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Abstract: The energy conversion performance of the triboelectric nanogenerator (TENG) is a function
of triboelectric charges which depend on the intrinsic properties of materials to hold charges or the
dielectric properties of triboelectric materials. In this work, Ag nanoparticles were synthesized and
used to incorporate into natural rubber (NR) in order to enhance the dielectric constant for enhancing
the electrical output of TENG. It was found that the size of Ag nanoparticles was reduced with the
increasing CTAB concentration. Furthermore, the CTAB surfactant helped the dispersion of metallic
Ag nanoparticles in the NR-insulating matrix, which promoted interfacial polarization that affected
the dielectric properties of the NR composite. Ag nanoparticle-incorporated NR films exhibited an
improved dielectric constant of up to almost 40% and an enhanced TENG performance that generated
the highest power density of 262.4 mW/m2.

Keywords: natural rubber; Ag nanoparticles; dielectric constant; energy harvesting

1. Introduction

Mechanical energy is among the most abundant forms of energy in our living en-
vironment. Mechanical energy exists in many forms, including all kinds of movement
and vibration. Scavenging these ubiquitous energy forms is a crucial challenge for the
development of green and sustainable renewable energy sources. A triboelectric nano-
generator (TENG) has been developed to harvest mechanical energy into electricity with
the combination effect of contact electrification and electrostatic induction [1,2]. TENG is
gaining attention due to its high energy conversion efficiency with the highest reported
power density of 500 W/m2 [3], simple fabrication with a diverse material choice, many
operation modes that can harvest mechanical energy in various forms and low production
cost [2,4].

Polymeric materials are typically employed to fabricate TENGs, such as polytetraflu-
oroethylene (PTFE) [5,6], polydimethylsiloxane (PDMS) [7,8], polyvinylidene fluoride
(PVDF) [9], polymethyl methacrylate (PMMA) [10] and polyimide (Kapton) [11]. Natu-
ral rubber (NR) or polyisoprene is among the raw materials used for manufacturing a
wide variety of industrial products [12,13]. Most NR products involve direct contact with
mechanical energy sources, and NR is among the triboelectric materials located in the
triboelectric series with slightly negative polarity [14]. Therefore, the modification of NR
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for TENG application would be important to enhance the energy conversion performance
of the TENG.

The energy conversion performance of TENG is a function of triboelectric charges
which depend on the surface area and intrinsic properties of materials to hold charges
or the dielectric properties of triboelectric materials [15,16]. The dielectric properties of
triboelectric layers have been reported to significantly influence TENG performance [15–21].
The use of conductive fillers is an effective strategy to enhance the dielectric properties of
polymer composite materials. Dispersing conductive fillers in an insulating polymer layer
gives rise to the formation of micro-capacitors or the accumulation of charge in the local
environment, which can enhance the dielectric properties of the composite by an interfacial
polarization mechanism [22]. These conductive fillers include carbon nanotubes [23],
Au [24], Ag [25], Al [26] and Ni nanoparticles [27]. The Ag nanoparticle (AgNP) is among
the conductive fillers that are widely used for enhancing dielectric constant in polymer
composites owing to many interesting properties, including good electrical conductivity,
ease of fabrication and cost effectiveness [28–31]. Although there were many studies on
the incorporation of AgNPs into NR, most of them were for biomedical and antibacterial
applications [32–36]. The potential applications of pressure sensors in sportswear and
wearable electronic were also proposed [37]. However, the use of the NR-Ag composite in
TENG application for mechanical energy harvesting has not been reported to date.

In this work, AgNP-incorporated NR films were synthesized and used to fabricate
triboelectric nanogenerators for the first time. NR films were filled with AgNPs in order to
improve the energy conversion of NR-based TENG. AgNP-filled NR films exhibited an
enhanced dielectric constant, which resulted in increased triboelectric charges and hence
TENG electrical outputs. According to the enhancement of dielectric properties by the
interfacial polarization mechanism, highly dispersed metal/semiconductor nanoparticles
in the insulator matrix are required. AgNPs were synthesized by a chemical reduction
method of AgNO3 using NaBH4 as a reducing agent and cetyltrimethylammonium bromide
(CTAB) as a surfactant. The effects of surfactant concentration on the morphology of
synthesized particles and dielectric properties of the NR composite films and TENG
electrical output were investigated.

2. Results and Discussion
2.1. Ag Nanoparticles

The aqueous solutions of AgNPs prepared at different conditions, including AgNPs
without CTAB (without the use of surfactant), AgNPs (1.0 mM CTAB) and AgNPs (1.5 mM
CTAB), exhibited various yellowish color shades, as presented in Figure 1a. UV–Vis
absorption spectra of all the synthesized AgNPs are shown in Figure 1b. The UV–vis
absorption wavelength of synthesized AgNPs without CTAB and AgNPs (1.0 mM CTAB)
were in a similar range, but that of AgNPs (1.5 mM CTAB) exhibited a redshift toward a
higher wavelength, suggesting a larger particle size.

TEM images of the AgNPs (1.0 mM CTAB) and AgNPs (1.5 mM CTAB) are presented
in Figure 2a,b, respectively, and their particle size distribution is displayed in Figure 2c,d,
respectively. It was found that particle size analysis from the TEM images showed an
inconsistency with the UV–vis absorption result in that the average particle size of the
AgNPs (1.5 mM CTAB) was 5 nm, which was smaller than that of the AgNPs (1.0 mM
CTAB), which was 9 nm. This can be ascribed to the increasing surfactant concentration
causing the reduction in surface tension and stabilizing newly developed surfaces during
homogenization and produce smaller particles [38,39]. This also resulted in the formation
of a smaller number of particles (lower AgNP concentration), which can be observed from
the lighter solution color at high CTAB concentration (Figure 1a). Therefore, the redshift
observed in the UV–vis spectrum of the AgNPs (1.5 mM CTAB) could be attributed to the
size of CTAB clusters, as observed in the TEM image in Figure 2b. The effect of particle
size on the dielectric properties and TENG performance is discussed in Section 2.4.
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Figure 1. (a) Digital photographs of the solutions of Ag nanoparticles synthesized without the use of CTAB, with 1.0 mM
CTAB and 1.5 mM CTAB. (b) UV–vis spectra of the AgNPs (1.0 mM CTAB), AgNPs (1.5 mM CTAB) and AgNPs with-
out CTAB.
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Figure 2. TEM image of (a) AgNPs (1.0 mM CTAB) and (b) AgNPs (1.5 mM CTAB). (c) and (d) are their particle size
distribution analysis, respectively.

2.2. NR-Ag Nanoparticle Composited Films

All of these synthesized AgNPs were incorporated into NR latex samples, which
were then coated on conductive ITO glass substrates (Figure 3) and subsequently used to
assemble a TENG for electrical measurements.
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NR@AgNP (1.5 mM CTAB) films cast onto ITO glass substrates as triboelectric electrodes.

The chemical structures of NR@AgNP composite films were investigated by a Fourier
transform infrared spectroscopy (FTIR) analysis, as presented in Figure 4. FTIR spectra
of the NR@AgNPs (no CTAB) and NR@AgNPs (CTAB) were compared to those of NR,
CTAB and the synthesized AgNPs (with and without the use of CTAB). It was found that
both FTIR spectra of NR@AgNPs (no CTAB) and NR@AgNPs (CTAB) were similar to that
of pristine NR, which agreed well with the characteristic FTIR spectrum reported in the
literature [40,41] corresponding to that of the cis-isoprene structure with the C–H stretching
at 2960 cm−1, the symmetric and asymmetric stretching of the CH3 group at 2920 and
2855 cm−1 and the symmetric and asymmetric bending of the same group in the region of
1447 and 1376 cm−1. The bands at 3300–3400 cm−1 should be related to the N–H stretching,
since the NRL was conserved in ammonia.
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Figure 4. FTIR spectra of NR@AgNPs (CTAB) compared to NR@AgNPs (no CTAB), NR, pure CTAB and AgNPs and the
inset presenting the presence of CTAB in the AgNPs (CTAB) but not in AgNPs (no CTAB).

This indicated that AgNPs did not form bonding to NR, and hence, no change in
the chemical structures of NR occurred. The AgNPs synthesized with and without CTAB
showed almost identical FTIR spectra. The wide band at 3300–3400 cm−1 was caused by
the stretching vibration of hydroxyl (O–H) groups; the 1637 cm−1 corresponds to the C=O
stretching mode [42], and this result was consistent with other previous reports [43]. The
difference was that the weak absorption bands at 2850 and 2920 cm−1 of C–H stretching
from CTAB were observed in AgNPs (CTAB) but not in AgNPs (no CTAB), as revealed in
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the inset in Figure 4. However, the absorption characteristics of AgNPs were not detected
in the NR@AgNPs (CTAB) due to the small volume fraction of AgNPs incorporated into
NR (10%vol) (see Section 3.2).

2.3. TENG Electrical Outputs

The TENG device configuration and its working mechanism under a single electrode
mode are illustrated in schematic diagram in Figure 5. A Teflon sheet, which is the most
negative triboelectric polarity, was employed as a contact triboelectric material. When
the surfaces of the NR@AgNP composite film and Teflon are in contact, triboelectric
charges with different signs are formed on the two surfaces upon electrification. When
the two surfaces are separated, the potential decreases across the two surfaces, which can
cause the free electrons to flow from ground to conductive electric to balance the created
potential producing positive current signal. When the surfaces are brought into contact
again, the potential reduces, and electrons flow back to the ground, generating a negative
current signal.
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Figure 5. Schematic diagram of the fabricated TENG with working mechanism under a single
electrode mode.

The electrical voltage and current of NR, NR@AgNP (without CTAB), NR@CTAB
(no Ag), NR@AgNP (1.0 mM CTAB) and NR@AgNP (1.5 mM CTAB) TENGs, measured
under a single electrode mode at mechanical agitation frequency of 5 Hz, are presented in
Figure 6a,b, respectively, and their values are listed in Table 1. It was found that adding
Ag nanoparticles in the NR film improved the output voltage and current of the TENG.
The NR@AgNP (1.5 mM CTAB) TENG generated the highest output voltage and current
of 90.4 V and 9 µA, which were higher than NR@AgNPs (1.0 mM CTAB), NR@AgNPs
(without CTAB), and two times larger than the pristine NR TENG. On the other hand, the
outputs of the NR and NR@AgNP (without CTAB) TENGs were not different, suggesting
that the CTAB surfactant influenced TENG performance. However, the presence of CTAB
alone did not give rise to an improvement in TENG performance, as seen in the NR@CTAB
(without Ag) TENG.

2.4. Dielectric Constant of the NR@AgNP Composite Materials

Dielectric properties of NR, NR@CTAB and all the NR@AgNP composite films were
investigated, and their dielectric constants (Er) at various frequency range are presented
in Figure 7. It was found that adding AgNPs prepared with CTAB surfactant improved
the dielectric properties of the NR composite. The dielectric constant of all the samples
at 1 kHz is listed in Table 1. The NR@AgNPs (1.5 mM CTAB) had the highest dielectric
constant, which was higher than those of the NR@AgNPs (1.0 mM CTAB), NR@CTAB,
NR@AgNPs and pristine NR films, respectively. The higher dielectric constant of the
NR@AgNPs (1.5 mM CTAB) compared to the NR@AgNPs (1.0 mM CTAB) was attributed
to the smaller Ag particle size, which provided increased interfacial area and shorter
interparticle distance [44].



Molecules 2021, 26, 2720 6 of 12

Molecules 2021, 26, x 6 of 12 
 

 

NR@AgNP (1.5 mM CTAB) TENG generated the highest output voltage and current of 
90.4 V and 9 µA, which were higher than NR@AgNPs (1.0 mM CTAB), NR@AgNPs (with-
out CTAB), and two times larger than the pristine NR TENG. On the other hand, the out-
puts of the NR and NR@AgNP (without CTAB) TENGs were not different, suggesting 
that the CTAB surfactant influenced TENG performance. However, the presence of CTAB 
alone did not give rise to an improvement in TENG performance, as seen in the NR@CTAB 
(without Ag) TENG. 

(a) (b) 

Figure 6. Electrical outputs: (a) voltage and (b) current of NR, NR@AgNP (without CTAB), NR@CTAB (no Ag), NR@AgNP 
(1.0 mM CTAB) and NR@AgNP (1.5 mM CTAB) TENGs. 

Table 1. Electrical output voltage and current of NR, NR@AgNP (without CTAB), NR@AgNP (1.0 
mM CTAB) and NR@AgNP (1.5 mM CTAB) TENGs and their dielectric constants (ɛr) at 1 kHz. 

Samples 
TENG Output Dielectric  

Constant (ɛr) Voltage (V) Current (µA) 
NR 63.2 5.6 6.2 

NR@AgNPs 63.2 5.5 6.3 
NR@CTAB 64.0 5.9 6.4 

NR@AgNPs (1.0 mM CTAB) 80.8 7.6 7.3 
NR@AgNPs (1.5 mM CTAB) 90.4 9.1 8.6 

2.4. Dielectric Constant of the NR@AgNP Composite Materials 
Dielectric properties of NR, NR@CTAB and all the NR@AgNP composite films were 

investigated, and their dielectric constants (ɛr) at various frequency range are presented 
in Figure 7. It was found that adding AgNPs prepared with CTAB surfactant improved 
the dielectric properties of the NR composite. The dielectric constant of all the samples at 
1 kHz is listed in Table 1. The NR@AgNPs (1.5 mM CTAB) had the highest dielectric con-
stant, which was higher than those of the NR@AgNPs (1.0 mM CTAB), NR@CTAB, 
NR@AgNPs and pristine NR films, respectively. The higher dielectric constant of the 
NR@AgNPs (1.5 mM CTAB) compared to the NR@AgNPs (1.0 mM CTAB) was attributed 
to the smaller Ag particle size, which provided increased interfacial area and shorter in-
terparticle distance [44]. 

According to the result above, the NR@AgNPs (1.5 mM CTAB) exhibited an im-
proved dielectric constant and enhanced electrical output. However, the AgNPs without 
the use of CTAB did not show an improvement in dielectric the properties of the NR com-
posite. This can be described by the fact that the NR molecule is nonpolar, with naturally 

Figure 6. Electrical outputs: (a) voltage and (b) current of NR, NR@AgNP (without CTAB), NR@CTAB (no Ag), NR@AgNP
(1.0 mM CTAB) and NR@AgNP (1.5 mM CTAB) TENGs.

Table 1. Electrical output voltage and current of NR, NR@AgNP (without CTAB), NR@AgNP (1.0 mM
CTAB) and NR@AgNP (1.5 mM CTAB) TENGs and their dielectric constants (Er) at 1 kHz.

Samples
TENG Output Dielectric

Constant (Er)Voltage (V) Current (µA)

NR 63.2 5.6 6.2
NR@AgNPs 63.2 5.5 6.3
NR@CTAB 64.0 5.9 6.4

NR@AgNPs (1.0 mM CTAB) 80.8 7.6 7.3
NR@AgNPs (1.5 mM CTAB) 90.4 9.1 8.6
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Figure 7. (a) Dielectric constant at various frequency ranges measured at room temperature and (b) the plot of TENG output
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CTAB) materials.

According to the result above, the NR@AgNPs (1.5 mM CTAB) exhibited an improved
dielectric constant and enhanced electrical output. However, the AgNPs without the use
of CTAB did not show an improvement in dielectric the properties of the NR composite.
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This can be described by the fact that the NR molecule is nonpolar, with naturally negative
surface charges due to nonrubber components, as well as the bare AgNPs that have negative
surface charges. Moreover, AgNPs synthesized without surfactant generally experience
the agglomeration of particles. Thus, the interfacial polarization mechanism in this case
was relatively low. CTAB is a cationic surfactant with a positively charged hydrophilic
head. CTAB could then act as a filler material in NR that generated polarization, giving
rise to the increased dielectric constant in the NR@CTAB. However, CTAB molecules are
large compared to Ag nanoparticles. The dielectric constant of NR@CTAB was then slightly
higher than that of NR and NR@AgNPs, but lower than that of the NR@AgNPs (CTAB).
This suggested that the surfactant plays an important role for dispersing Ag nanoparticles
in the NR matrix, which consequently allowed interfacial polarization contributing to
the increased dielectric constants in the NR@AgNPs (1.0 mM CTAB) and NR@AgNPs
(1.5 mM CTAB).

It was found that the TENG electrical output is a function of the dielectric constant, as
illustrated by the plot of TENG output voltage and dielectric constant of all the fabricated
samples in Figure 7b. The maximum output voltage of TENG under the open circuit
condition (Voc) is a function of triboelectric charge density (σ), as given by the expression
in Equation (1) below [15].

Voc =
σx(t)

ε0
(1)

where x (t) is the distance between the two surfaces of triboelectric material, and Eo is
vacuum permittivity. Apart from the two types of triboelectric materials and contact area
that contribute to the triboelectric charge formation, the dielectric property is another
crucial parameter affecting the output performance of TENG, since it indicates the charge
holding ability of materials which can effectively intensify triboelectric charges.

2.5. Optimum Working Condition

The dependence of electrical output on the working frequency of the fabricated TENG
was also studied by measuring the electrical outputs of the NR@AgNP (1.5 mM CTAB)
TENG at a frequency ranging from 2 to 9 Hz, which are presented in Figure 8. It was found
that the output voltage and current increased with increasing frequencies and reached the
maximum of 140 V and 13.5 µA at 9 Hz, respectively. The increased electrical outputs of
the TENG at high frequencies were attributed to the charge accumulation due to very short
contact cycles.
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Figure 8. (a) Voltage and (b) current outputs of the NR@AgNPs (1.5 mM CTAB) TENG at various operation frequencies
ranging from 2 to 9 Hz.

The delivered power density of the TENG was investigated by connecting to various
load resistances ranging from 1 to 100 MΩ. The dependence of output voltage and current of
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the NR@AgNP (1.5 mM CTAB) TENG on external load resistances and the corresponding
power density is presented in Figure 9a,b, respectively. The highest delivered power density
of 262.4 mW/m2 was achieved at a matched load resistance of 10 MΩ, as shown in Figure 9b.
The power density was found to decrease with increasing load resistances.
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Figure 9. (a)Voltage and current outputs of the NR@AgNP (1.5 mM CTAB) TENG when connected to various external load
resistances from 1 to 100 MΩ. (b) The corresponding power densities derived from (a).

This delivered electrical power was sufficient to charge 1, 10, 22 and 47 µF capacitors,
as presented in the charging profile in Figure 10a. The fabricated TENG can charge a 1 µF
capacitor to 3.5 V in 60 s and a 47 µF capacitor to 1.5 V in 360 s. Moreover, the generated
electricity was demonstrated to light up 83 green LEDs connected in series (Figure 10b).
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Figure 10. (a) Voltage profile of the NR@AgNP (1.5 mM CTAB) TENG to charge 1, 10, 22 and 47 µF; (b) the demonstration
of lighting up 83 green LEDs connected in series by generated electrical power from the fabricated TENG.

The fabricated NR@AgNP TENG shows the energy production performance approach-
ing the propeller PTFE-based TENG with a power density of 283.95 mW/m2 [45]; a higher
than a triple cantilever-based triboelectric nanogenerator made from PDMS and ZnO tri-
boelectric layers with a power density of 252.3 mW/m2 [46]; and the flexible triboelectric
generators based on patterned conductive textile and PDMS layers with a power density
of 181.9 mW/m2 [47].
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3. Materials and Methods
3.1. Synthesis of Ag Nanoparticles

Silver nitrate (AgNO3, RCI Labscan, 99.8% purity) was used as the starting material
for the preparation of AgNPs. The AgNPs were prepared by a chemical reduction method
based on the method proposed in references [48,49]. Sodium borohydride (NaBH4, Qrec,
96%) was used as a reducing agent and CTAB (Ajax Finechem, 98%) as a surfactant. All
the solutions were prepared in deionized (DI) water. An amount of 60 mL of 1.0 mM
NaBH4 was prepared and kept in an ice bath. The 60 mL of 1 mM AgNO3 was added to
50 mL of CTAB solutions at 1.0 and 1.5 mM. Then, AgNO3 solution was added dropwise
to NaBH4 solution. The reaction mixture was stirred vigorously on a magnetic stirrer for
40 min until the color of the solution changed to yellow. The excess CTAB was removed by
centrifugation and supernatant removal. The AgNPs prepared with 1.0 and 1.5 mM CTAB
are called AgNPs (1.0 mM CTAB) and AgNPs (1.5 mM CTAB), respectively.

3.2. Preparation of NR-AgNP Composite Films

The commercial high-ammonia natural rubber latex (NRL) with dry rubber content
of 61% used in this work was purchased from the Thai Rubber Latex Group Public Co.,
Ltd., Thailand. The NRL was stirred for 2 h to partially remove ammonia. Then, the NRL
was mixed with the AgNP solution at NRL/AgNP ratios of 1 mL:100 µL. The mixtures
were stirred for 10 min to obtain a homogeneous mixed solution. The mixed NRL/AgNP
solution was immediately casted on a 4 × 4 cm2 ITO glass substrate. The thicknesses of
the films were controlled by fixing an NRL/AgNP suspension at 2 mL per sample. Three
samples were prepared for each experimental condition. Then, the samples were allowed
to naturally dry at room temperature for 4 days. Finally, the dried films were further heated
at 80 ◦C for 2 h.

3.3. Material Characterization

The synthesized Ag particles were analyzed by a UV–Vis spectrometer (UV-1800,
Shimadzu) at a range of visible lights of 300–700 nm and a transmission electron microscope
(TEM; TECNAI, G220) to study particle morphologies and their size distributions. Dielectric
properties were probed using a Keysight E4990A impedance analyzer in a frequency range
from 103 to 108 Hz at room temperature. Chemical functional group analysis was performed
on the 1 × 1 cm2 NR composite films using an FTIR spectroscope (TENSOR27).

3.4. TENG Electrical Output Measurement

A single electrode vertical contact-separation configuration was used for the perfor-
mance testing of TENGs. The set-up TENG device consisted of the NR composite as a
bottom triboelectric electrode and PTFE as a top triboelectric electrode. The voltage and
current outputs were monitored using an oscilloscope (Tektronix DPO2002B) and a digital
ammeter (Kiethley DMM6500), respectively.

4. Conclusions

The NR-Ag nanoparticle composites were fabricated and used to fabricate TENGs to
harvest mechanical energy. The addition of Ag nanoparticles, which were synthesized by a
chemical reduction method with the use of CTAB surfactant, was found to improve the
dielectric constant of NR materials. It was found that the AgNP size reduced at increasing
CTAB concentration. AgNPs synthesized at CTAB 1.5 mM CTAB were well dispersed with
a smaller particle size that that of the 1.0 mM CTAB. NR@AgNP (1.5 mM CTAB) TENG
exhibited the highest dielectric constant due to the enhanced interfacial polarization of the
incorporation of well-dispersed AgNPs in NR resulting in the enhancement of the electrical
output of the fabricated TENG that generated the highest electrical output with the highest
power density of 262.4 mW/m2.
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