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into successful therapeutic approaches for the human dis-
ease. Here, we critically review the most intensely studied 
mechanisms of spine loss in Alzheimer’s disease as well as 
the possible pitfalls inherent in the animal models of such a 
complex neurodegenerative disorder.

Neuropathology of Alzheimer’s disease

In 1906, Alois Alzheimer examined the brain of a 54-year-
old woman, who had died after a three-year course of 
severe cognitive impairment and memory loss. He noticed 
distinct histological alterations in the cortex, such as fibril-
lary tangles inside neurons and extracellular deposits of a 
substance unknown to him, which has later been identi-
fied as amyloid beta [4]. Quantification of these neuro-
pathological alterations during autopsy is used today to 
assess whether an individual suffered from the disease 
now bearing Alzheimer’s name and how far the disease has 
progressed [26, 196]. These alterations are thought to be 
caused by an imbalance of amyloid beta production and its 
removal from the brain, causing the aggregation of charac-
teristic fibrillar amyloid deposits. In turn, amyloid toxicity, 
which may be mediated by oligomeric intermediates and/
or fibrillar amyloid beta, is thought to cause tau hyper-
phosphorylation and inflammatory changes as endogenous 
reactions to the presence of noxic stimuli. This pathogenic 
mechanism, which is essentially covered by the amyloid 
cascade hypothesis [80], is founded on numerous animal 
models which are genetically engineered to develop amy-
loid plaques. These animal models recapitulate some but 
not all the typical histologic alterations such as amyloido-
sis, synapse and neuron loss, tau hyperphosphorylation and 
inflammation. Another line of evidence is that humans with 
Down syndrome develop similar pathological changes as a 

Abstract  Synaptic failure is an immediate cause of cog-
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take place and the loss of dendritic spines directly corre-
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dendritic spine dysfunction and loss in Alzheimer’s disease. 
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the intracellular accumulation of amyloid beta have been 
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result of the triplication of chromosome 21, on which the 
amyloid precursor protein (APP) is encoded [212]. Also, 
familial forms of Alzheimer’s disease are caused by muta-
tions either in APP or in one of the two presenilin genes, 
which code for the enzymes processing APP to beta amy-
loid, ultimately leading to an overproduction of beta amy-
loid [175]. Lastly, one of the main risk factors of sporadic 
Alzheimer’s is homozygosity for the ε4 variant of the apoli-
poprotein E gene (ApoE4) [14], which causes reduced 
amyloid beta clearance [34]. While the amyloid cascade 
hypothesis is not without controversy [33], there is ample 
evidence that amyloid beta and hyperphosphorylated tau 
protein as well as the resultant inflammation may damage 
synaptic function.

Dendritic spines

Dendritic spine structure

Dendritic spines are the morphologic correlates of excita-
tory postsynapses. Morphologically, spines are special-
ized protrusions from a dendrite’s shaft, where neurons 
form synapses to receive and integrate information [69]. 
Typically, three different spine shapes are distinguished: 
Mushroom spines, which have a large head and a thin neck; 
stubby spines which have a large head but no discernible 
neck; and thin spines, which are slender, filopodia-like pro-
trusions without a discernible head. A number of special-
ized synaptic proteins, including scaffolding proteins and 
ion channels, are clustered [136, 176] at dendritic spines. 
Spine size and morphology may reflect anatomical circum-
stances. For instance, longer spines may be observed in 
brain regions where target axons are located farther away 
from dendrites, such as in the reticular nucleus of the thala-
mus and in the gelatinous substance of the spinal cord dor-
sal horn [66]. Most importantly, however, dynamic altera-
tions in spine morphology affect functional characteristics. 
For instance, increase in spine head size helps accommo-
date higher receptor numbers, while shortening and widen-
ing of spine necks decrease the electrical resistance of the 
spine neck, thereby leading to larger excitatory postsynap-
tic potentials [220].

Role of dendritic spines in synaptic plasticity

Synaptic plasticity is in part mediated by altering the 
number of synaptic AMPA receptors through fast traffick-
ing mechanisms [121]. However, these functional altera-
tions are accompanied by morphological adaptations of 
dendritic spines, such as changes both in the number 
and shape of spines, which are termed structural plastic-
ity [69] and are the focus of this review (Fig.  1). Such 

alterations have been observed to occur within minutes 
[108], yet they may also endure over longer time spans 
[218]. For instance, learning of motor tasks is associated 
with an increased spine formation [217] and a fraction 
of these newly formed spines may persist permanently 
[218]. Conversely, keeping animals in an enriched envi-
ronment, which broadly stimulates motor, sensory and 
cognitive systems, increases the turnover, i.e., both the 
formation as well as the elimination of dendritic spines 
and this turnover. The net effect of these changes is an 
increased density of spines [93]. A key mediator for this 
effect is brain-derived neurotrophic factor (BDNF) [64], 
which acts via two receptors, NTRK2 (also known as 
TRKB) and NGFR (also known as p75NGF). A central 
regulator for structural plasticity is the enzyme glycogen 
synthase kinase 3β (GSK3β), which is a target of many 
psychotropic drugs [8]: Long-term potentiation, which 
is a functional correlate of synaptic plasticity, leads to 
inhibition of GSK3β [56, 146], which in turn increases 
structural plasticity by destabilization and increased 
turnover of dendritic spines [140]. Furthermore, a host of 
cytoskeletal proteins [178], as well as local protein trans-
lation [197], is required for the proper maintenance and 
turnover of dendritic spines.

Dendritic spine pathology

Disturbance of the physiologic spine homeostasis under-
lies a number of neuropsychiatric disorders [147]. The 
most prominent example is loss of dendritic spines, which 
is encountered in most neurodegenerative disorders. Patho-
logical spine loss can be caused by altering presynaptic 
input due to neuron-autonomous or extra-neuronal factors 
(Fig. 2). Synaptic factors for pathological spine loss may be 
deafferentation, which leads to a loss of complete dendrites 
[47, 90, 124], or sensory deprivation, which causes more 
complex changes: a retinal lesion, for instance, causes a 
complete replacement of spines in the deafferented cortex 
[95]. Pathological activation of NMDA receptors during 
excitotoxicity [78, 82] or disruption of dendritic transport 
both lead to spine loss and can be considered neuron-auton-
omous causes. Similarly, disruption of local protein synthe-
sis at the spine may alter spine densities and morphology 
[199]. Examples for extraneuronally caused spine loss are 
trauma or inflammation, which in turn act through multi-
ple mechanisms. Trauma causes initial spine loss mediated 
by calcineurin, followed by an overgrowth of spines [31]. 
Inflammation causes secretion of interleukin 1β, which 
antagonizes the action of BDNF, thereby leading to spine 
loss [201]. Tumor necrosis factor α (TNFα) from activated 
microglia leads to phosphorylation and upregulation of 
AMPA receptors, which in turn causes excitotoxicity [65, 
109], thereby leading to spine loss [36]. Lastly, alterations 
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in the composition of the extracellular matrix are associ-
ated with synapse loss [132].

On the other hand, not only spine loss, but also an 
increased stability or density of spines may be conse-
quences of pathological mechanisms. Patients suffering 

from fragile X syndrome, which causes severe mental retar-
dation, have elevated spine numbers [87]. Similarly, some 
neuropsychiatric diseases are accompanied with elevated 
spine densities in specific brain regions [147]. Thus, high 
spine densities per se are not necessarily desirable, either.
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Fig. 1   Dendritic spines are remodeled in enriched environment. a 
Chronic in vivo imaging of the same apical dendrites from layer V 
pyramidal neurons in the somatosensory cortex over 43  days when 
GFP-M mice were housed in standard conditions (SC) or enriched 
environment (EE). Blue and green arrowheads point to preexisting 
spines which are shown in the first image and new-gained spines that 
emerged over two consecutive imaging sessions, respectively. Empty 
arrowheads indicate the lost preexisting spines (blue) and new-gained 
spines (green). The images show high-contrast representations of 
maximum-intensity projected multiphoton images. b Graphical rep-
resentations of the relative spine density. c, d The fate of preexisting 

spines in the first imaging time point and new-gained spines at the 
second imaging time point. e Apical dendrites (black) from layer V 
pyramidal neurons housed in SC or EE and 3D reconstructions (gray) 
generated in Imaris. The images show high-contrast representations 
of maximum-intensity projected confocal images. Mushroom, thin 
and stubby spines are colored in green, blue and red. f Plot of mush-
room, thin and stubby spine fractions when mice were exposed to SC 
or EE. g Cumulative distributions of spine length and head volume 
when mice were exposed to SC or EE. *p < 0.05, **p < 0.01 (Two-
way ANOVA in b–d, Student’s t test in f and Komogornov–Smirnov 
test in g)
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Fig. 2   Putative pathophysiological mechanisms for dendritic spine 
loss. 1 Fibrillar amyloid plaques cause spine loss in their immediate 
vicinity. 2 Spine loss at dystrophic dendrites. 3 Secondary spine loss 
due to presynaptic failure. 4 Amyloid oligomers engaging synaptic 
targets. 5 Amyloid uptake. 6 Axonal amyloid beta. 7 Hyperphospho-
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leading to release of inflammatory mediators. 11 Immune activation, 
reactive oxygen species and activation of pro-apoptotic pathways
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Evidence for synapse loss in Alzheimer’s disease

A landmark study in the 1990s analyzed biopsies from 
individuals with clinically manifest Alzheimer’s disease 
using electron microscopy and correlated synapse num-
bers with results from the Mini-Mental Status examina-
tion, which is a measure for cognitive function: Patients 
with Alzheimer’s disease showed a significant loss of syn-
apses compared with cognitively normal controls, and their 
cognitive capabilities correlated with synapse density [53, 
195]. Follow-up studies on post-mortem tissue were able 
to analyze brain regions which are not amenable to biopsy. 
These showed, for instance, that individuals with early 
forms of Alzheimer’s disease had significantly fewer syn-
apses in the inferior temporal gyrus, which plays an impor-
tant role in verbal fluency [171], in the CA1 region [169], 
in the dentate gyrus [170] and in the posterior cingulate 
gyrus, which is a cortical region affected early during the 
onset of Alzheimer’s disease [168]. Immunohistochemical 
analyses showed loss of the presynaptic marker synapto-
physin [123]. Moreover, a recent postmortem study using 
intracellular injections of Lucifer yellow in the brains of 5 
Alzheimer’s disease patients revealed that intraneuronal tau 
aggregates are associated with a progressive alteration of 
dendritic spines [127].

Further evidence for the loss of synaptic function 
comes from in vivo PET imaging studies. These use 
radionuclide-labeled agonists for specific neurotransmit-
ter receptors to measure the abundance of these receptors 
in various brain regions. One such study showed loss of 
α4β2 nicotinic acetylcholine receptors in the medial fron-
tal cortex and nucleus basalis magnocellularis, which 
suggests loss of cholinergic synapses. This loss of α4β2 
receptors correlated with increasing amyloid levels and 
with a loss of specific cognitive functions [141]. CB1 can-
nabinoid receptors, in contrast, were not altered [2] and 
5HT4 serotonin receptors were increased with increased 
amyloid deposition [96, 118]. 5HT1 serotonin recep-
tors were lost in late stages of Alzheimer’s disease [129]. 
These changes at the synaptic level have prominent effects 
on a more global scale, leading to paradoxical hyperexcit-
ability and disruption of large-scale networks [76, 182, 
183], which in turn are thought to be functional correlates 
of clinically apparent symptoms like impaired memory 
and cognition.

Pathogenesis of dendritic spine loss in Alzheimer’s 
disease

Accumulation of amyloid beta is thought to be the initial 
causative factor leading to progressive synaptic injury [80]. 
However, secondary neuropathological alterations such as 

tau hyperphosphorylation or inflammation and consecutive 
dendritic and axonal dysfunction may cause synaptic dam-
age on their own or exacerbate damage caused by amyloid 
beta.

Amyloid beta

Amyloid beta is one of a multitude of enzymatic cleavage 
products of APP [135] and its secretion into the extracel-
lular space is increased with neuronal activity [45, 94] 
through activation of extrasynaptic NMDA receptors [24]. 
To be more precise, however, amyloid beta does not refer 
to a singular chemical substance, but to several, depending 
on the exact cleavage sites and post-translational modifica-
tions including oxidation, phosphorylation, nitration, race-
mization, isomerization, pyroglutamylation, and glycosyla-
tion [103]. For instance, the 42 amino acid version (Aβ1–42) 
has a stronger propensity to aggregate than the 40 amino 
acid version (Aβ1–40). Modifications at the N-terminus fur-
ther alter the protein’s biophysical properties. Of particu-
lar interest, pyroglutamate amyloid beta (Aβp3–42), which 
has a cyclized glutamate residue at the N-terminus, has 
an even stronger propensity to aggregate [172] and seems 
to be specific for fibrillar plaques [54]. Amyloid beta can 
be detected in the extracellular as well as in the intracel-
lular compartment, in oligomeric as well as fibrillar states. 
All these forms have been implicated in synaptic damage, 
which will be discussed in the following subsections.

Amyloid beta plaques

Amyloid plaques are the characteristic extracellular depos-
its of amyloid beta. Histologically, plaques may either 
appear either as diffuse plaques, which do not contain 
fibrils, and are detectable only in immunohistochemi-
cal stains using antibodies directed against APP epitopes. 
Alternatively, they may appear as cored plaques, which are 
composed of a fibrillar core and may be surrounded by a 
diffuse, non-fibrillar halo. The fibrillar core is detectable 
in H&E sections and can be stained with dyes specific for 
fibrillar aggregates such as Congo red or thioflavin S. Radi-
olabeled derivatives of these dyes, such as Pittsburgh com-
pound B or florbetaben, are used as PET tracers to detect 
fibrillar amyloid beta in clinical settings, while fluores-
cent derivatives such as methoxy-X04 are used in animal 
studies for in vivo microscopy. As all of these compounds 
exclusively detect fibrillar protein aggregates, the majority 
of clinical and experimental in vivo studies have focused 
on fibrillar amyloid deposits. Indeed, there is ample evi-
dence that fibrillar amyloid beta causes synaptic damage. 
In human cases, fibrillar amyloid plaques are typically 
surrounded by dystrophic neurites, which give rise to the 
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so-called neuritic plaque appearance in silver stains or 
immunohistochemical stains against hyperphosphorylated 
tau protein using AT8 antibodies. In the human disease, 
dense neuritic AT8-staining also occurs distant to plaques 
in the form of neuropil threads, and the location and 
extent of this staining are the decisive measures to obtain 
the neuropathological staging according to the Braak and 
Braak criteria [26], which correlate best with the cogni-
tive status. Some, but not all, mouse models of amyloido-
sis exhibit similar neuritic plaques, which are, like in the 
human disease, detectable using AT8 antibody staining or 
silver impregnation [39, 43, 154, 157, 184]. In contrast to 
the human disease, however, neuritic pathology in mouse 
models of amyloidosis is always limited to the immediate 
vicinity of fibrillar plaques (Fig. 3), while neuropil threads 
distant to plaques have not been observed. This might 
explain why in several animal models of Alzheimer’s dis-
ease which overexpress mutant human APP and/or prese-
nilin alterations in spine density of layer 3 and 5 pyrami-
dal neurons are apparent only in close vicinity of plaques 
(Fig. 4) [17, 97, 99, 214]. We found that spine loss occurred 
with a delay of at least 4 weeks after plaques had formed in 
one APP/PS1 mouse model [17]. However, the mechanisms 
leading to spine loss may differ between mouse models 
even if they share similar transgenes [228]. Nevertheless, 
in some mouse models, spine loss apparently independ-
ent of plaques was observed [19, 104]. In the triple trans-
genic mouse model co-expressing mutant APP, PS1 and 
tau, which we had analyzed, this spine loss occurred only 
at dystrophic dendrites with intracellular accumulation of 

both soluble amyloid beta and hyperphosphorylated tau 
protein [19]. Since substantial axonal damage occurs at 
amyloid plaques, secondary spine loss as a consequence 
of presynaptic failure [1] in those regions where dam-
aged axons project to is very likely. Moreover, chronically 
altered synaptic input may affect the overall dendritic com-
plexity and length in aged APP/PS1 mice while the den-
dritic spine density remains unaltered [179]. Both scenarios 
would explain a slight decrease in overall synapse density 
in some mouse models of amyloidosis in the absence of a 
significant reduction of the spine density of layer 3 and 5 
neurons. Furthermore, functional alterations of neurons 
near plaques also point to a role of fibrillar amyloid beta 
in the damage of synaptic function, either direct or indirect 
[30]. Functional links between neuronal and synaptic dys-
function may be the disturbance of intracellular calcium 
dynamics [38, 100] or mitochondrial integrity [216]. Fur-
thermore, perisomatic GABAergic terminals are lost close 
to plaques [70], which may also contribute to hyperexcit-
ability and spine loss. 

Amyloid beta oligomers

Amyloid beta readily aggregates into soluble oligomers, 
which are still diffusible, in contrast to insoluble fibrils. 
As oligomers may exert effects distant to the place of their 
generation, they offer a convenient explanation for one 
of the major unsolved elements in the amyloid cascade 
hypothesis: the spatial separation of initial amyloid depo-
sition and tau pathology in the brain. In the early stages 
of Alzheimer’s disease, amyloid beta accumulates prefer-
entially in neocortical regions [196], while tau pathology 
typically starts in the brainstem and the transentorhinal 
region [26, 27]. Furthermore, the early stages of tau pathol-
ogy often occur in individuals who do not show extracel-
lular fibrillar amyloid deposits [27]. Similar to amyloid 
beta itself, amyloid oligomers are a highly heterogeneous 
group of chemicals, which are often classified according to 
their structural properties. The following variants are com-
monly distinguished [73, 77]: Protofibrils, which are beta-
sheet containing intermediates of synthetic amyloid beta 
fibrillization; Annular assemblies and globulomers, which 
are both synthetic products; Amyloid beta-derived diffus-
ible ligands, which are small, diffusible synthetic products; 
Aβ*56, which are endogenous products, found in APP 
transgenic mice and correspond to 12-mers; Secreted amy-
loid beta dimers and trimers, which are produced by cul-
tured cells and are resistant to proteolytic degradation. It is 
important to note, however, that this heterogeneity not only 
reflects biological variation, but also technical variation in 
the methods to produce synthetic oligomers or to isolate 
them from biological tissues [12].

Axon

Axon

0.5 µm

Fig. 3   Neuritic pathology in a mouse model of amyloidosis. Elec-
tron micrograph of neuropil in the vicinity of a fibrillar plaque (not 
shown) of an APPPS1 mouse. Dystrophic axons (labeled “Axon”) 
appear enlarged and filled with electron-dense membranous material. 
Several synaptic densities are marked with arrows. Note that most 
synapses originate from unaltered synaptic boutons, while only a sin-
gle synapse originates from the dystrophic axon (double arrow, far 
right), which may reflects spine loss as a result of presynaptic failure
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Nevertheless, there are several studies which point 
to functional relevance of oligomers in the human dis-
ease. For instance, in subjects with plaque pathology, 
the concentrations of amyloid oligomers were indica-
tive of whether the subject had suffered from dementia 
[63] and synapse loss correlated with oligomer levels 
[98]. Dimers, trimers and Aβ*56 have been found in 
human subjects, with different associations to aging and 
Alzheimer’s disease [111]. Among these, Aβ*56 levels 
seem to correlate with synapse loss and the presence of 
tau oligomers [35, 111]. One animal study showed that 
removal of oligomers by genetically switching off their 
production led to cognitive improvement [68]. In another 
study, we showed that immunotherapy directed against 
globulomers abolished synapse loss distant from plaques, 
while in proximity to plaques synapse loss was attenuated 

only by a small degree [59], suggesting that plaque-asso-
ciated pathology is not primarily mediated by oligomers. 
To assess the mechanism by which amyloid oligomers 
are synaptotoxic, oligomers are usually generated in vitro 
and then tested for their specific effects. However, a large 
variety of oligomers may be generated, depending on 
the exact experimental protocol used [89], and no single 
form of oligomers is accepted as the major contributor in 
Alzheimer’s disease [12]. Therefore, oligomers have been 
found to exert a wide variety of harmful effects on syn-
apses [11]. Indeed, amyloid oligomers have been shown 
to bind preferentially to synapses [223]. There, they 
interact with a wide range of synaptic targets, such as 
prion protein [205], EphB2, RAGE, α7 nicotinic acetyl-
choline receptors, glutamate transporters [105], the Wnt 
receptor frizzled [120], insulin receptors, presynaptic P/Q 
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channels, the neutrophin receptor p75 [150], mGluR5 
[155, 204], β2 Adrenergic receptors [210], or calcineurin 
[214]. They may disrupt the neuritic cytoskeleton [223] 
and exacerbate neuronal activity-dependent DNA dam-
age [165]. Finally, oligomers may also form ion-perme-
able pores in cell membranes [106], causing unregulated 
calcium entry and thereby leading to synaptic toxicity. It 
should be noted that most studies showing effects on the 
binding of synthetic amyloid oligomers to certain synap-
tic and extrasynaptic receptors lack control studies that 
guarantee specificity for the effects. Often equal con-
centrations’ monomers are used as controls, yet amyloid 
beta has a propensity to spontaneously aggregate to oli-
gomers under various conditions in vitro [16, 83, 209]. 
Also scrambled peptides are used as controls. These are 
inappropriate controls for the specificity of an oligomeric 
protein complex, as scrambled peptides may lose their 
propensity to aggregate. So other either naturally occur-
ring oligomeric proteins, such as tau, α-synuclein, gp120, 
PrP106–126 or synthetic oligomeric protein preparations 
[156], would be more appropriate to prove that the pro-
posed effects of amyloid beta oligomers are truly specific 
for amyloid beta oligomers rather than oligomeric aggre-
gates in general. Another commonly used control are 
fibrillar amyloid beta preparations which are observed to 
be less or not toxic to syanpses. The problem here is that 
the concentration of protein complexes injected into the 
brain is impossible to estimate [11, 12]. Thus, because of 
the complex biochemical behavior of amyloid oligomers, 
a single control peptide may not suffice to cover all pos-
sible unspecific effects. Furthermore, our in vivo studies 
show convincing evidence that fibrillar amyloid beta is 
highly toxic to synapses [17, 19, 59]. Amyloid deposi-
tion and evidence of fibrillar amyloid are time-dependent 
processes, not only in humans but also in animal models 
of Alzheimer’s disease. Although the exact age at which 
fibrillar deposits can be detected varies between models, 
most show an initial phase where no or only very few 
plaques are present. Several studies showed spine loss or 
synaptic dysfunction in these models before the appear-
ance of plaques, which was generally interpreted as 
effects being mediated by soluble amyloid beta [29, 32]. 
Similarly, mouse models with the Osaka mutation, which 
generates oligomeric, but not fibrillar amyloid, develop 
synapse loss [200]. Additionally, if crossed with human 
tau expressing mice, these mice also develop tau pathol-
ogy [206].

It is important to note, however, that the absence of 
plaques does not necessarily attribute causation to soluble 
amyloid beta, as intraneuronally accumulated amyloid beta 
or the genetic manipulations to obtain animal models may 
affect dendritic spines on their own (see below).

Intraneuronal amyloid beta

Intraneuronal accumulation of amyloid beta has been 
observed in Down syndrome as well as in the early stages 
of Alzheimer’s disease [74, 125, 133]. However, in older 
individuals with Down syndrome and in late stages of Alz-
heimer’s disease, when abundant plaques are present in the 
brain, intraneuronal accumulation of amyloid beta is less 
evident [74, 133], although still present [138, 192]. While 
most studies suggested that intraneuronal amyloid beta  is 
specific for disorders with extracellular amyloid deposi-
tion, one found intraneuronal amyloid  beta was  also in 
hippocampal neurons of control cases [20]. Conversely, a 
mouse model overexpressing APP with the Dutch mutation 
(E693Q) showed only intraneuronal amyloid accumula-
tion, but no extracellular deposits [102]. Curiously, humans 
with this mutation suffer mainly from cerebral hemorrhage 
[112]. In animal models of amyloidosis, intraneuronal accu-
mulation of amyloid beta increases with age [177, 192]. In 
one animal model, intraneuronal accumulation of APP was 
correlated with spine loss (Fig. 5) [228]. In another model, 
intraneuronal accumulation of oligomeric amyloid beta 
led to altered synapse structure in the hippocampus, while 
spine densities were not changed [151]. Furthermore, extra-
cellular amyloid was found to be taken up into neurons via 
receptor for advanced glycosylation end products (RAGE) 
[193] and hypercholesterinemia accelerated uptake, leading 
to reduced synaptophysin immunoreactivity, and abnor-
mal tau phosphorylation in the hippocampus [207]. The 
accumulation of amyloid in neurons also depended on the 
apolipoprotein E genotype, which is a known genetic risk 
factor for Alzheimer’s disease. The ε4 (ApoE4) isoform, 
which confers the highest risk for Alzheimer’s disease, also 
strongly increased the intraneuronal accumulation of amy-
loid [226].

Fibrillar amyloid was observed in dendrites close to 
plaques [122]. In an animal model with particularly strong 
pathology, the 5XFAD mouse model, fibrillar amyloid beta 
was detectable even in cell bodies [139], where it may have 
acted as seeds for plaques upon cell death [131]. Intracel-
lular amyloid beta in axons, presynapses, as well as in 
dendritic spines was associated with synaptic pathology 
[44, 158, 190, 192]. Cytoplasmic amyloid beta was asso-
ciated with mitochondrial alterations [158], apoptosis 
markers [61] and with oxidative damage to nucleic acids 
[138].  However, the latter study claimed that intracellular 
amyloid may be a compensatory mechanism, as amyloid 
beta has anti-oxidative properties [138]. Synaptic activ-
ity reduced intraneuronal amyloid and protected against 
amyloid-mediated synaptic alterations, while inhibition 
of synaptic activity increased intraneuronal amyloid and 
worsened synaptic damage [194]. It is, however, currently 



9Acta Neuropathol (2015) 130:1–19	

1 3

unclear whether intraneuronal amyloid beta contributes to 
synaptic damage in sporadic Alzheimer’s disease.

Hyperphosphorylated tau protein

The deposition of hyperphosphorylated tau protein in neu-
rons may be secondary to several different types of insults, 
such as epilepsy [134, 227], chronic traumatic brain injury 
[71], focal cortical dysplasia [174] or Niemann–Pick dis-
ease type C [117, 187]. Tau protein itself seems to be a 
prerequisite for neuronal damage, as tau knockout mice are 
immune to neuronal insults mediated by NMDA receptor-
dependent excitotoxicity, as well as those caused by amy-
loid beta [110, 159, 160]. These findings corroborate tau 
pathology as a secondary effect of amyloid beta in Alzhei-
mer’s disease. On the other hand, the degree of tau pathol-
ogy is better correlated to cognitive decline than amyloid 
pathology [3, 13, 72]. Furthermore, a group of neurode-
generative diseases, collectively termed tauopathies, is 
characterized by mutations in tau protein, which lead to 
the deposition on hyperphosphorylated tau protein without 
an associated primary pathology. In experimental animals, 
the overexpression of wild-type human tau suffices for the 
formation of neurofibrillary tangles and age-dependent 
reductions in spine head volumes [57]. Similarly, the intro-
duction of P301S mutant human tau causes inflammation 
and spine loss [10, 84]. These results suggest that hyper-
phosphorylated tau on its own may cause synaptic damage. 
Moreover, a recent study on 5 Alzheimer’s disease patients 
revealed a reduced spine number in distal parts of the den-
dritic tree in pyramidal neurons of the parahippocampal 
cortex and CA1 neurons with intraneuronal neurofibrillary 
tangles [127]. Another study found that loss of spinophilin-
positive puncta in CA1 field and area 9, which are markers 
of dendritic spines, correlated with cognitive decline and 
tau pathology [3].

Physiologically, tau protein is primarily located in 
axons, where it is associated with the cytoskeleton. The 
physiological phosphorylation pattern of tau determines its 
subcellular localization: For instance, one specific phos-
phorylation pattern localizes tau to the nucleus, while 
another is required during mitosis [137]. LTP induction or 
pharmacological stimulation of synaptic activity increase 
translocation of tau to postsynapses [28]. Hyperphospho-
rylation of tau disrupts this localization pattern [22, 137, 
222, 223]. Interestingly, there is also some evidence that 
phosphorylation of tau may be mediated by APP [137]. The 
subcellular localization of tau is also influenced by splicing 
[113] as well as by post-translational enzymatic cleavage 
[162]. In particular, truncation of tau by specific proteases 
may increase the toxicity of tau and facilitate hyperphos-
phorylation [225]. Different patterns of truncation and 
hyperphosphorylation give rise to different conformations, 

or “strains”, of tau, which underlie different tauopathies 
[166]. Furthermore, these tau strains can be propagated 
from human tissue to susceptible mouse models in a prion-
like manner while maintaining their identity [46, 166]. A 
characteristic form of propagation of pathological tau has 
also been observed within the brain experimental animals. 
There, tau pathology spreads synaptically from neuron to 
neuron [52, 60, 114], which may be the mechanism under-
lying the specific spreading pattern of tau pathology in Alz-
heimer’s disease [25].

Tau has been claimed to mediate NMDA receptor-
dependent excitotocixity via the Src-family tyrosine kinase 
Fyn [88] in a phosphorylation-dependent manner [130]. 
Dendritic tau localizes Fyn to dendrites, where it phospho-
rylates the GRIN2B subunit of NMDA receptors, thereby 
enhancing their function [164]. In mice lacking tau, less 
Fyn is present in dendrites, leading to lower GRIN2B 
phosphorylation [23]. Fyn, in turn, was found to be acti-
vated by oligomeric amyloid beta binding to the cellular 
prion protein [205]. Amyloid oligomers also disrupt the 
activity-dependent relocalization of tau to postsynapses 
[28] in a phosphorylation-dependent manner [128]. These 
studies provide causal links between the toxicity of amy-
loid oligomers and the physiological function of tau pro-
tein. Furthermore, tau deposits may also activate inflam-
matory processes, such as increased immunoreactivity for 
interleukin 1β and cyclooxygenase 2, which in turn activate 
microglia [10]. Alternatively, dendritic spine loss in Alz-
heimer’s disease may be simply the consequence of deaf-
ferentation and thus a secondary phenomenon that is not at 
all related to any pathological action of tau at the dendritic 
spine itself [127]. Hence, dendritic tau hyperphosphoryla-
tion and aggregation in sporadic Alzheimer’s disease may 
be a secondary or even compensatory phenomenon due to 
slowly progressing deafferentation/disconnection in the 
aging brain rather than the cause of dendritic spine loss or 
synaptic failure. The correlation between the detection of 
hyperphosphorylated tau and human aging is extraordinar-
ily strong—probably stronger than the link to sporadic Alz-
heimer’s disease.

Similar to amyloid beta, hyperphosphorylated tau may 
form thioflavin-S binding, fibrillar aggregates which appear 
microscopically as neurofibrillary tangles, as well as solu-
ble oligomers. In contrast to amyloid beta, however, the 
verdict seems to be clearer that neurofibrillary tangles 
themselves are functionally inert [84, 101, 167] and that 
soluble tau aggregates mediate synaptic damage [148, 
219, 223]. Hyperphosphorylated tau was shown to localize 
to both pre- and postsynapses in multiple studies [81, 86, 
88, 148, 188, 189, 191, 219], where it causes synaptic dys-
function by impairing the trafficking or synaptic anchoring 
[86] as well as the excitability [130]. In THY-Tau22 mice, 
which express tau with the G272V and P301S mutations, 
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the synaptic enhancement induced by exogenous BDNF 
was lost due to impaired NMDA receptor function [28]. 
Electrophysiologically, synaptic dysfunction manifested as 
a presynaptic deficit in the probability of neurotransmitter 
release [86, 148] as well as altered excitability of neurons 
[50, 126, 161]. Our own in vivo imaging studies in P301S 
mice gave evidence for a postsynaptic accumulation of 
hyperphosphorylated tau only in spines of CA3 neurons but 
not within pyramidal neurons of the cerebral cortex [84]. 
Similar results were found in Alzheimer’s disease patients, 
where only the thorny excrescences of CA3 neurons, but 
not spines of cortical neurons, were found to contain hyper-
phosphorylated tau protein [21, 127]. This may be related 
to the fact that CA3 thorny excrescences may contain 
microtubules, whereas dendritic spines of cortical neurons 
have an actin-based cytoskeleton [42, 181].

Inflammation

Both amyloid deposition and hyperphosphorylated tau lead 
to deposition of complement, activation of microglia, inva-
sion of T-cells and release of pro-inflammatory cytokines 
[6, 10, 67, 116, 119, 198], which in turn may affect den-
dritic spines by multiple mechanisms. Inflammation also 
drives tau hyperphosphorylation and aggregation [15, 51], 
so that a detrimental positive-feedback loop may ensue. 
Fibrillar amyloid deposits are surrounded by proinflam-
matory complement complexes [116] and activated micro-
glia which phagocytose protofibrillar amyloid. Increased 
micgroglial phagocytosis of amyloid attenuates amyloid 
deposition in animal models [107, 115]. On the other hand, 
amyloid-independent microglia activation, as it for exam-
ple occurs in patients with multiple sclerosis or HIV, was 
found to have no relevant impact on the development of 
Alzheimer-associated cortical pathology [49, 142]. Fur-
thermore, signs of inflammation have been observed in 
multiple animal models before plaques [79, 213, 219] or 
tangles [219] were present, which may suggest that inflam-
mation—if it plays a causative role in sporadic Alzheimer 
diseases—plays a role early during the development of the 
disease. We, however, failed to observe significant micro-
glia activation in transgenic amyloid mouse models prior to 
the occurrence of amyloid plaques [91].

The mechanisms by which inflammation affects den-
dritic spines include activation of caspases via reactive oxy-
gen species released from inflammatory cells, which causes 
reductions in dendritic spines [48, 62, 149]. Furthermore, 
release of interleukin 1β by microglia during the inflam-
matory process affects dendritic spines by antagonizing the 
stimulatory effect of BDNF on spine genesis [201]. Micro-
glia themselves also play a role in maintaining dendritic 
spines in the absence of inflammation by producing BDNF 
to stimulate spine growth [145] and by pruning of spines 

during development and plasticity [143, 202]. However, 
it is unclear whether these mechanisms also play a role in 
Alzheimer’s disease.

Mechanisms independent of amyloid beta, tau 
and inflammation

Essentially all animal models of Alzheimer’s disease are 
mice engineered to express one or several of the proteins 
which are known to cause familial forms of amyloidosis 
or tauopathy in humans. However, the expression level of 
these artificially introduced proteins is manifold higher 
than naturally occurring levels, so that pathological altera-
tions become apparent within the lifespan of the experi-
mental animals. However, the overexpression of these 
proteins alone may cause alterations in dendritic spines 
directly or indirectly, which have to be taken into consid-
eration before translating results from animal models to 
the human disease. This subsection summarizes the most 
important mechanisms by which overexpression of Alzhei-
mer’s disease-related genes in mice alters dendritic spines.

In animal models of Down syndrome, which are tri-
somic for the APP gene locus and thus overexpress APP, 
spine loss and synaptic damage have been described [9, 
208]. These may be the consequence of intraneuronal APP 
accumulation or the accumulation of BACE1 derived cleav-
age products rather than due to soluble amyloid species of 
any type or location [75]. Recently, knock-in animal mod-
els expressing physiological quantities of mutant APP have 
been generated to help differentiate between synaptic and 
cognitive effects caused by overexpression and those by 
mutation of APP. Interestingly, only the combination of sev-
eral mutations caused cognitive deficits [163]. Furthermore, 
in many models of Alzheimer’s disease, overexpression 
of mutant human APP is often combined with overexpres-
sion of mutant human presenilin 1 (PS1), which speeds up 
amyloidosis in double transgenic mice, compared to single 
APP transgenes. In contrast to humans, however, the expres-
sion of mutant PS1 alone does not cause an amyloidosis in 
rodents—a phenomenon that is not well understood, but 
points to one out of several shortcomings of mouse models 
in Alzheimer’s disease research. Furthermore, we and oth-
ers have demonstrated that overexpression of both wild-type 
and mutated human PS1 actually causes an increase in spine 
density in young transgenic animals [5, 92, 186]. Consistent 
with these findings, electrophysiological studies of different 
mouse lines overexpressing mutant PS1 showed significantly 
enhanced LTP at hippocampal synapses [5, 7, 55, 144, 173, 
211, 221]. Furthermore, a recent study showed that knock-in 
of L435F mutated PS1, which is a loss-of-function mutation, 
on a PS2 knockout background led to reduced LTP in com-
parison to PS2 knockouts with wild type PS1 [215]. These 
effects are clearly independent of any synaptotoxic effects 



11Acta Neuropathol (2015) 130:1–19	

1 3

of amyloid beta, since amyloid beta is not enhanced in these 
mouse models. Rather, several reports point to an altered cal-
cium homeostasis as underlying mechanism for disturbed 
dendritic spine plasticity, as presenilin mutations seem to 
interfere with physiological calcium release from intracellu-
lar stores. Different molecular mechanisms have been pro-
posed, ranging from ER leak channel activity of PS1 itself 
[203, 224] to increased gating probabilities of IP3 receptors 
[40, 41], elevated expression of ryanodine receptors [37, 180, 
185] and most recently to reduced synaptic STIM2 expres-
sion and impaired store-operated calcium entry [186]. As an 
indicator of modified calcium homeostasis, we confirmed 
upregulated RyR levels in A246E-PS1 overexpressing corti-
cal neurons [92].Given the prominent role of dendritic cal-
cium signalling in dendritic spine plasticity, we, therefore, 
favour the view that PS1-dependent changes in calcium 
homeostasis underlie the elevated spine densities in PS1-
transgenic mice. It is still a matter of debate how the over-
expression of PS1 affects the calcium homeostasis. Based on 
our cell culture studies and biochemical studies on postmor-
tem brains of patients carrying familial Alzheimer’s disease 
PS1 mutations, we favour the notion that the disturbed ER 
calcium homeostasis is mediated by the elevation of PS1 
holoprotein levels [85] possibly as a consequence of altered 
presenilin autocleavage. This hypothesis may have impact 
on the translation of therapeutic efforts from these famil-
iar forms of Alzheimer’s disease, which are currently used 
to study the treatment of very early stages of Alzheimer’s 
disease like the Alzheimer’s Prevention Initiative enrolling 
members of a Columbian cohort who carry the E280A PS1 
mutation, to the treatment of sporadic Alzheimer’s disease.

Presenilins are important constituents of the γ-secretase 
complex, which is necessary to generate amyloid beta, and 
hence also amyloid oligomers, from APP. Inhibitors of 
γ-secretase are, therefore, often used as a research tool to 
reduce the levels of amyloid beta oligomers in experimental 
animals and prove putative oligomer-dependent mechanisms. 
Inhibition of γ-secretase, however, leads to alterations in 
dendritic spines even in the absence of amyloidosis-related 
transgenes: By performing chronic in vivo two photon imag-
ing in wild-type mice, we observed reduced spine densities 
after pharmacological inhibition of γ-secretase for 4  days 
[18]. This observation is in contradiction to ex vivo studies 
performed in cell culture or in organotypic cultures by various 
laboratories including our own where γ-secretase inhibition 
is used as a tool to inhibit amyloid beta production. There, 
γ-secretase inhibition had no acute effect on dendrites, spine 
morphology or excitatory synaptic transmission [152, 153, 
221]. However, the duration of γ-secretase inhibition might 
be critical in order for these detrimental effects on spine 
plasticity to take effect. These preclinical in vivo findings in 
rodents might be relevant in the development of Alzheimer’s 
disease therapies aimed at interfering with the function of the 

γ-secretase to reduce the production of amyloid beta pep-
tides. Our observation of reducing dendritic spine numbers in 
vivo following γ-secretase inhibition might offer a potential 
explanation why Alzheimer’s disease patients treated with a 
potent γ-secretase inhibitor (semagacestat) showed, among 
other side effects, a worsening of cognition in the high dose 
cohort, which caused a phase 3 study to be halted [58].

Because of the complex interplay between the physiologi-
cal roles of proteins involved in Alzheimer’s disease, it is hard 
to differentiate disease-specific and hence therapeutically 
relevant effects from those which are related to the genetic 
manipulation of experimental models in the first place. This 
fact may, however, explain why such a large number of treat-
ments which were effective in experimental animals have 
failed to yield any therapeutic benefit in humans.

Conclusions

Loss of dendritic spines in Alzheimer’s disease is intimately 
linked with synaptic dysfunction and loss of memory and 
cognition—the very functions which define a human being. 
Understanding the mechanisms of synapse loss may enable 
us to find an appropriate therapy to halt or even reverse the 
progress of this debilitating disease. Unfortunately, the sci-
entific findings to date suggest that an extremely complex 
pathophysiology underlies Alzheimer’s disease with a wide 
variety of possible mechanisms which may cause synapse 
loss or dysfunction. At the moment, it is unclear which of 
the mechanisms covered here (or indeed any of the mul-
titude of mechanisms which we have not covered) is 
dominantly responsible for synapse dysfunction in human 
patients. To paraphrase Alzheimer’s own conclusion of his 
report, “On a peculiar disease of the cerebral cortex” [4]: 
We are obviously dealing with a peculiar disease process 
here. These observations should compel us not to content 
ourselves with forcibly applying the knowledge we have 
to date to explain insufficiently understood mechanisms. 
Future study will enable us to gradually untangle specific 
mechanisms and assess their contribution to the disease.
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