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Objective: This study aimed to construct a radiomics-based MRI sequence from

high-resolution magnetic resonance imaging (HRMRI), combined with clinical high-

risk factors for non-invasive differentiation of the plaque of symptomatic patients from

asyptomatic patients.

Methods: A total of 115 patients were retrospectively recruited. HRMRI was performed,

and patients were diagnosed with symptomatic plaques (SPs) and asymptomatic

plaques (ASPs). Patients were randomly divided into training and test groups in the ratio

of 7:3. T2WI was used for segmentation and extraction of the texture features. Max-

Relevance and Min-Redundancy (mRMR) and least absolute shrinkage and selection

operator (LASSO) were employed for the optimized model. Radscore was applied

to construct a diagnostic model considering the T2WI texture features and patient

demography to assess the power in differentiating SPs and ASPs.

Results: SPs and ASPs were seen in 75 and 40 patients, respectively. Thirty texture

features were selected by mRMR, and LASSO identified a radscore of 16 radiomics

features as being related to plaque vulnerability. The radscore, consisting of eight texture

features, showed a better diagnostic performance than clinical information, both in the

training (area under the curve [AUC], 0.923 vs. 0.713) and test groups (AUC, 0.989

vs. 0.735). The combination model of texture and clinical information had the best

performance in assessing lesion vulnerability in both the training (AUC, 0.926) and test

groups (AUC, 0.898).

Conclusion: This study demonstrated that HRMRI texture features provide incremental

value for carotid atherosclerotic risk assessment.
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INTRODUCTION

Carotid atherosclerotic plaques contribute to ∼20% of the
ischemic cerebrovascular events, including transient ischemic
attack (TIA) (1). Clinical trials have demonstrated that
ultrasonography-defined luminal stenosis of ≥70% was
predictive of future ischemic events in both symptomatic
(2, 3) and asymptomatic (4, 5) patients. However, numerous
studies have demonstrated serious limitations of angiology-
defined degree of luminal stenosis; therefore, carotid ultrasound
screening in the general population is not recommended
(6). An increasing number of studies have demonstrated the
significance of different vulnerable plaques based on plaque
compositions (7); for example, intraplaque hemorrhage (IPH)
and a lipid-rich necrotic core (LRNC) have been recognized
as high risk factors for stroke (8). There are many studies that
focus on plaque as the major cause of disease, such as stroke
and TIA, which are symptomatic. When finding risk factors,
we need to differentiate the plaque of symptomatic patients
from asymptomatic patients. Doppler ultrasonography (CDUS),
computed tomography angiography (CTA), contrast-enhanced
magnetic resonance angiography (MRA), and high-resolution
magnetic resonance imaging (HRMRI) have been used for
non-invasive prediction of carotid plaque recently. CDUS
cannot proved three-dimensional (3D) information regarding
the structures. CTA has the highest diagnostic performance, with
the disadvantage of ionizing radiation (9). With the development
of technology, the first-pass imaging of MRA could be used to
analyze the vessel stenosis with good sensibility and specificity,
especially for 70–90% stenosis (10, 11). Lower resolution and
worse spatial resolution of the first-pass imaging of MRA
are not suitable for predicting the structure of plaque. The
acquisitions of non-isotropic voxels and lower matrix could
result in partial volume effects that compromise carotid stenosis
and plaque structure prediction (12). Meanwhile, steady-state
imaging of MRA has greater accuracy and higher resolution in
depicting the structure of the plaque (10). However, during the
imaging of steady-state MRA, intravascular contrast agents could
extend intravascular residence times with relatively increased
cost. Gadobenate dimeglumine demonstrates feasibility in the
diagnostic performance for carotid plaque (11). However, further
research is needed to explore the feasibility of a conventional
contrast agent of MRA.

In addition to the identification of lumen conditions, recent
advanced HRMRI can characterize detailed features within
the lesion structure, including the size of an LRNC, fibrous
cap (FC) thickness, and the presence of IPH (13). These
detailed morphological and compositional features have been
demonstrated to be risk factors associated with patient clinical
presentations (5, 14) and future ischemic events (15, 16). In
most previous studies, plaque features were quantified in a
straightforward way; for example, an LRCN was classified as
small or large according to its size, and IPH was classified
as being present or absent according to the signal intensity
on T1-weighted images. However, atherosclerosis is a complex
structure, with a mixture of fibrous tissue and lipids and
different types of collagens (type I and type III) (16). The

complexity of compositional features could be captured by
in vivo imaging presenting a special image texture that
has been studied the least. Pilot studies have demonstrated
the clinical potential of image texture analysis. A coronary
computed tomography angiography (CTA) radiomics-based
machine learning model showed superior performance to that
of expert visual assessment in the identification of advanced
atherosclerotic lesions (17, 18). Histogram analysis with HRMRI
provided significantly complementary values over luminal
stenosis in defined lesion types for predicting intracranial
atherosclerosis, and the dispersion of signal intensity was a
particularly effective predictive parameter (19). Pilot studies have
used high-dimensional texture features to aid clinical decision-
making by comparing the difference between symptomatic and
asymptomatic plaques without predicting the risk of plaques
(20, 21).

This study aimed to build an effective model using a
combination of HRMRI texture features and patient clinical risk
factors to improve the accuracy in high-risk plaque identification,
which would result in differentiation between symptomatic and
asymptomatic plaques.

MATERIALS AND METHODS

Patient Population
This study retrospectively recruited 323 patients with carotid
plaques from July 2015 to May 2021 from the Renmin Hospital
ofWuhan University. This study was approved by the local ethics
committee, and the patients provided signed informed consent.
All the patients had at least 30% carotid luminal stenosis, as
defined by ultrasound angiography andDoppler ultrasonography
(22). All the patients were divided into symptomatic plaque (SP)
and asymptomatic plaque (ASP) groups. The diagnostic principle
of an SP is as follows: (a) an acute ischemic stroke within the
last 7 days in patients who had a corresponding unilateral infarct
restricted to the territory of a single carotid artery defined by
diffusion-weighted imaging (23); (b) patients with a symptom
duration of ≤ 24 h who had met the World Health Organization
definition of transient ischemic attack but had a documented
acute ischemic infarct; (c) carotid luminal stenosis >30% (24),
and (d) thickness of plaques confirmed to be larger than 2
mm (25).

The exclusion criteria were as follows: (a) patients with carotid
artery stenosis ≥70%, (b) cardiogenic stroke, (c) patients with
bilateral infarct or clinical symptoms caused by bilateral carotid
plaque, and (d) other reasons, such as poor image quality of
HRMRI. Finally, 208 patients were excluded from the study.

HRMRI and Analysis
HRMRI Scanning Protocol
HRMRI was performed using a 3.0T MR750 system (GE
Healthcare, United States) with an 8-channel carotid coil (GE
Healthcare, United States). The protocol of HRMRI included (1)
T1 weighted MRI, (2) T2 weighted MRI, (3) proton density (PD)
weighted MRI, and (4) 3D time of flight MRI (3D TOF), matrix
= 512∗512, slice thickness= 2 mm.
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Two-dimensional (2D) T1-weighted double inversion
recovery fast spin echo (FSE), repetition time/echo time (TR/TE)
= 800/7.5ms, flip angle = 107◦, acquisition = 2, bandwidth
(BW) = 122.07Hz, and echo train length = 12, matrix =
512∗512, slice thickness= 2 mm.

PD-weighted FSE, TR/TE = 1,558/29.5ms, flip angle = 107◦,
acquisition = 1, and BW = 81Hz; 2D T2-weighted double
inversion recovery FSE, TR/TE = 1,578/69ms, flip angle = 107,
acquisition = 1, and BW = 81Hz, matrix = 512∗512, slice
thickness= 2 mm.

3D-TOF, TR/TE = 23/5.7ms, flip angle = 22◦, acquisition =
2, and BW= 280Hz, matrix=matrix= 512∗512, slice thickness
= 2.6 mm.

Robustness of Feature
1) Imaging Preprocessing

Before radiomics extraction, all the original images were
pre-processed using normalization schemes through MATLAB
(version 2016a). Since the intensity of the signal in MRI is not
considered an absolute value but is relative to the technical
parameters, the images underwent standardization and were
normalized. The standardization equation is as follows:

image standardization =
x− µ

adjusted < uscore > stddv

adjustedstddev = max

(

σ ,
1.0
√
N

)

where µ indicates the mean value of the signal in images, x
indicates the matrix, σ indicates the standard deviation, and N
indicates the number of voxels.

The normalized equation is as follows:

normalize =
xi −min (x)

max (x) −min (x)

Xi indicates the signal of the voxel. According to the standardized
workflow of radiomics, images should be preprocessed before
radiomics features extraction (26).

2) Image Quantization

Image quantization means the conversion of the gray values
of the images to a discrete group of gray values (27). Before
radiomic feature extraction, we quantized the image with
a fixed bin width of 5. This value was chosen based on the
example setting of Pyradiomics (https://github.com/AIM-
Harvard/pyradiomics/tree/master/examples/exampleSettings).
According to the protocol, the ideal number of bins is between
16 and 128 bins (28). A method to set a suitable bin width
is to extract the feature named first order range such that it
remains approximately in this bin range. The results of the
range are presented in Supplementary Material 1. An absolute
discretization was performed with fixed bin size (binsize = 5)
such that the new bin had been assigned to pixel intensities to
each BS gray level starting from 0. The equation is as follows:

IBS (x) =
[

I (x)

BS

]

−min

([

I (x)

BS

])

+ 1

I(x) indicates the intensity of the voxel; BS (binsize) indicates the
bin size and IBS(x) indicates the gray level of voxel x that had been
discretized (29).

All the images were transformed into Gaussian and wavelets.
Wavelet filtering yields eight decompositions per level. The
settings of the wavelet filter were as follows:

1) start_level [0]: integer, 0 based level of wavelet, which
should be used as the first set of the decompositions from which
a signature is calculated. 2) level [1]: integer, number of levels
of wavelet decompositions from which a signature is calculated.
3) wavelet [“coif1”]: string, type of wavelet decomposition.
Enumerated value, validated against possible values present in the
pyWavelet.wavelist(). Current possible values (pywavelet version
0.4.0). Gaussian image is obtained by convolving the image with
the second derivative (Laplacian) of a Gaussian kernel. The
Gaussian kernel is calculated as follows:

G
(

x, y, z, σ
)

=
1

(

σ
√
2π
)3

e
− x2+y2+z2

2σ2

The Gaussian kernel was convolved by the ∇2G
(

x, y, z
)

(30).
3) ROI Segmentation

T2WI was segmented manually using ITK-SNAP (version
3.6.0 www.itksnap.org). The regions of interest (ROI) were
manually segmented by the max plaque. The ROIs of the plaques
were delineated manually by two radiologists with 5 and 10
years of experience who were blinded to the clinical information.
Because of the same matrix, the ROI would be used to extract
the radiomics features for T1WI and PDWI (proton density
weighted image). Then, the radiomics features were extracted
from the ROI segmented by radiologists with 5 years’ (Sihan
Chen) and 10 years’ (Yunfei Zha) experience to calculate the
inter-observer correlation coefficients. Then, the radiologist with
10 years’ experience (Yunfei Zha) would segment the ROIs twice
after 4 weeks.

4) Radiomics Feature Extraction

The radiomics features were extracted using Anaconda
Prompt (version 4.2.0) importing the feature package of
pyradiomics (github.com/Radiomics/pyradiomics), according to
the feature guidelines of the Image Biomarker Standardization
Initiative (IBSI) (Figure 1A). Before radiomics extraction, all the
images were co-registered, normalized, and resampled to 1×1×1
mm3 for an interpolation step. The radiomics features were
extracted using Python (version 3.9.6) by importing the feature
package of pyradiomics (github.com/Radiomics/pyradiomics)
according to the feature guidelines of the IBSI (20). First-
order features, shape features, gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level
size zone matrix (GLSZM), and gray-level size zone matrix
(GLDM)-based original images and Gaussian and wavelet images
were extracted.

5) Inter-Observer Correlation Coefficient and Intraclass

Correlation Coefficient

Subsequently, the intraclass correlation coefficient was
calculated by the radiologist with 10 years’ experience using the
two segmented ROIs. The features maintained an inter-observer
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FIGURE 1 | Study flowchart and Raidomics workflow.

correlation coefficient ≥ 0.7 and intraclass correlation coefficient
≥ 0.7 (31, 32). The values of the ICC ranged from 0 to 1.
After calculation, the radiomics features were differentiated into
three levels: poor robustness, with ICC values<0.5; moderate
robustness, with 0.5< ICC values <0.9, and excellent robustness,
with ICC values ≥ 0.9. (Supplementary Materials 2).

Radiomics Signature Construction
The initial feature selection maintained an inter-observer
correlation coefficient and intraclass correlation of ≥0.7. Feature
reduction was then performed using training data with the
minimum redundancy maximum relevance (mRMR) algorithm
to find a set of features S with n features {Xi} that maximally
depend on the target label (17). The max-dependency is
computed as

maxD(S, c), D = I({xi, i = 1, ..., n}; c)

At the same time, when n>1, we should provide a set of
n-1 features, Sn-1; the set can be calculated as the leading
contribution to the largest increase in I(S; c),

I(S; c) =
∫

···
∫

p(x1, ..., xn, c)log[p(x1, ..., xm, c)

/p(x1, ..., xm)p(c)]dx1···dxmdc

The mRMR calculates a set of features by maximizing the
difference and minimizing redundancy. After feature selection,

the LASSO algorithm was selected to build the radiomics
signature by optimizing the subset of features to construct the
final model. Radiomics score (Radscore) was applied to build a
diagnostic model to discriminate between the stable and unstable
plaques based on the training set. After feature elimination,
the remaining final features were used to build the radiomics
signature via a linear combination of selected features that were
calculated by the respective coefficients of each feature (17).

Development of the Nomogram
Clinical variables in the training group were tested in a
multivariate logistic regression model to differentiate the ASPs
and SPs. The variance inflation factor (VIF) was calculated
to predict the collinearity of the clinical variable. The clinical
variable was maintained with VIF≤5 and used to build the
clinical model using the multivariate logistic regression model-
based minimum AIC. The Rad_clin model combined Radscore
and clinical variable were subsequently tested in a multivariate
logistic regression model to differentiate the SPs and ASPs. A
nomogram would be constructed based on the Rad_clin model.

Model Effectiveness Evaluation
The diagnostic performance of the radiomics signature, clinical
model, and combined model have been compared by the area
under the receiver operating characteristic (ROC) curve (AUC)
both in the training group and validated by the test group, each
person of Radscore had been calculated using the formula built in
the training group. The accuracy of the radiomics signature was
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evaluated for both the training and test groups. The calibration
of the models was assessed using calibration curves and the
Hosmer–Lemeshow test; decision curve analysis (DCA) was
performed to estimate the clinical utility of the models.

Statistical Analysis
Statistical analysis was performed using R 3.6.1 (www.
Rproject.org). The packages in R used in this study were
tidyverse, caret, pROC, glmnet, DMWR, rmda, ggpubr,
ModelGood, rms, mRMRe, DescTOOLs, and irr. mRMR were
used for feature reduction to avoid overfitting. After mRMR,
LASSO with 10-fold cross-validation was used to construct
a radiomics signature (Radscore). During the clinical model
construction, the clinical variable had been excluded if the
variance inflation factor (VIF) ≥5, and the clinical variable
could be subsequently maintained using a p < 0.05 during the
single factor logistic regression. After that, the clinical variable
in the clinical model would been kept based on minimum AIC
(Akaike information criterion) principle. The combined model,
based on the clinical variable and Radscore, and also the clinical
model would be constructed by multiple logistic regression. The
Delong test was applied to compare the differences in the ROC
curves between the two arbitrary models using Medcalc (www.
medcalc.org). The multiple comparisons would be corrected
by Bonferroni’s method. The differences in demographic and
clinical variables were compared between patients with SPs and
ASPs and in both the training and test group using GraphPad
Prism 8 (www.graphpad-prism.cn). The Mann-Whitney U-
test was used for non-normally distributed quantitative data,
while the independent sample t-test was used for normally
distributed data. Chi-squared tests were used to analyze the
categorical data.

RESULTS

Patient Clinical Characteristics
The study flowchart is presented in Figure 1. HRMRI from
115 patients, who had 75 SPs and 40 ASPs, was used for
the final analyses. All the patients were divided into training
and test groups in a ratio of 7:3. The patient demographics
of the groups are listed in Table 1. These clinical variables
showed no significant differences between the training and
test groups.

Radiomics Signature Constructed for the
Carotid Plaque
A total of 1,121 features were initially extracted from T2WI.
For the intraclass correlation coefficient, 309 features
(27.5%) showed excellent robustness, 150 (13.3%) features
showed poor robustness, and 662 (59.2%) features showed
moderate robustness. After the mRMR operation, 30 features
were retained by LASSO for both weightings. The log λ

(0.0086) (Figure 2A) identified 16 (Figure 2B) for the
identified eight features of the T2WI. The formulation of
radiomics signature (Figures 2A,B) for T2-weighting is

TABLE 1 | Clinicopathological characteristics of patients in the training group and

test group.

Characteristics Training set (n = 81) Test set (n = 34) P-values

No. (70%) No. (30%)

Gender 1.000

Male 64 (79.0) 27 (79.4)

Female 17 (21.0) 7 (20.6)

Age, year 51.2 ± 13.8 51.8 ± 12.2 0.815

Laboratory examination

LDL (mmol/L) 3.4 ± 0.3 3.4 ± 0.3 0.952

HDL (mmol/L) 1.2 ± 0.2 1.2 ± 0.2 0.487

LHR 3.0 ± 0.6 2.9 ± 0.5 0.452

Medical history

Hypertension 66 (81.5%) 23 (67.6%) 0.169

Diabetes 33 (40.7%) 8 (23.8%) 0.1223

Plaque composition

IPH 31 12 0.928

LRNC 40 18 0.887

Age, LDL, HDL, and LHR are presented as mean ± standard deviation.

LDL, low-density lipoprotein; HDL, high-density lipoprotein; LHR, LDL/HDL ratio; IPH,

intraplaque hemorrhage; LRNC, lipid-rich necrotic core.

as follows:

Radscore = −1.182× wavelet_LL_glszm_ZoneEntropy

− 1.008× wavelet_LH_firstorder_RootMeanSquared

+ 0.284× wavelet_HH_glcm_ClusterShade

+ −0.108× wavelet_HL_firstorder_RootMeanSquared

+ −0.756× wavelet_HL_firstorder_Skewness

+ −0.153× wavelet_HH_firstorder_Median

+ 0.141× original_ngtdm_Busyness

+ 1.224× wavelet_HL_firstorder_TotalEnergy

+ −0.218× original_shape2D_Elongation

+ −0.304× wavelet_LH_firstorder_Skewness

+ −0.578× wavelet_LL_glcm_ClusterShade

+ −0.028× wavelet_LH_glcm_Correlation

+ 0.519× original_glrlm_ShortRunLowGrayLevelEmphasis

+ 0.301× wavelet_HH_glcm_Correlation

+ −0.039× original_shape2D_Sphericity

+ 0.472× wavelet_HH_glszm_GrayLevelNonUniformity

+ 0.569

The Radscore based on the T2WI of SPs was significantly higher
than that of ASPs, in both the training (p = 0.0001, Figure 3A)
and test groups (p=0.0018) (Figure 3D). At the same time, there
were no significant differences in the Radscore between the
training group and test group (p = 0.6458) which means there
was no overfitting in the Radscore. The AUC of the Radscore in
the training group and test group were 0.834 and 0.818.

Radscore_T1WI has been built based on T1WI (logλ =
0.070) and Radscore_PDWI based on PDWI (logλ = 0.043)
(Supplementary Figure S1). The Delong test was conducted to
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FIGURE 2 | Texture feature selection using the absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) The penalty term (λ) in the

LASSO model was selected through 10-fold cross-validation which is based on minimum criteria. Y-axis means binomial deviances. Down-X-axis means the log (λ),

Up-X-axis means the average number of predictors. The red dots indicate average deviance values for each λ that different models have different deviance.

Left-vertical-line shows the lowest deviance that the model showed the best fit to our training group. (B) LASSO coefficient profiles of the 16 features. The dotted

vertical line was drawn at the value where log λ (0.008) resulted in eight non-zero coefficients.

FIGURE 3 | Boxplots showed the Radscore, clinical model, and Rad_clin model value of SPs and ASPs in the training and test groups. (A,D) Radscore in the training

group and the test group; (B,E) Radscore in the training group and the test group; (C,F) Radscore in the training group and the test group.

analyze the difference in the diagnostic performance for Radscore
in the training and test groups. There were no significant
differences between Radscore_T2WI and Radscore_T1WI in the
training group (P = 0.349) and test group (P = 0.502). At

the same time, there were no significant differences between
Radscore_T2WI and Radscore_PDWI in the training group (P
= 0.492) and test group (P = 0.731). Radscore_T2WI was used
to build the combined model for the highest AUC.
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Clinical Model Construction to Predict
Carotid Plaques
Patients were randomly divided into training and test groups,
with 53 patients with SP and 28 with ASP in the training group
and 22 patients with SP and 12 with ASP in the test group. In
the training group, the laboratory examinations of low-density
lipoprotein (LDL) (p = 0.013), high-density lipoprotein (HDL)
(p = 0.000), and LDL/HDL ratio (LHR) (p = 0.000) were
significantly different between the patients with SP and ASP
(Table 2). The plaque composition, IPH (p= 0.0001), and LRNC
(p = 0.001) were significantly different between patients with SP
and ASP. Age (p = 0.001) was significantly different between the
SPs and ASPsn the test group. LDL (odds ratio [OR] = 9.10),
HDL (OR = 0.019), LHR (OR = 5.31), IPH (OR = 9.33), and
LRNC (OR= 6.56) weremaintained owing to a variance inflation
factor (VIF) ≤5. LHR, IPH, and LRNC were used to build a
clinical model and a combined model based on the minimal AIC
principle. LHR, IPH, and LRNC were used to construct a clinical
model and the Rad_clin_model was constructed combined with
the Radscore. The clinical model (p = 0.003 vs. p = 0.007,
Figures 3B,E) and Rad_clin_model (p = 0.004 vs. p = 0.0001,
Figures 3C,F) showed significant differences between SPs and
SAP ASPs in the training and test groups. After correction by
Bonferroni’s analysis, the clinical model (p= 0.009 vs. p= 0.021)
and Rad_clin_model (p = 0.012 vs. p = 0.0003) also showed
significant differences between the SPs and ASPs in the training
and test groups.

Diagnostic Performance of the Radscore,
Clinical Model, and Rad_Clin Model
We also evaluated the discriminatory efficiency of the clinical
model and the Rad_clin model using ROC analyses (Table 3,
Figures 4A,B). The Rad_clin model yielded the largest AUC of
0.929 (95% confidence intervals [CI], 0.881–0.982) in the training
group and 0.912 (95% CI, 0.810–1.000) in the test group, which
showed significant differences between the clinical model (p =
0.023) and Radscore (p = 0.013) in the training group, but not
in the test group (p= 0.090 vs. p= 0.155). The Radscore was not
significantly different from the clinical model in both the training
group (p = 0.782) and the test group (p = 0.852). The Hosmer-
Lemeshow test in the Rad_clin model showed no significant
differences in the goodness-of-fit for the training group (p =
0.454) and test group (p= 0.7442).

The Evaluation of the Rad_Clin Model
After the Rad_clin model was constructed, each patient in the
training group (Figure 5A) and the test group (Figure 5B) was
analyzed based on whether they had SP, and the patients who
were incorrectly assessed are shown in Figure 5. Calibration
curves of the nomogram in the training (Figure 6A) and
the test groups (Figure 6B) showed good calibration of the
nomogram in terms of agreement between the predicted risk
of vulnerable plaque and high-resolution magnetic resonance
imaging (HRMRI)-observed vulnerable plaque. The nomogram
based on the Rad_clin model is shown in Figure 6C. The

equation of the nomogram is as follows:

Risk = −5.489+ LHR× 1.602+ IPH × 2.423

+LRNC × 1.353+ Radscore× 1.122

The value of IPH defined 1 as patients with IPH. Meanwhile,
the value of LRNC defined 1 as patients with LRNC. The DCAs
for the Rad_clin model are shown in Figure 6D. The DCA
indicated the threshold probability, in the range of 0 to 1,
indicating that patients with carotid plaques could benefit from
the Rad_clin model.

DISCUSSION

In this study, we extracted high-throughput imaging texture
features from T2WI of carotid atherosclerotic plaques to build
a multivariable logistic regression model with the combination of
patient clinical risk factors to differentiate SPs and ASPs, which
had the highest diagnostic performance to assess SPs. On the
other hand, joint analysis of radiomics and clinical features could
be of great significance in the differential diagnosis of other
indistinguishable diseases.

This study demonstrated that the SP of symptomatic carotid
plaques could be assessed using a T2WI-based radiomics model,
constructed using a radiomics signature and clinical data.
Traditionally, lesion vulnerability was assessed according to
geometric parameters, such as stenosis (33), the size of the LRNC,
the thickness of the fibrous cap (34, 35), and the presence of
inflammation and IPH. In addition to HRMRI, we selected age,
sex, LDL, HDL, hypertension, diabetes, and plaque composition
as clinical factors to evaluate SPs, of which LHR, IPH, and LRNC
had been integrated into the combined model to demonstrate the
high-risk factors for cardiovascular diseases (22, 36–39). Clinical
model-based LHR, IPH, and LRNC did not have a significantly
better performance than the radiomics model in both the training
and testing groups. However, the combination of LHR, IPH,
LRNC, and radiomics could better predict the SPs than any of
them alone.

There are16 radiomics features, namely, wavelet_LL_glszm
_ZoneEntropy, wavelet_LH_firstorder_RootMeanSquared, wav
elet_HH_glcm_ClusterShade, wavelet_HL_firstorder_Root
MeanSquared, wavelet_HL_firstorder_Skewness, wavelet
_HH_firstorder_Median, original_ngtdm_Busyness, wavelet
_HL_firstorder_TotalEnergy, original_shape2D_Elongation,
wavelet_LH_firstorder_Skewness, wavelet_LL_glcm_Cluster
Shade, wavelet_LH_glcm_Correlation, original_glrlm
_ShortRunLowGrayLevelEmphasis, wavelet_HH_glcm_Corr
elation, original_shape2D_Sphericity, wavelet_HH_glszm
_GrayLevelNonUniformity, extracted from T2WI, showed
maximum significance. ZoneEntropy measures the randomness
in the distribution of the zone sizes and gray levels. Root mean
squared is the square-root of the mean of all the squared intensity
values. Skewness measures the asymmetry of the distribution of
the values of the mean value of the gray level. Median indicates
the median value of the gray level intensity in the ROI. Busyness
measures the change from a pixel to its neighbor. Total energy
measures the value of energy feature scaled by the volume of
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TABLE 2 | Clinicopathological characteristics of APs and ASPs in a training group and a test group.

Characteristics Training set (n = 81) P-values Test set (n = 34) P-values

SP ASP SP ASP

n = 53 n = 28 n = 22 n = 12

Gender 1.000 1.000

Male 42 22 17 10

Female 11 6

Age, year 52.9 ± 12.4 48.0 ± 15.9 0.123 47.5 ± 9.6 59.8 ± 12.9 0.001

Laboratory examination

LDL (mmol/L) 3.5±0.2 3.3±0.3 0.013* 3.5±0.2 3.4±0.3 0.529

HDL (mmol/L) 1.1±0.2 1.3±0.2 0.000* 1.2±0.2 1.3±0.2 0.222

LHR 3.2±0.5 2.7±0.6 0.000* 3.0±0.4 2.8±0.6 0.209

Medical history

Hypertension 43 23 1.000 16 7 0.635

Diabetes 20 13 0.603 6 2 0.784

Plaque composition

IPH 28 3 0.000* 12 0 0.005

LRNC 34 6 0.001* 14 4 0.183

SP, symptomatic plaque; ASP, asymptomatic plaque; LDL, low-density lipoprotein; HDL, high-density lipoprotein; LHR, low-density lipoprotein; IPH, intraplaque hemorrhage; LRNC,

lipid-rich necrotic core.

TABLE 3 | Diagnostic performance of the Radscore, clinical model, and Rad_clin_model.

Radscore Clinical Rad_clin_model

Training group Test group Training group Test group Training group Test group

AUC 0.834 0.818 0.852 0.818 0.929 0.912

Accuracy 0.802 0.794 0.827 0.794 0.864 0.882

95% CI

Lower 0.753 0.674 0.771 0.662 0.881 0.810

Upper 0.942 0.962 0.943 0.971 0.982 1.000

Sensitivity 0.811 0.863 0.887 0.864 0.849 0.950

Specificity 0.786 0.667 0.714 0.667 0.893 0.786

PPV 0.877 0.826 0.854 0.826 0.937 0.864

NPV 0.687 0.727 0.769 0.727 0.757 0.917

AUC, area under the curve; 95%CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.

the voxel in cubic mm. Elongation measures the relationship
between the two largest components in the ROI shape. Cluster
shade measures the skewness and uniformity. Correlation
measures the value between 1 and 1, which demonstrates linear
dependency of the gray level to the respective voxel. Sphericity
measures the roundness of the shape of the ROI relative to a
sphere. Gray level non-uniformity measures the variability of the
gray level values in the ROI. When constructing the Radscore to
diagnose SPs based on T2WI, its diagnostic performance reached
0.834 in the training group and 0.818 in the test group. The
diagnostic performance was similar to the study by Zhang et al.
(40). The importance of using standardized imaging protocols
to eliminate unnecessary confounding variability is recognized.
For MRI, the multi-sequence imaging protocol was very difficult
to standardize. At the same time, we thought these results were
unusual and that the radiomics analysis could be based on the

types of MRI sequences. However, our results showed that the
diagnostic performance had no difference among the different
sequences, similar to those presented by Hu et al. (41). It is easier
to standardize a single MRI sequence than multiple sequences.
Hence, we selected the higher value of the AUC for the built
Radscore so that the radiomics-based single sequence could
optimize the process.

Zhang et al. studied a larger sample size (40). At the same time,
we found no significant difference between the single Radscore-
based single sequence. The most important characteristic was
that we used the images of patients with ASPs before the patient
experienced a TIA of stroke. We tried to establish a non-invasive
method to predict ASP. In our study, the combined model
showed significant differences compared to the clinical model
in terms of the Radscore; however, this was not seen in the test
group. Zhang et al. showed similar results in the test cohort but
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FIGURE 4 | Diagnostic performance of univariate logistic regression model. (A,B) show the receiver operating characteristic curves of the Rad_clin model that show

that the area under the curve is the highest among the Radscore and clinical model in the training and testing groups.

not in the training cohort (40). Huang et al. used radiomics-based
ultrasonography to non-invasively predict the SPs and ASPs with
0.930 in the training group and 0.922 in the test group, which
was higher than that achieved in our study. Meanwhile, they also
tried to extract radiomics data from grayscale and strain elasticity
images (42). At the same time, the clinical parameters finally
included in the combined model were IPH, LRNC, and LHR.
Larger studies have shown that IPH and LRNC are high-risk
factors for unstable plaques, especially in patients with secondary
stroke. The results of the included clinical factors were similar
to the results of Zhang’s study (40). The difference is that this
group of studies included LHR factors as a combined model.
The LHR is equal to the ratio of LDL to HDL (43). From the
clinical information, it can be seen that the LHR of patients
with SP was significantly higher than that of patients with ASP
(p=0.000). Previous studies have shown that LDL and HDL are
risk factors for patients with carotid plaques. Unlike the results
of most radiomics studies (44), there is no significant difference
between our Radscore and clinical models in terms of diagnostic
performance. We believe that radiomics is not suitable for the
individual assessment of diseases under the current development,
and the combination of clinical parameters can improve the
specificity of the diagnostic model. Our final results also show
that the combination of Radscore and clinical features can better
and effectively improve the diagnostic performance.

In our research, we focused on patients with 30–70% carotid
artery stenosis. First, according to the Chinese Guidelines for
Carotid Endarterectomy, patients with carotid stenosis ≥70%
of ASP and SP should prioritize carotid endarterectomy. At the
same time, patients with carotid stenosis <70% of ASP who
underwent CEA showed no significant difference compared to
the patients with carotid stenosis <70% of ASP who did not
undergo CEA (45, 46). Third, research increasingly shows that
patients with 70–99% stenosis had a significantly greater 5-year
ipsilateral stroke risk than those under <70% stenosis. Research
showed that the risk of stroke was consistently 2–3 times higher
distal to 70–99% stenosis than to 50–69% stenosis. Compared

with 70–99% stenosis, 50–69% stenosis is not a high risk and
major factor for SP (10). Lastly, our research focused on 30–70%
stenosis in patients of ASP and SP who may consider CEA or
carotid artery stenting (CAS). For≥70% carotid stenosis, stenosis
is the major factor for SP but not <70%. Hence, we attempted to
build a quantitative imaging biomarker to identify ASP and SP
under 70% carotid stenosis.

We built a radiomics signature based on three signal sequence
(T1WI, T2WI, PDWI); our results showed that the diagnostic
performance showed no difference among the different
sequences (Supplementary Material 1). We have used a single
T2WI_radscore to combine the clinical variable construct model.
Lambin reported the importance of using standardized imaging
protocols to eliminate unnecessary confounding variability
(15). Multiple sequences of MRI would improve the difficulty
of normalizing imaging protocols; thus, we tried to build a
Radscore-based single sequence.

Artificial intelligence (AI) and machine learning (ML)-based
radiomic analysis is the current trend for precision medicine.
Deep learning (DL) and ML-based medical images could be
used to build a risk model, diagnose molecular disease subtypes,
and predict the response to treatment and the survival year.
DL included three steps for prediction: imaging, deep feature
extraction, and building model. ML included seven steps for
prediction: imaging, image preprocessing, ROI segmentation,
hand-crafted feature extraction, feature normalization, feature
selection, and building model. DL and ML both have advantages
and disadvantages in a clinical decision. At first, ML would be
considered as follows: (1) small sample size without hundreds
or even thousands, (2) multiple clinical data, and (3) the
purpose of prediction is a continuous variable. During the study
of ML, image preprocessing, feature robustness, and external
validation schemes should be provided to avoid overfitting.
In our study, the sample size was small; thus, we chose ML
to differentiate the high SPs. However, compared with ML,
DL without hand-crafted ROI segementation could improve
the robustness of the model. DL has a higher generalizability

Frontiers in Neurology | www.frontiersin.org 9 March 2022 | Volume 13 | Article 788652

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Radiomics Analysis for Carotid Plaque

FIGURE 5 | Barchart of the Rad_clin model in the training group and the test group. Yellow means symptomatic plaque (SP) and purple means asymptomatic plaque

(ASP). When purple appears in the yellow area, this means the SP patients had been incorrectly predicted as ASP. When yellow appears in the purple area, this means

the SP patients had been incorrectly predicted as ASP. (A) was the training group, (B) was the test group.

than ML. The model architecture of DL could be modified
such that ML must maintain the same method to provide
the feature robustness even under unsupervised training (47).
In our study, we chose a single sequence for ML. However,

multimodality-based images showed more medical information
for clinical decision-making. An example is the difference
in diagnostic performance among CT, US, and MRI or the
method of optimally combining multiple images to build the
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FIGURE 6 | Diagnostic performance evaluation in the training group and test group. Calibration curves of the nomogram in the training (A) and the test groups (B).

Calibration curves showed the calibration of the nomogram in terms of agreement between the predicted risk of vulnerable plaque and high-resolution magnetic

resonance imaging (HRMRI)-observed vulnerable plaque. (C) Nomogram based on Rad_clin_model. (D) Decision curves for Radscore, clinical model, and

Rad_clin_model; the Y-axis shows the model benefit. The red line represents the Rad_clin_model. The blue line represents the clinical model, and the green line

represents the Radscore. The X-axis means the threshold probability. ROC, receiver operating characteristic; AUC, area under the curve.

best prediction model. DL would be the method considered
without pre-processing. Until now, DL architecture exists to aid
in clinical decision.

Insufficient data limit the development of DL (48). LASSO
can be used because of overfitting and bias. LASSO is suitable
for regression of high-dimensional data. The characteristics
of LASSO regression are variable selection and regularization,
while fitting a generalized linear model. Therefore, irrespective
of whether the target-dependent variable (dependent/response
variable) is continuous, binary, or multiple discrete, LASSO
regression modeling can be utilized for identification. In this
study, stepwise variable selection was used to identify an
optimal matrix. Complexity adjustment refers to controlling the
complexity of the model through a series of parameters to avoid
overfitting. For linear models, complexity is directly related to

the number of variables in the model. The more variables, the
higher is themodel complexity. A large number of variables could
provide an improved model when fitting, but also poses the risk
of overfitting. Typically, when the number of variables is greater
than the number of data points or a discrete variable has too
many unique values, it is possible to overfit. The degree of LASSO
regression complexity adjustment was controlled by parameter λ.
The larger the λ, the greater the penalty for the linear model with
more variables. Finally, a model with fewer variables is obtained.

This study had several limitations. First, the sample size was
small, especially without an external validation group because
of the complexity of the parameters in MR imaging that the
images improve the difficulty. Second, an increasing number
of studies focus on auto segmentation, while we used manual
segmentation for extraction of features. Third, there were no
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external validation groups to provide the generalizability for our
model; hence, a large number of sample and multi-center data
should be incorporated in future studies. We did not conduct
the multiple sequence radiomics analysis to avoid waste of
medical resources.

In conclusion, we built a novel model combining radiomics
features and clinical risk factors for the identification of
symptomatic carotid atherosclerotic plaques. The diagnostic
performance of the radiomics model was not significantly
different from that of the clinical model. Interestingly, we found
that the combined model (Radscore and clinical risk factor) can
significantly improve diagnostic performance.
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