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Abstract

We previously found that a directional movement of the raft component GD3 towards mitochondria, by its association with
microtubules, was mandatory to late apoptogenic events triggered by CD95/Fas. Since CLIPR-59, CLIP-170-related protein,
has recently been identified as a microtubule binding protein associated with lipid rafts, we analyzed the role of GD3-CLIPR-
59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. To test whether CLIPR-59 could play a role at the
raft-microtubule junction, we performed a series of experiments by using immunoelectron microscopy, static or flow
cytometry and biochemical analyses. We first assessed the presence of CLIPR-59 molecule in lymphoblastoid T cells (CEM).
Then, we demonstrated that GD3-microtubule interaction occurs via CLIPR-59 and takes place at early time points after
CD95/Fas ligation, preceding the association GD3-tubulin. GD3-CLIPR-59 association was demonstrated by fluorescence
resonance energy transfer (FRET) analysis. The key role of CLIPR-59 in this dynamic process was clarified by the observation
that silencing CLIPR-59 by siRNA affected the kinetics of GD3-tubulin association, spreading of GD3 towards mitochondria
and apoptosis execution. We find that CLIPR-59 may act as a typical chaperone, allowing a prompt interaction between
tubulin and the raft component GD3 during cell apoptosis triggered by CD95/Fas. On the basis of the suggested role of lipid
rafts in conveying pro-apoptotic signals these results disclose new perspectives in the understanding of the mechanisms by
which raft-mediated pro-apoptotic signals can directionally reach their target, i.e. the mitochondria, and trigger apoptosis
execution.
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Introduction

Cytoplasmic linker proteins (CLIPs), microtubule-binding proteins,

are involved in intracellular organization and organelle movement

[1]. In particular, several CLIP-170-related proteins, characterized

by the presence of a cytoskeleton-associated protein-Gly motif that

interacts with tubulin, are active at the organelle-microtubule

interface [2]. Recently, CLIPR-59, a new CLIP-170-related protein,

has been identified [3], which is involved in the regulation of

microtubule dynamics. In addition to its microtubule binding,

CLIPR-59 can also be associated with glycosphingolipid enriched

microdomains on cell plasma membrane, i.e. with the so-called lipid

rafts [4]. It has been proposed that this raft-associated CLIP could

play a role at the raft-microtubule junction [4] and in the regulation

of membrane trafficking [3]. Moreover, recent evidence showed that

CLIPR-59 functions as a scaffold protein that interacts with phospho-

Akt and regulates Akt cellular compartmentalization [5]. The role of

CLIPR-59 in the regulation of signal transduction pathway(s) is

related to its association with lipid rafts on the cell surface. Indeed, the

last 30 amino acids of CLIPR-59 are required to target it to the

plasma membrane and a double palmitoylation on tandem cysteines

within this domain is responsible for the raft targeting.

Lipid rafts have been associated with several cell functions [6,7],

including cell death. It has in fact been suggested that lipid rafts

could play a key role in receptor-mediated apoptosis of T cells

[8,9]. This is apparently due to two events that follow the receptor

engagement: i) the recruitment of CD95/Fas [9–11] as well as

other Tumor Necrosis Factor-family receptors [12] to plasma

membrane lipid rafts, and ii) the recruitment of specific

proapoptotic bcl-2 family proteins to mitochondrial ‘‘raft-like

microdomains’’ [13]. Indeed, small lipid domains are also present

on mitochondrial membrane, where they may contribute to

apoptosis-associated modifications of the organelle, i.e. its

remodeling and fission, as well as to the release of apoptogenic

factors and apoptosis execution [10,13]. These raft-like micro-

domains are enriched in gangliosides (GD3, GM3) and cardiolipin

[14], but show a relatively low content of cholesterol; some

molecules, including the voltage-dependent anion channel-1 and

the fission protein hFis1, are enriched, whereas Bcl-2 family

proteins (truncated Bid and Bax) are recruited, following CD95/

Fas triggering [13]. Both mitochondria depolarization and

cytochrome c release are dependent on raft-like microdomain

integrity, since the disruption of raft-like microdomains by methyl-

b-cyclodextrin prevented mitochondria depolarization or cyto-
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chrome c release induced by GD3 or by the active form of Bid (t-

Bid) [13]. We recently identified microtubular network as pivotal

in the intracellular directional redistribution of lipid raft

components [15]. We showed the association of GD3 with alpha

and beta tubulin. In particular, in silico docking analysis showed

that GD3 has a high affinity for the pore formed by four tubulin

heterodimers (type I pore), thus suggesting a possible interaction

between tubulin and GD3. Hence, microtubules could act as

tracks for ganglioside redistribution following apoptotic stimula-

tion, possibly contributing to the mitochondrial alterations leading

to cell death.

The present study was thus undertaken to ascertain whether the

movement of GD3 from the plasma membrane towards the

mitochondrion via microtubules could be instructed by its

association with CLIPR-59. In fact, we found that this small

molecule seems to behave as a typical chaperone allowing a

prompt interaction between tubulin and ganglioside GD3, here

considered as a paradigmatic microdomain component [10]

regulating CD95/Fas-triggered apoptosis in lymphoblastoid T

cells (CEM).

Results

Analysis of CLIPR-59 distribution in CEM cells
CLIPR-59, a CLIP-170-related protein, has recently been

identified as a microtubule binding protein associated with lipid

rafts [4]. To test whether raft-associated CLIPR-59 could play a

role at the raft-microtubule junction, we performed a series of

experiments by using immunoelectron microscopy, static and flow

cytometry as well as biochemical analyses. We first assessed the

presence of CLIPR-59 molecule in CEM cells. Studies on CLIPR-

59 association to lipid rafts and microtubules were indeed

previously conducted in CLIPR-59-transfected cells only [3,4].

In CEM cells we found a small, but well-defined, presence of

CLIPR-59 gold labeling at the cell surface, (Fig. 1A, note the

absence of any sign of non-specific labeling). Interestingly, after

CD95/Fas triggering, CLIPR-59 was detectable on microtubules

(Fig. 1B, arrows indicate 10 nm gold particles). Positivity for

CLIPR-59 was also confirmed by flow cytometry analyses

(Fig. 1C–D). Western blot analysis of CLIPR-59, either in the

presence or in the absence of CD95 stimulation, revealed that

CLIPR-59 expression was substantially unchanged, supporting the

view that apoptosis triggering does not change CLIPR-59

expression, but affects its redistribution from plasma membrane

domains to microtubules (Fig. 1E).

Analysis of CLIPR-59 association with GD3
To assess the possible implications of the association CLIPR-

59/GD3 for GD3 trafficking, specific experiments were then

carried out. Static cytometry analyses performed at different time

points indicated that a co-localization of GD3 with CLIPR-59 was

detectable 15 minutes after Fas-triggering (Fig. 2A). Parallel

FRET analyses indicated that GD3/CLIPR-59 association was

evident 15 minutes after anti-CD95/Fas administration, reaching

a peak after 30 minutes (Fig. 2B, representative experiment). Of

note, CD95/Fas treatment virtually did not modify the expression

of CLIPR-59 (Fig. 2B, insets). However, the results obtained by

FRET analyses also underline that the association CLIPR-59/

GD3 occurred earlier than the association GD3/b-Tubulin, as

shown by the slight shift of the two association curves based on

values obtained by FRET analyses (Fig. 2C and Fig. S1). In

addition, to test the role of cysteine palmitoylation of CLIPR59 in

the GD3 traffic, parallel experiments were performed by

pretreating cells with 100 mM 2-Bromopalmitate to inhibit

palmitoylation. The analysis revealed that pretreatment signifi-

cantly prevented GD3/CLIPR59 interaction, as revealed by

FRET analysis (Fig. 3A and B).

Figure 1. GD3 associates with CLIPR-59 after anti-CD95/Fas
apoptotic triggering. Immunoelectron microscopy analysis of CLIPR-
59 distribution by immunogold staining using post-embedding
technique clearly indicated a surface staining in control CEM cells (A)
and a microtubule associated gold labeling in anti-CD95/Fas treated
cells (B). Arrows indicate gold particles. Note the absence of non-
specific labeling. (C) Flow cytometric analysis of CLIPR-59 expression in
control CEM cells; (D) Flow cytometric analysis of CLIPR-59 expression in
anti-CD95/Fas treated cells. (E) Western Blot analysis of CLIPR-59
expression in control or in anti-CD95/Fas treated cells. As a loading
control b-actin is shown.
doi:10.1371/journal.pone.0008567.g001

GD3-CLIPR-59 Association
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Figure 2. Static and flow cytometric analyses of GD3/CLIPR-59 association. (A) Immunofluorescence analysis after double staining of
GD3 (red) and CLIPR-59 (green) in untreated CEM cells and after treatment with anti-CD95/Fas (only merge pictures are shown). Note GD3/
CLIPR-59 co-localization (yellow staining) at different time points (starting from 15 min) and the absence of any co-localization 90 min after anti-
CD95/Fas treatment (bottom panel). (B) Quantitative evaluation of GD3/CLIPR-59 association by FRET technique, as revealed by flow cytometry
analysis. This association was negligible in untreated CEM cells, started after 15 min after anti-CD95/Fas administration, reached its peak 30 min
later and dropped down 90 min after treatment. Numbers represent the FRET efficiency indicating the GD3/CLIPR-59 association. Results
obtained in one experiment representative of four are shown. Inset: flow cytometry analysis of CLIPR-59 expression at different times of anti-
CD95/Fas treatment. (C) Time course analysis of the association GD3/CLIPR-59 compared with GD3/b-Tubulin association in CEM cells after anti-
CD95/Fas administration. Note the different trend of the two curves, i.e. the earlier association of GD3/CLIPR-59 with respect to GD3/b-Tubulin
association.
doi:10.1371/journal.pone.0008567.g002

GD3-CLIPR-59 Association
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Effect of CLIPR-59 siRNA on GD3/b-Tubulin association
and apoptosis

In order to demonstrate the role of CLIPR-59 as a regulator of

GD3 trafficking, a small interfering RNA (siRNA) was employed to

ablate CLIPR-59 and its function. Western blot analyses of siRNA-

treated cells revealed that CLIPR-59 expression appeared to be

significantly reduced as compared to control cells (Fig. 4A), as

Figure 3. Effect of 2-Bromopalmitate on GD3/CLIPR-59 associ-
ation. Quantitative evaluation of GD3/CLIPR-59 association by FRET
technique, as revealed by flow cytometry analysis. This association,
negligible in untreated cells, started 15 min after the administration of
anti-CD95/Fas (250 ng/ml for different incubation times at 37uC)
reached its peak 30 min later and dropped down 90 min after
treatment (left column). In cell pre-treated with 100 mM 2-Bromopalmi-
tate for 3 h at 37uC to inhibit palmitoylation, GD3/CLIP-59 association
was inhibited at any time (right column). Numbers represent the
percentage of FL3 positive cells indicating the GD3/CLIPR-59 associa-
tion. Results obtained in one experiment representative of three are
shown. (B) Time course analysis of the association GD3/CLIPR-59
obtained pooling together results of three independent experiments.
Data are reported as mean values6SD.
doi:10.1371/journal.pone.0008567.g003

Figure 4. Analysis of CLIPR-59 expression and transfection
efficiency. A) CEM cells, transfected or not with 100 nM smart pool
siRNA targeting CLIPR-59, were lysed, resolved by SDS-PAGE and
transferred to nitrocellulose. Samples were probed with anti-CLIPR-59
polyclonal antibodies or with anti-b-actin as a control. The immuno-
reactivity was assessed by chemiluminescence reaction using the ECL
western blocking detection system. B) Densitometric scanning analysis
of the CLIPR-59 expression was performed by MAC OS 9.0, using NIH
image 1.62 software. C) CEM cells, transfected or not with 100 nM siGLO
laminin A/C siRNA, were fixed with 2% paraformaldehyde and the
fluorescence was detected by flow cytometry. Transfection efficiency
was about 60%.
doi:10.1371/journal.pone.0008567.g004

GD3-CLIPR-59 Association
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detected by densitometric analysis (Fig. 4B). Optimum transfection

efficiency, confirmed by positive control siGLO laminin A/C

siRNA with fluorescent label, was about 60% (Fig. 4C).

The analysis of GD3/b-tubulin association was thus carried out

by FRET technique at different time points (15–90 minutes) after

CD95/Fas administration. The results obtained in a representative

experiment are reported in Figure 5A and B. The data show that

silencing of CLIPR-59 by siRNA affected the kinetics of GD3-b-

tubulin association, after CD95/Fas administration. Indeed, the

maximum FRET efficiency (FE) was detected 30 minutes after anti-

CD95/Fas triggering in control non-silenced cells (Fig. 5A)

(FE:1.3211 vs 0.2385 in CLIPR-59 siRNA treated cells), whereas

in CLIPR-59 siRNA treated cells similar FRET efficiency values

(FE: 1.1094) were detected only after 75 minutes (Fig. 5B). Notably,

at this time point, GD3/b-tubulin association was negligible in

control samples (FE: 0.2160). This delay was better appreciable by

pooling together the results obtained from three different experi-

ments (Fig. 5C, where the GD3/b-tubulin association is reported as

a function of time). In fact, ANOVA two-way for repeated measures

showed a not significant effect of treatment (F 1,48 = 3.60,

P = 0.0942), but a significant time (F 6,48 = 188.89, P,0.0001)

and treatment x time interaction (F 6,48 = 225.53; P,0.0001). This

indicates that the two curves have a similar trend but also that a

significant ‘‘delay’’ of GD3/b-Tubulin association is induced by

CLIPR-59 siRNA treatment (see Fig. S2A–C). Similarly,

immunofluorescence analysis after double staining of GD3 (red)

and mitochondria (green) in control and CLIPR-59 siRNA treated

cells revealed different kinetics of GD3/mitochondria association,

after treatment with anti-CD95/Fas. Indeed, GD3/mitochondria

colocalization was detected 30 minutes after anti-CD95/Fas

triggering in control cells, but was impaired in CLIPR-59 siRNA

treated cells (Fig. 5D). As a control, parallel staining was performed

with R24 anti-GD3 monoclonal antibody (MoAb), which revealed a

similar distribution pattern (Fig. S3). Further analyses were also

conducted to evaluate apoptotic rates at different time points up to

180 min. The analysis of the hypodiploid peak revealed a significant

delay of CD95/Fas triggered apoptosis in siRNA treated cells as

compared to non-silenced cells (Fig. 5E).

Discussion

The present work deals with the trafficking of glycosphingolipid

GD3 to the mitochondrion upon pro-apoptotic triggering induced

by CD95/Fas ligation and identifies the pivotal role of

microtubule-associated protein CLIPR-59 in instructing and

regulating GD3-microtubule association.

The re-distribution of GD3 in lymphoblastoid T cells may play a

decisive role in the apoptosis cascade. Previous works, including

ours, identified the mitochondria as possible targets for GD3 and

hypothesized that the rearrangement of GD3 may be involved in

the mitochondrial remodeling leading to apoptosis execution phase

[13,16,17]. It was in fact suggested that mitochondria remodeling in

terms of structural modifications, i.e. their curvature changes, as

well as their fission process, could be under the influence of several

molecules, including lipid microdomains. It was also proposed that

it could play a key role in late apoptotic mitochondria-mediated

events, i.e. the release form this organelle of apoptogenic factors

such as cytochrome c [13,18,19]. In this scenario we hypothesized

that lipid rafts constituents (GD3), normally localized mainly at the

cell surface [20] and able to engulf a series of molecules of

importance in the cell suicide process [9,11,12], can proceed from

the cell plasma membrane (and/or from trans Golgi network) to the

mitochondria via a microtubule-dependent mechanism. Microtu-

bules may be used as tracks to direct intracytoplasmic transport of

lipid raft glycosphingolipid(s) to mitochondria. This was demon-

strated by the observed association of GD3 with tubulin and by the

experiments previously carried out by inhibiting microtubule

polymerization [15]. Under these experimental conditions, the

trafficking of GD3 molecule towards mitochondria appeared to be

impaired. However, the fact that the integrity of microtubules is

mandatory for GD3 association to tubulin is still puzzling. This

question remains to be elucidated and some insight may come from

the studies carried out in this paper in which we analyzed the

microtubule associated protein CLIPR-59. In fact, CLIPR-59, in

addition to its microtubule binding, has recently been shown to be

associated with lipid rafts by a double palmitoylation on tandem

cysteines within the C-terminal domain [4].

Since CLIPR-59 is associated not only with the plasma

membrane, but is also targeted to trans Golgi network membranes,

it may regulate both plasma membrane and trans Golgi network

interactions via microtubules. Here, in addition, we demonstrated,

by FRET, that CLIPR-59 is also capable of directly interacting

with lipid raft-associated GD3. Interestingly, it was proposed that

CLIPR-59 binds microtubules only when already localized to its

membrane target [3]. It can therefore be hypothesized that it can

play a role either as cytoplasmic linker between lipid rafts and

microtubules or to locally destabilize the assembly of microtubules

close to lipid rafts [4]. More in general, according to CLIP model

[1], CLIPR-59 would establish an interaction between cell

membranes and microtubules, thus regulating membrane dynam-

ics. In particular, CLIPR-59 may facilitate rafts/microtubules

interaction following anti-CD95/Fas treatment. This model would

explain the shift observed between association kinetics of GD3 to

CLIPR-59 and b-Tubulin, as revealed by FRET analyses. Our

results support the view that CLIPR-59 is involved in intracellular

trafficking, acting as a chaperone molecule allowing a fast and

prompt interaction between GD3 and tubulin, once apoptosis has

been triggered by CD95/Fas. In particular, findings of the

experiments with 2-Bromopalmitate suggest that palmitoylation of

CLIPR59 plays a key role in the overall process of GD3/tubulin

interaction. Moreover, the key role of CLIPR-59 in this dynamic

process is clarified by the observation that silencing CLIPR-59 by

siRNA resulted in a delayed GD3-b-tubulin association and,

consequently, a delayed apoptosis execution, probably via an

inhibited spreading of GD3 towards mitochondria. However, we

cannot exclude the possibility that other, still unidentified,

molecules may drive GD3 traffic. In particular, we demonstrated

that ezrin, a cytoskeletal protein, may directly interact with GD3

in uropods of lymphoblastoid CEM cells during cell apoptosis

triggered by CD95/Fas [21]. Furthermore, on the basis of

literature [22] and according to [5], we can hypothesize that the

interaction of CLIPR-59 with Akt could play a role in the cascade

of events leading to the observed significant delay of apoptotic

execution. In fact, since Akt activation is known to inhibit

apoptosis, we cannot rule out the possibility that affecting

CLIPR59 function could impair signaling through lipid rafts,

which results in Akt inactivation and cell death.

Taken together, our findings bolster the role played by lipid rafts

in the apoptotic program and their role in the preparatory

homework for cell suicide apoptosis introducing a new actor in the

process: the CLIPR-59 microtubule binding protein and its

chaperone activity.

Materials and Methods

Cells and treatments
CEM cells obtained from a human acute lymphoblastic

leukemia were cultured as described [23]. Apoptosis was induced

GD3-CLIPR-59 Association
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Figure 5. Effect of CLIPR-59 siRNA on GD3/b-Tubulin association and apoptosis. (A–B) Time-course cytometric analysis of GD3/b-Tubulin
association by FRET technique in control non-silenced cells (A) and in CLIPR-59 siRNA treated cells (B). Numbers represent the percentage of cells in which
GD3/b-Tubulin association occurred. Results obtained in one experiment representative of three are shown. Note that FRET from acceptor to donor
(indicating molecular association): i) reached its peak 30 min after anti-CD95/Fas administration in control cells and 75 min after CD95/Fas triggering in
CLIPR-59 silenced cells and ii) dropped down 60 min after anti-CD95/Fas treatment in control cells and 90 min in CLIPR-59 siRNA treated cells. (C)
Comparative time course analysis of GD3/b2T ubulin association (by FRET analysis) in control and CLIPR-59 siRNA treated cells. (D) Immunofluorescence
analysis after double staining of GD3 (red) and mitochondria (green) in control and CLIPR-59 siRNA treated cells 30 and 75 min after treatment with anti-
CD95/Fas (only merge pictures are shown). Note that GD3/mitochondria co-localization (yellow staining) was detectable at different time points after
CD95/Fas treatment. (E) Comparative time course analysis of apoptosis (by evaluating the hypodiploid peak). Results are reported as mean values from
three independent experiments6SD. Note the ‘‘delay’’ of both apoptosis and GD3/b-tubulin association induced by CLIPR-59 silencing by siRNA.
doi:10.1371/journal.pone.0008567.g005

GD3-CLIPR-59 Association
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by incubating cells at a concentration of 56105 per ml in complete

medium by adding anti-Fas (CD95) IgM MoAb (clone CH11,

Upstate Biotechnology, Lake Placid, NY USA) at 250 ng/ml for

different incubation times.

Detection of CLIPR-59 by transmission electron
microscopy

CEM cells, untreated or treated with anti-Fas (30 or 60 min),

were fixed in 2.5% cacodylate-buffered (0.2 M, pH 7.2) glutaral-

dehyde for 20 min at RT and post-fixed in 1% OsO4 in

cacodylate buffer for 1 h at RT. Fixed specimens were dehydrated

through a graded series of ethanol solutions and embedded in

Agar 100 (Agar Aids, Cambridge, U.K.). Serial ultrathin sections

were collected on 200-mesh grids. Thin sections were then treated

with phosphate buffered saline (PBS) containing 1% (w/v) gelatin,

1% Bovine Serum Albumin, 5% Fetal Calf Serum and 0.05%

Tween 20 and then incubated with anti-CLIPR-59 polyclonal Ab

(kindly provided by Dr Franck Perez), overnight at 4uC. After

washing for 1 h at RT, sections were labeled with anti-rabbit IgG-

10 nm gold conjugate (1:10) for 1 h at RT and washed again.

Negative controls were incubated with the gold conjugate alone

and then counterstained with uranyl acetate and lead citrate.

Sections were observed with a Philips 208 electron microscope at

80 kV.

Morphometric analyses
Morphometric analyses were carried out by evaluating at least

200 cells at high magnification in order to detect gold particles

(20,0006) by transmission electron microscopy. Static cytometry

morphometry in double labeling experiments was carried out by

evaluating at least 200 cells at the same magnification (6306).

Analysis of CLIPR-59 expression in CEM cells by Western
Blot

CEM cells, untreated or treated with anti-CD95/Fas (250 ng/

ml for 30 min at 37uC) were lysed in lysis buffer (10 nM Tris-HCL

(pH 8.0), 150 mM NaCl, 1% Nonidet P-40, 1 mM PMSF,

10 mg/ml leupeptin). Total cell lysate from control and CD95/

Fas-treated cells were analyzed by Western blot. Samples were

probed with anti-CLIPR-59 polyclonal antibodies or with anti-b-

actin MoAb (Sigma Chemical Co, St. Louis, MO, USA) as a

control.

Immunofluorescence by intensified video microscopy
Control and treated cells (15, 30, 45 60, 75 min and 2 h) were

fixed with 4% paraformaldehyde in PBS for 30 min at room

temperature and then permeabilized with 0.5% Triton X-100 in

PBS for 5 min at room temperature, as previously reported [24].

After three washes in PBS, samples were incubated with GMR19

anti-GD3 MoAb (Seikagaku Corporation, Chuo-ku, Tokyo,

Japan) [25] or, alternatively, with R24 anti-GD3 (Matreya Inc.,

Pleasant Gap, PA) for 1 h at 4uC, followed by three washes in PBS

and addition (30 min at 4uC) of Alexa Fluor 594-conjugated anti-

mouse IgM or IgG (Molecular Probes, Leiden, The Netherlands).

The GMR19 anti-GD3 antibody is highly specific, as demon-

strated by thin layer chromatography immunostaining and

immunofluorescence analysis [25]. We further verified the

specificity of the antibody in CEM cells [10,13,14]. After washes,

cells were incubated with the anti-CLIPR-59 polyclonal Ab for 1 h

at 4uC, followed by addition (30 min at 4uC) of Alexa Fluor 488-

conjugated anti-rabbit IgG (Molecular Probes). Cells were finally

washed in PBS, and resuspended in 0.1 M Tris-HCl, pH 9.2,

containing 60% glycerol (v:v). and observed with a Nikon

Microphot fluorescence microscope. Images were captured by a

color chilled 3CCD camera (Hamamatsu, Japan) and analyzed by

the OPTILAB (Graftek, France) software.

Fluorescence resonance energy transfer by flow
cytometry

We applied FRET analysis by flow cytometry in order to study

the co-localization [26] of GD3/CLIPR-59 or GD3/b-Tubulin.

Briefly, cells, untreated or treated with anti-CD95/Fas (250 ng/ml

for different incubation times at 37uC) were fixed and permeabi-

lized as reported above [22]. In parallel experiments, cells were

pretreated with 100 mM 2-Bromopalmitate (Sigma Chem Co) [27]

for 3 h at 37uC to inhibit palmitoylation. After two washing in cold

PBS the cells were labeled with Abs tagged with donor (PE) or

acceptor (Cy5) dyes. GD3 staining was performed using unlabelled

mouse antibody (Seikagaku Corporation) and saturating amount

of PE-labeled anti-mouse IgM (Sigma). CLIPR-59 was revealed by

the anti-CLIPR-59 polyclonal Ab; tubulin was detected by anti-b-

Tubulin antibody (Abcam Ltd., Cambridge, UK), followed by

biotinylated anti-rabbit IgG and then saturating concentrations of

streptavidin-Cy5 (both from BD Pharmingen).

SiRNA CLIPR-59
CEM cells were cultured in a serum and antibiotic free medium

and transfected with Dharma FECT 4 reagent (Dharmacon,

Lafayette, CO), according to the manufacturer’s instructions,

using 100 nM Smart pool siRNA CLIPR-59. The transfection

efficiency was confirmed by using a Dharmacon’s positive

silencing control, siGLO laminin A/C siRNA.

After 72 h, the culture medium was replaced with fresh medium

and transfected again, as above, with 100 nM Smart pool siRNA

CLIPR-59. After further 48 h, the effect of transfection was

verified by Western blot and flow cytometry analyses with the

CLIPR-59 polyclonal Ab.

Preparation and labeling of isolated mitochondria
Control and CD95/Fas-treated cells were resuspended in

Homo-buffer (10 mM Hepes, pH 7.4; 1 mM ethylene glycol-

bis(-aminoethyl ether) N,N9,N0-tetraacetic acid (EGTA), 0.1 M

sucrose, 5% BSA, 1 mM phenylmethylsulfonyl fluoride (PMSF)

and complete protease inhibitor cocktail (Roche, Indianapolis, IN,

USA) for 10 min on ice. Cells were homogenized with a Teflon

homogenizer with B-type pestle [28] for 10 min at 4uC to remove

intact cells and nuclei. The supernatants were further centrifuged

at 10.0006g at 4uC for 10 min to precipitate the heavy membrane

fractions (enriched in mitochondria). These fractions were then

purified by standard differential centrifugation. The mitochondrial

pellet obtained was fixed in paraformaldehyde for 1 h at 4uC and

then washed twice with PBS/0.5% BSA. Samples were divided

into equal parts, with only one part of each sample (positive

samples) incubated first with a saturating amount of anti-GD3

MoAb (Seikagaku Corporation), followed by appropriate second-

ary Ab, as reported above for the entire cells.

Cell-death assays
Quantification of apoptosis was performed by evaluating DNA

fragmentation in ethanol-fixed cells using propidium iodide (PI,

Sigma). Alternatively, apoptosis was also quantified by flow

cytometry after double staining using FITC-conjugated annexin

V/propidium iodide (PI) apoptosis detection kit (Eppendorf,

Milan, Italy), which allows discrimination between early apoptotic,

late apoptotic and necrotic cell.
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Data analysis and statistics
For morphometric analyses statistical analyses were performed

by using student t test (Statview software for Macintosh computer).

For flow cytometry studies all samples were analyzed with a

FACScan cytometer (BD Biosciences, Heidelberg, Germany)

equipped with a 488 argon laser. At least 20,000 events were

acquired. Data were recorded and statistically analyzed by a

Macintosh computer using CellQuest Software. The expression

level of the analyzed proteins on intire cells or isolated

mitochondria was expressed as median fluorescence and the

statistical significance was calculated by using the parametric

Kolmogorov-Smirnov (K/S) test. For FRET studies samples were

recorded by a dual-laser FACScalibur cytometer (BD). Collected

data analysis was carried out by using ANOVA two-way test for

repeated samples by using Graphpad software. All data reported

in this paper were verified in at least three different experiments

and reported as mean6SD. Only p values of less than 0.01 were

considered significant.

Supporting Information

Figure S1 Time course evaluation of GD3-CLIPR-59 associa-

tion after CD95/Fas triggering by FRET efficiency calculation.

CEM cells, untreated or treated with anti-Fas (250 ng/ml for

different incubation times) were fixed and permeabilized as

reported in the text. After washings cells were pre-incubated with

10 mg/ml human IgG (Sigma) at room temperature for 10 min

and then incubated with saturating concentrations of the IgM PE-

conjugated and or anti biotinylated on ice for 30 min. After

washing, samples were divided into equal parts and only one part

(positive samples) incubated with a saturating amount of SA-Cy5

(0.6 mg/ml) for 30 min on ice. For determination of FRET

efficiency, changes in fluorescence intensities of donor plus

acceptor labeled cells were compared to the emission signal from

cells labeled with donor-only and acceptor-only fluorophores. All

data were corrected for background by subtracting the binding of

the isotype controls. Efficient energy transfer resulted in an

increased acceptor emission on cells stained with both donor and

acceptor dyes. The FRET efficiency (FE) was calculated according

to Riemann et al. (Biochem Biophys Res Commun 331: 1408–

1412, 2005), where A is the acceptor and D the donor, with the

formula: FE = (FL3DA2FL2DA/a2FL4DA/b)/FL3DA Where

a = FL2D/FL3D and b = FL4A/FL3A.

Found at: doi:10.1371/journal.pone.0008567.s001 (0.03 MB

PDF)

Figure S2 Statistical analyses (ANOVA) of FRET data in

Figure 4C. Data (A), tabular results (B) and narrative results (C) are

included.

Found at: doi:10.1371/journal.pone.0008567.s002 (1.10 MB

PDF)

Figure S3 Immunofluorescence analysis of GD3/mitochondria

association by R24 MoAb. Immunofluorescence analysis after

double staining of GD3 (red) and mitochondria (green) in control

and anti-CD95/Fas treated cells. Mitochondria were stained with

MitoTracker-Green and GD3 with anti-GD3 R24 MoAb,

followed by anti-mouse Alexa594.

Found at: doi:10.1371/journal.pone.0008567.s003 (18.08 MB

TIF)
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France, for his precious scientific support and for providing us with all the

technical material for CLIPR-59 analysis.

Author Contributions

Conceived and designed the experiments: PM VM AT AMMG VM.

Performed the experiments: PM VM AT AMMG VM. Analyzed the data:

MS VM AT AMMG RM TG WM. Contributed reagents/materials/

analysis tools: MS PM RM TG WM. Wrote the paper: MS RM TG WM.

References

1. Rickard JE, Kreis TE (1996) CLIPs for organelle-microtubule interactions.

Trends Cell Biol 6: 178–183.

2. Pierre P, Scheel J, Rickard JE, Kreis TE (1992) CLIP-170 links endocytic

vesicles to microtubules. Cell 70: 887–900.

3. Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, et al. (2002)

CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the

CLIP-170 family. J Cell Biol 156: 631–642.

4. Lallemand-Breitenbach V, Quesnoit M, Braun V, El Marjou A, Pous C, et al.

(2004) CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-

associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule

dynamics. J Biol Chem 279: 41168–41178.

5. Ding J, Du K (2009) ClipR-59 interacts with Akt and regulates Akt cellular

compartmentalization. Mol Cell Biol 29: 1459–1471.

6. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:

569–672.

7. Pizzo P, Viola A (2003) Lymphocyte lipid rafts: structure and function. Curr

Opin Immunol 15: 255–260.

8. Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential

role for membrane rafts in the initiation of Fas/CD95-triggered cell death in

mouse thymocytes. EMBO Rep 3: 190–196.

9. Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, et al. (2002) The

death-inducing signaling complex is recruited to lipid rafts in Fas-induced

apoptosis. Biochem Biophys Res Commun 297: 876–879.

10. Malorni W, Giammarioli A, Garofalo T, Sorice M (2007) Dynamics of lipid raft

components during lymphocyte apoptosis: the paradigmatic role of GD3.

Apoptosis 12: 941–949.

11. Garofalo T, Misasi R, Mattei V, Giammarioli AM, Malorni W, et al. (2003)

Association of the death-inducing signaling complex with microdomains after

triggering through CD95/Fas. Evidence for caspase-8-ganglioside interaction in

T cells. J Biol Chem 278: 8309–8315.

12. Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C (2003) Recruitment of

TNF receptor 1 to lipid rafts is essential for TNF alpha-mediated NF-kappaB

activation. Immunity 18: 655–664.

13. Garofalo T, Giammarioli AM, Misasi R, Tinari A, Manganelli V, et al. (2005)

Lipid microdomains contribute to apoptosis-associated modifications of

mitochondria in T cells. Cell Death Differ 12: 1378–1389.

14. Sorice M, Manganelli V, Matarrese P, Tinari A, Misasi R, et al. (2009)

Cardiolipin-enriched raft-like microdomains are essential activating platforms

for apoptotic signals on mitochondria. FEBS Lett 583: 2447–2450.

15. Sorice M, Matarrese P, Tinari A, Giammarioli AM, Garofalo T, et al. (2009)

Raft component GD3 associates with tubulin following CD95/Fas ligation.

FASEB J 23: 3298–3308.

16. Rippo MR, Malisan F, Ravagnan L, Tomassini B, Condo I, et al. (2000) GD3

ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J

14: 2047–2054.

17. Garcia-Ruiz C, Colell A, Morales A, Calva M, Enrich C, et al. (2002)

Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha.

J Biol Chem 277: 36443–36448.

18. Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC (2000) Direct interaction

of GD3 ganglioside with mitochondria generates reactive oxygen species

followed by mitochondrial permeability transition, cytochrome c release, and

caspase activation. FASEB J 14: 847–858.

19. Malisan F, Franchi L, Tomassini B, Ventura N, Condo I, et al. (2002)

Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med

196: 1535–1541.

20. Yuasa H, Scheinberg DA, Houghton AN (1990) Gangliosides of T lymphocytes:

evidence for a role in T cell activation. Tissue Antigens 36: 47–56.

21. Giammarioli AM, Garofalo T, Sorice M, Misasi R, Gambardella L, et al. (2001)

GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association

with ezrin cytoskeletal protein. FEBS Lett 506: 45–50.

22. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR (2002) Cholesterol-rich

lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62:

2227–2231.

23. Foley GE, Lazarus H, Farber S, Uzman BG, Boone BA, et al. (1965) Continuous

culture of human lymphoblasts from peripheral blood of a child with acute

leukemia. Cancer 18: 522–529.

GD3-CLIPR-59 Association

PLoS ONE | www.plosone.org 8 January 2010 | Volume 5 | Issue 1 | e8567



24. Malorni W, Garofalo T, Tinari A, Manganelli V, Misasi R, et al. (2008)

Analyzing lipid raft dynamics during cell apoptosis. Methods Enzymol 442:
125–140.

25. Kotani M, Kawashima I, Ozawa H, Ogura K, Ishizuka I, et al. (1994)

Immunohistochemical localization of minor gangliosides in the rat central
nervous system. Glycobiology 4: 855–865.

26. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev
Biochem 47: 819–846.

27. Webb Y, Hermida-Matsumoto L, Resh MD (2000) Inhibition of protein

palmitoylation, raft localization, and T cell signaling by 2-Bromopalmitate and

polyunsaturated fatty acids. J Biol Chem 275: 261–270.

28. Zamzami N, Maisse C, Metivier D, Kroemer G (2001) Measurement of

membrane permeability and permeability transition of mitochondria. Methods

Cell Biol 65: 147–158.

GD3-CLIPR-59 Association

PLoS ONE | www.plosone.org 9 January 2010 | Volume 5 | Issue 1 | e8567


