression, metastasis and therapy resistance24,26. Interestingly, NF2 and the closely related 
cytoskeletal protein ezrin normally help maintain E-cadherin expression at adherence junctions, whereas HOXB7 
and HOXB9, both overexpressed in C1 tumors, suppress CDH1 expression27–29. It is increasingly recognised that 
CXCL14 and other EMT mediators are often derived from cancer-associated fibroblasts (CAFs) and function in 
a paracrine manner25,30,31. It is hence possible that some of the gene expression patterns we observed may reflect 
differences in the tumor stromal compartment, itself an increasingly recognised therapeutic target30,32,33.

The C1 tumors were further characterised by upregulation of transcriptional programs associated with 
increased proliferation, PRC2 activity and stem cell phenotype (Supplementary Table S13). Hox genes constituted 
a notable proportion of the transcripts distinguishing the two anaplastic meningioma subgroups, largely under-
pinning the significance of pathways involved in tissue morphogenesis. Furthermore, differentially methylated 
genes were also significantly enriched for Hox genes, with pathway analysis results corroborating the main bio-
logical themes apparent from the transcriptome (Supplementary Tables S14 and S15). Given the transcriptional 
evidence of increased PRC2 activity in the C1 subgroup, is noteworthy that SWI/SNF gene mutations occurred 
exclusively in C1 tumors (P = 0.016, Fisher’s exact test).

Comparison of the anaplastic and benign meningioma transcriptome. Previous studies investi-
gating the relationship between meningioma WHO grade and gene expression profiles have included few ana-
plastic tumors34,35. We therefore extended our analysis to include published RNA sequences from 19 benign 
grade I meningiomas. External data was processed using our in-house pipeline with additional measures taken to 
minimise batch effects (Methods, Supplementary Tables S16 and S17). Unsupervised hierarchical clustering and 
principal component analysis demonstrated clear tumor segregation by histological grade (Fig. 3a,b). In keeping 
with previous reports, the anaplastic tumors demonstrated marked upregulation of major growth factor receptor 
and kinase circuits implicated in meningioma pathogenesis, notably epidermal growth factor receptor (EGFR), 
insulin-like growth factor (IGFR), vascular endothelial growth factor receptor (VEGFR) and mTOR complex 1 
(mTORC1) kinase complex36–41.

Consistent with there being a coherent biological trend across histological grades and anaplastic meningi-
oma subgroups, we noted significant overlap between genes differentially expressed between grades and between 
C1 and C2 tumors (hypergeometric distribution P = 5.08 × 10−9). In keeping with this finding, formal pathway 
analysis identified significant dysregulation of stemness, proliferation, EMT and PRC2 activity (Supplementary 
Tables S18 and S19). The most significantly dysregulated pathways also included TGF-beta, Wnt and integrin 
signalling, mediators of invasion and mesenchymal differentiation that are normally in part controlled by NF2 
and other Hippo pathway members20,24,42. Yes-associated protein 1 (Yap1), a cornerstone of oncogenic Hippo 
signalling, is frequently overexpressed in cancer and synergises with Wnt signalling to induce EMT43,44. YAP1 
was upregulated in anaplastic tumors along with MYL9, a key downstream effector essential for Yap1-mediated 
stromal reprogramming (Fig. 3c)43.

Discussion
Meningiomas constitute a common, yet diverse tumor type with few therapeutic options6,7,9,45. Efforts to improve 
clinical outcomes have been hampered by limited understanding of the molecular determinants of aggressive 
disease. Here, we explored genomic, epigenetic and transcriptional features of anaplastic meningioma, the most 
lethal meningioma subtype4.

Frequent somatic changes in SWI/SNF complex genes, predominantly ARID1A, constitute the main genomic 
distinction between anaplastic and lower grade meningiomas7,9. SWI/SNF inactivation is associated with aberrant 
PRC2 activation, stem cell-like phenotype and poor outcomes in diverse cancer types46–48.

Although anaplastic tumors resist comprehensive classification based on driver mutation patterns, transcrip-
tional profiling revealed two biologically distinct subgroups with dramatically divergent survival outcomes. This 
finding is emblematic of the limitations of histopathological grading as a risk stratification system for meningi-
oma2,4,10,45,49. All SWI/SNF mutations were confined to the poor prognosis (C1) subgroup, which was further 
characterised by transcriptional signatures of PRC2 target activation, stemness, proliferation and mesenchymal 
differentiation. These findings were in part underpinned by differential expression of Hox genes. Acquisition of 
invasive capacity and stem cell traits are frequently co-ordinately dysregulated in cancer, often through subversion 
of Hox gene programs integral to normal tissue morphogenesis50–52. Hox genes have a central role in orchestrating 
vertebrate development and act as highly context-dependent oncogenes and tumor suppressors in cancer51,53. 
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Several of the most starkly upregulated Hox genes in the C1 tumors consistently function as oncogenes across 
a range of solid and haematological malignancies, including HOTAIR, HOXB7, HOXA4, HOXA-AS2, HOXC11, 
and NKX2-228,29,51,54–62. Like many other long non-coding RNAs (lncRNA), HOTAIR and HOXA-AS2 modulate 
gene expression primarily by interacting directly with chromatin remodelling complexes, exerting oncogenic 
activity by recruiting PRC2 to target genes54,56,61–65. HOXA-AS2 has been shown to mediate transcriptional repres-
sion of the tumor suppressor gene CDKN2A (p16INK4A), deletion of which is associated with poor meningioma 
survival54,61,62,66,67. Given the antagonistic relationship between the SWI/SNF and PRC2 chromatin regulators, 
deleterious SWI/SNF mutations and overexpression of lncRNAs known to mediate PRC2 activity emerge as 
potentially convergent mechanisms underpinning the differences between C1 and C2 tumors68. Further endors-
ing a link between transcriptional subgroups and chromatin dysregulation, 15 of the differentially expressed tran-
scripts delineating C1 and C2 subgroups (absolute log2 fold change >2 and FDR < 0.01) are among the 50 genes 
most often associated with frequently bivalent chromatin segments (FBS) in cancer, including 11 transcripts from 
the HOXB cluster on chromosome 1769. This overlap was highly statistically significant (hypergeometric distribu-
tion P = 1.98 × 10−11). Bivalent, or epigenetically ‘poised’, chromatin is characterised by finely balanced activating 
(H3K4me1/H3K4me3) and repressive (H3K27me3) histone marks and pre-loaded DNA polymerase II poised 
to transcribe in response to modest epigenetic changes70. Bivalent chromatin most often marks genes involved in 
developmental reprogramming, in particular Hox cluster genes and homeotic non-coding transcripts, and is a 
frequent target of aberrant chromatin modification in cancer65,69,71.
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Figure 3. Differences in gene expression profile between grade I and anaplastic meningomas. (a,b) Normalised 
transcript counts from grade I and anaplastic meningioma samples clustered by (a) Pearson’s correlation 
coefficient and (b) principal component analysis. (c) Volcano plot illustrating differences in gene expression 
between anaplastic versus grade I meningiomas with selected genes indicated. The horizontal axis shows 
the log2 fold change and the vertical axis indicates the −log10 adjusted P-value. Genes with an adjusted P-
value < 0.01 and absolute log2 fold change >2 are highlighted in red. PC, principal component.
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In the context of recent studies of lower grade meningiomas, our findings raise the possibility that the bal-
ance between PRC2 and SWI/SNF activity may have broader relevance to meningioma pathogenesis. Compared 
to grade I tumors, atypical meningiomas are more likely to harbor SMARCB1 mutations and large deletions 
encompassing chromosomes 1q, 6q and 14q. Notably, these genomic regions encompass ARID1A and several 
other SWI/SNF subunit genes. Both SMARCB1 mutations and the aforementioned copy number changes were 
associated with epigenetic evidence of increased PRC2 activity, differential Homeobox domain methylation, and 
upregulation of proliferation and stemness programs in atypical grade II meningiomas9.

The extent to which SWI/SNF depletion plays a role in meningioma development may be therapeutically 
relevant. Diverse SWI/SNF mutated cancers exhibit dependence on both catalytic and non-catalytic functions 
of EZH2, a core subunit of PRC272–74. Several EZH2 inhibitors are in development with promising initial clinical 
results75. Other modulators of PRC2 activity, including HOTAIR, may also be relevant therapeutic targets76,77. 
Furthermore, growing recognition of the relationship between EMT and resistance to conventional and targeted 
anti-cancer agents has profound implications for rational integration of treatment approaches32,33. Notably, EGFR 
inhibition has yielded disappointing response rates in meningioma despite high EGFR expression37,78. A mesen-
chymal phenotype is strongly associated with resistance to EGFR inhibitors in lung and colorectal cancer32,33,79–81. 
Combining agents that abrogate EMT with other therapies is a promising strategy for addressing cell-autonomous 
and extrinsic determinants of disease progression and may warrant further investigation in meningioma32,33.

This study has revealed biologically and prognostically significant anaplastic meningioma subgroups and 
identified potentially actionable alternations in SWI/SNF genes, PRC2 activity and EMT regulatory networks. 
However, a substantially larger series of tumors, ideally nested in a prospective multicentre observational study, 
will be required to expand upon our main findings and explore mechanistic and therapeutic ramifications of 
meningioma diversity.

Methods
Sample selection. DNA was extracted from 70 anaplastic meningiomas; 51 samples at first resection (‘pri-
mary’) and 19 from subsequent recurrences. Matched normal DNA was derived from peripheral blood lympho-
cytes. Written informed consent was obtained for sample collection and DNA sequencing from all patients in 
accordance with the Declaration of Helsinki and protocols approved by the NREC/Health Research Authority 
(REC reference 7/YH/0101) and Ethics Committee at University Hospital Carl Gustav Carus, Technische 
Universität Dresden, Germany (EK 323122008). Samples underwent independent specialist pathology review 
(V.P.C and K.A). DNA extracted from fresh-frozen material was submitted for whole genome sequencing whereas 
that derived from formalin-fixed paraffin-embedded (FFPE) material underwent deep targeted sequencing of 366 
cancer genes.

One tumor sample PD23348 (and two subsequent recurrences) separated from the main study samples in 
a principal components analysis of transcriptomic data (Supplementary Fig. S10). Analysis of WGS and RNA 
sequencing data identified an expressed gene fusion, NAB2-STAT6. This fusion is pathognomonic of menin-
geal hemangiopericytoma, now classified as a separate entity, solitary fibrous tumors82–84. We therefore excluded 
three samples from this tumor from further study. A second sample (PD23354a), diagnosed as an anaplastic 
meningioma with papillary features, was found to have a strong APOBEC mutational signature as well as an 
EML4-ALK gene fusion (exon 6 EML4, exon 19 ALK) (Supplementary Fig. S11)85. Therefore this sample was 
also removed as a likely metastasis from a primary lung adenocarcinoma. The hypermutator sample PD23359a 
underwent additional pathological review to confirm the diagnosis of anaplastic meningioma (K.A., Department 
of Histopathology, Cambridge University Hospital, Cambridge, UK).

RNA was extracted from fresh-frozen material from 34 primary and recurrent tumors, 3 of which were from 
PD23348 and were subsequently excluded from final analyses (Supplementary Table S1).

Whole genome sequencing. Short insert 500 bp genomic libraries were constructed, flowcells prepared and 
sequencing clusters generated according to Illumina library protocols86. 108 base/100 base (genomic), or 75 base 
(transcriptomic) paired-end sequencing were performed on Illumina X10 genome analyzers in accordance with 
the Illumina Genome Analyzer operating manual. The average sequence coverage was 65.8X for tumor samples 
and 33.8X for matched normal samples (Supplementary Table S1).

Targeted genomic sequencing. For targeted sequencing we used a custom cRNA bait set (Agilent) to 
enrich for all coding exons of 366 cancer genes (Supplementary Table S20). Short insert libraries (150 bp) were 
prepared and sequenced on the Illumina HiSeq 2000 using 75 base paired-end sequencing as per Illumina proto-
col. The average sequence coverage was 469X for the tumor samples.

RNA sequencing and data processing. For transcriptome sequencing, 350 bp poly-A selected RNA 
libraries were prepared on the Agilent Bravo platform using the Stranded mRNA library prep kit from KAPA 
Biosystems. Processing steps were unchanged from those specified in the KAPA manual except for use of an 
in-house indexing set. Reads were mapped to the GRCh37 reference genome using STAR (v2.5.0c)87. Mean 
sequence coverage was 128X. Read counts per gene, based on the union of all exons from all possible transcripts, 
were then extracted BAM files using HTseq (v0.6.1)88. Transcripts Per kilobase per Million reads (TPM) were 
generated using an in-house python script (https://github.com/TravisCG/SI_scripts/blob/master/tpm.py)87,88. We 
downloaded archived RNA sequencing FASTQ files for 19 grade I meningioma samples representing the major 
mutational groups (NF2/chr22 loss, POLR2A, KLF4/TRAF7, PI3K mutant) (ArrayExpress: GSE85133)7. Reads 
were then processed using STAR and HTseq as described above. Cancer cell line (n = 252) and triple-negative 
breast cancer (n = 100) RNA sequencing data was generated in-house by the aforementioned sequencing and 
bioinformatic pipeline.

https://github.com/TravisCG/SI_scripts/blob/master/tpm.py


www.nature.com/scientificreports/

8ScIentIfIc RepoRTS |  (2018) 8:13537  | DOI:10.1038/s41598-018-31659-0

Expressed gene fusions were sought using an in-house pipeline incorporating three algorithms: 
TopHat-Fusion (v2.1.0), STAR-Fusion (v0.1.1) and deFuse (v0.7.0) (https://github.com/cancerit/cgpRna)87,89,90. 
Fusions identified by one or two algorithms or also detected in the matched normal sample were flagged as likely 
artefacts. Fusions were further annotated according to whether they involved a kinase or known oncogene and 
whether they occurred near known fragile sites or rearrangement break points91 (Supplementary Table S5).

The C1 and C2 subgroups were defined by unsupervised hierarchical clustering using Poisson distance 
between samples92,93. Poisson distance was calculated using the PoissonDistance function implemented in the 
‘PoiClaClu’ R package92 and unsupervised hierarchical clustering performed with the stats::hclust() function 
using the 250 transcripts with the most variable expression across tumors. Silhouette information was computed 
using the cluster::silhouette() function. The highest mean silhouette score was consistently achieved with two 
clusters.

Differential gene expression and pathway enrichment analysis. The DESeq2 R package was 
used for all differential gene expression analyses94,95. DESeq2 uses shrinkage estimation of dispersion for the 
sample-specific count normalization and subsequently applies a linear regression method to identify differentially 
expressed genes (DEGs)94,95.

Preliminary comparison of anaplastic and externally-generated grade I meningioma data revealed evidence 
of laboratory batch effects, which we mitigated with two batch-correction methods: RUVg and PEER96,97. RUVg 
estimates the factor attributed to spurious variation using control genes that are assumed to have constant expres-
sion across samples98–100. We selected control genes (RPL37A, EIF2B1, CASC3, IPO8, MRPL19, PGK1 and POP4) 
on the basis of previous studies of suitable control genes for transcript-based assays in meningioma101. PEER 
(‘probabilistic estimation of expression residuals’) is based on factor analysis methods that infer broad variance 
components in the measurements. PEER can find hidden factors that are orthogonal to the known covariates. We 
applied this feature of PEER to remove additional hidden effect biases. The final fitted linear regression model 
consists of the factor identified by RUVg method that represents the unwanted laboratory batch effect and 13 
additional hidden factors found by PEER that are orthogonal to the estimated laboratory batch effect. Using this 
approach we were able to reduce the number of DEGs from more than 18000 to 8930, of which <4,000 are pre-
dicted to be protein-coding.

To identify biological pathways differentially expressed between meningioma grades and anaplastic menin-
gioma subgroups we applied a functional class scoring algorithm using a collection of 461 published gene sets 
mapped to 10 canonical cancer hallmarks (Supplementary Table S21)50,102–106. We further corroborated these 
findings with a more general Gene Ontology (GO) pathway analysis107.

Identification of 6 transcripts recapitulating anaplastic meningioma clusters. Mapped RNA 
sequencing reads were normalised using the regularised logarithm (rlog) function implemented by the DESeq2 
package94,95. PCA was performed using the top 500 most variably expressed transcripts and the R stats::prcomp 
function108. Given that primary component 1 (PC1) was the vector most clearly distinguishing the closely clus-
tered C2 subgroup from the more diffusely clustered C1 (Fig. 3a), we extracted the top 50 transcripts with the 
highest absolute PC1 coefficients. We then identified the subset that overlapped with the most significantly differ-
entially expressed genes (absolute log2 fold change >4 and adjust p-value < 0.0001) between i) the C1 and C2 ana-
plastic meningioma subgroups and ii) the C1 anaplastic meningiomas and the 19 grade I tumors (Supplementary 
Tables S10 and S17). Iteratively reducing the number of PC1 components identified the minimum number of 
transcripts that recapitulated segregation of C1 and C2 tumors upon unsupervised hierarchical clustering and 
PCA (Supplementary Table S11, Fig. S9).

Processing of genomic sequencing data. Genomic reads were aligned to the reference human 
genome (GRCh37) using the Burrows-Wheeler Aligner, BWA (v0.5.9)109. CaVEMan (Cancer Variants Through 
Expectation Maximization: http://cancerit.github.io/CaVEMan/) was used for calling somatic substitutions. 
Small insertions and deletions (indels) in tumor and normal reads were called using a modified Pindel ver-
sion 2.0. (http://cancerit.github.io/cgpPindel/) on the NCBI37 genome build110,111. Annotation was according to 
ENSEMBL version 58. Structural variants were called using a bespoke algorithm, BRASS (BReakpoint AnalySiS) 
(https://github.com/cancerit/BRASS) as previously described112.

The ascatNGS algorithm was used to estimate tumor purity and ploidy and to construct copy number profiles 
from whole genome data113.

Identification of cancer genes based on the impact of coding mutations. To identify recur-
rently mutated driver genes, we applied an established dN/dS method that considers the mutation spectrum, the 
sequence of each gene, the impact of coding substitutions (synonymous, missense, nonsense, splice site) and the 
variation of the mutation rate across genes22.

Identification of driver mutations in known cancer genes. Non-synonymous coding variants 
detected by Caveman and Pindel algorithms were flagged as putative driver mutations according to set crite-
ria and further curated following manual inspection in the Jbrowse genome browser114. Variants were screened 
against lists of somatic mutations identified by a recent study of 11,119 human tumors encompassing 41 can-
cer types and also against a database of validated somatic drivers identified in cancer sequencing studies at the 
Wellcome Trust Sanger Institute (Supplementary Tables S22 and S23)115.

Copy number data was analysed for homozygous deletions encompassing tumor suppressor genes and for 
oncogene amplifications exceeding 5 or 9 copies for diploid and tetraploid genomes, respectively. Only focal 
(<1 Mb) copy number variants meeting these criteria were considered potential drivers. Additional truncating 
events (disruptive rearrangement break points, nonsense point mutations, essential splice site mutations and 

https://github.com/cancerit/cgpRna
http://cancerit.github.io/CaVEMan/
http://cancerit.github.io/cgpPindel/
https://github.com/cancerit/BRASS
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frameshift indels) in established tumor suppressors were also flagged as potential drivers. Only rearrangements 
with breakpoints able to be reassembled at base pair resolution are included in this dataset.

TraFiC pipeline for retrotransposon integration detection. For the identification of putative solo-L1 
and L1-transduction integration sites, we used the TraFiC (Transposome Finder in Cancer) algorithm12. TraFiC 
uses paired-end sequencing data for the detection of somatic insertions of transposable elements (TEs) and exog-
enous viruses. The identification of somatic TEs (solo-L1, Alu, SINE, and ERV) is performed in three steps: (i) 
selection of candidate reads, (ii) transposable element masking, (iii) clustering and prediction of TE integration 
sites and (iv) filtering of germline events12.

Methylation arrays and analysis. We performed quantitative methylation analysis of 850,000 CpG sites 
in 25 anaplastic meningiomas. Bisulfite-converted DNA (bs-DNA) was hybridized on the Ilumina Infinium 
HumanMethylationEPIC BeadChip array following the manufacturer’s instructions. All patient DNA samples 
were assessed for integrity, quantity and purity by electrophoresis in a 1.3% agarose gel, picogreen quantifica-
tion and Nanodrop measurements. Bisulfite conversion of 500 ng of genomic DNA was done using the EZ DNA 
Methylation Kit (Zymo Research), following the manufacturer’s instructions. Resulting raw intensity data (IDATs) 
were normalized using the Illumina normalization method developed under the minfi R package (v1.19.10). 
Normalized intensities were then used to calculate DNA methylation levels (beta values). We then excluded from 
the analysis the positions with background signal levels in methylated and unmethylated channels (p > 0.01). 
Finally we removed probes with one or more single nucleotide polymorphisms (SNPs) with a minor allele fre-
quency (MAF) >1% in the first 10 bp of the interrogated CpG, as well as the probes related to X and Y chromo-
somes. From the filtered positions, we selected only CpG sites present both in promoter regions (TSS, 5′UTR and 
1st exon) and CpG islands (UCSC database, genome version hg19).

For the supervised analysis of the probes, CpG sites were selected by applying an ANOVA test to identify 
statistically significant CpG positions (FDR adjusted p-value < 0.01) that were differentially methylated among 
the compared groups (Δβ > 0.2). Selected CpG sites were later clustered based on the Manhattan distances aggre-
gated by ward’s linkage. Finally, the genes corresponding to the selected CpGs were used to perform a Gene Set 
Enrichment Analysis (GSEA) with curated gene sets in the Molecular Signatures Database116. The gene sets used 
were: H: hallmark gene sets, BP: GO biological process, CC: GO cellular component, MF: GO molecular function 
and C3: motif gene sets (http://software.broadinstitute.org/gsea/msigdb/collections.jsp). The gene clusters result-
ing from the hypergeometric test with a FDR adjusted p-value < 0.05 were finally considered. We observed high 
levels of methylation for CREBBP in the majority of tumor samples, however, similar patterns were manifest in 
normal tissue controls, hence CREBBP hypermethyation does not appear to be a feature of oncogenesis in these 
samples.

For principal component analysis, we used the R function prcomp to calculate the Singular Value 
Decomposition of the beta value matrix after removing the CpGs without methylation information. We plotted 
the first two principal components which contain most variation by using the ggbiplot R package (http://github.
com/vqv/ggbiplot). For each group we plotted a normal data ellipse with size defined as a normal probability 
equal to 0.68. Unsupervised hierarchical clustering was performed with the stats::hclust() function using the 75 
probes with the highest variance in methylation beta values.

Mutational signature analysis. Mutational signature extraction was performed using the nonnegative 
matrix factorization (NNMF) algorithm11. Briefly, the algorithm identifies a minimal set of mutational signatures 
that optimally explains the proportions of mutation types found across a given mutational catalogue and then 
estimates the contribution of each identified signature to the mutation spectra of each sample.

Patient survival analysis. The Kaplan-Meier method was used to analyze survival outcomes by the log-rank 
Mantel-Cox test, with hazard ratio and two-sided 95% confidence intervals calculated using the Mantel_Haenszel 
test (GraphPad Prism, ver 7.02). Overall survival data from time of first surgery for each anaplastic meningioma 
within gene-expression defined subgroups C1 and C2 was collected and used to plot a Kaplan-Meier survival 
curve.

Supplementary Discussion
A hypermutator anaplastic meningioma with a haploid genome. One primary anaplastic menin-
gioma resected from an 85-year old female (PD23359a) had a hypermutator phenotype, with 27,332 point muta-
tions and LOH across nearly its entire genome (Supplementary Fig. S12, Table S24). Independent pathological 
review confirmed the original diagnosis of anaplastic meningioma, and transcriptome analysis demonstrated 
that this tumor clustered appropriately with the rest of the cohort (Fig. 3a,b). The majority of the mutations were 
substitutions, 72% of which were C > T transitions. We identified two deleterious mutations in DNA damage 
repair mediators: a TP53 p.R248Q missense mutation and a homozygous truncating variant in the mismatch 
repair gene MSH6 (p.L1330Vfs*9). Despite the latter finding, mutational signatures analysis was dominated by 
signature 1, with no evidence of signatures typically associated with defects in homologous recombination, mis-
match repair or POLE activity (signatures 3, 6, 10, 15, 20 or 26). The copy number profile is most consistent with 
this tumor having first undergone haploidization of its genome, with the exception of chromosomes 7, 19 and 
20, followed by whole genome duplication (Supplementary Fig. S12). Of note, several important oncogenes are 
located on chromosome 7, including EGFR, MET and BRAF. Widespread LOH has been described in a significant 
proportion of oncocytic follicular thyroid cancers where preservation of chromosome 7 heterozygosity has also 
been observed117.

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
http://github.com/vqv/ggbiplot
http://github.com/vqv/ggbiplot


www.nature.com/scientificreports/

1 0ScIentIfIc RepoRTS |  (2018) 8:13537  | DOI:10.1038/s41598-018-31659-0

Data Availability
All sequencing data that support the findings of this study have been deposited in the European Genome-Phe-
nome Archive and are accessible through the accession numbers EGAS00001000377, EGAS00001000828, 
EGAS00001000859, EGAS00001001155 and EGAS00001001873. All other relevant data are available from the 
corresponding author on request.
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