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The contributions of short RNAs to
the control of repetitive elements

are well documented in animals and
plants. Here, the role of endogenous
RNAi and AF10 homolog ZFP-1 in the
adaptation of C. elegans to the environ-
ment is discussed. First, modulation of
insulin signaling through regulation of
transcription of the PDK-1 kinase
(Mansisidor et al., PLoS Genetics, 2011)
is reviewed. Second, an siRNA-based
natural selection model is proposed in
which variation in endogenous siRNA
pools between individuals is subject to
natural selection similarly to DNA-based
genetic variation. The value of C. elegans
for the research of siRNA-based epigenetic
variation and adaptation is highlighted.

Introduction

RNA interference was discovered in
C. elegans as a gene silencing phenomenon
induced by double-stranded RNA (dsRNA)
that was introduced by injection or by the
feeding of bacteria that express dsRNA.1,2

Shortly, RNAi was shown to exist in
organisms ranging from fission yeast to
humans and to be similar to the phenome-
non of repetitive transgene silencing dis-
covered in plants.3,4 The two major steps in
the RNAi process are: (1) generation of
short 21–30 nt interfering RNAs (siRNAs)
and (2) targeting of specific cellular RNAs
by siRNAs complementary to these targets,
resulting in gene silencing through a variety
of different mechanisms.

The first mutants deficient in the RNAi
response, rde, did not have obvious
developmental abnormalities.5,6 However,
some of them exhibited mobilization of
transposons in the germline,5,6 a pheno-
type consistent with the view of RNAi as a

defense mechanism against viruses and
repetitive DNA elements. Later, it was
discovered that some RNAi factors, such as
the dsRNA-specific ribonuclease Dicer, do
have a role in development.7-9 This role
was shown to be in the processing of the
hairpin precursors of the short RNAs lin-4
and let-7,7,8 which were known to regulate
developmental timing.10,11 lin-4 and let-7
were the first examples of a class of
endogenous RNAs derived from hairpin
precursors and named microRNAs
(miRNAs).12-14 It became evident that
miRNAs are not the only endogenous
small RNAs in C. elegans15 with the
discovery of increasing numbers of endo-
genous siRNAs (endo-siRNAs) similar to
the siRNAs generated during experimental
dsRNA treatment.15-20 Endo-siRNAs are
short interfering RNAs that are largely
generated by RNA-dependent RNA poly-
merases (RdRP) and are perfectly antisense
to the sequences of thousands of coding
genes.15-20 Recent studies have identified
endo-siRNAs perfectly complementary to
coding mRNAs in flies21-24 and mam-
mals,25,26 which means that these short
RNAs are not limited to organisms
containing RdRP genes, such as C. elegans.
Despite the progress of RNAi research and
the discovery of increasing numbers of
pathways regulated by microRNAs, our
understanding of the biological roles of
RNAi processes mediated by endo-siRNAs
is limited.

RDE-4 and ZFP-1 Regulate
Endo-siRNA Targets

In order to find genes potentially regulated
by endogenous RNAi, we conducted an
mRNA expression profiling study27 using
mutants that affect RNAi-induced trans-
criptional gene silencing.28 We chose
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loss-of-function mutants in two genes: rde-4
and zfp-1, which are predicted to act in the
initiation of RNAi and downstream in the
pathway, respectively. RDE-4 is a dsRNA-
binding protein and a component of the
Dicer complex required for siRNA produc-
tion.29 It acts upstream in the RNAi
pathway.30 ZFP-1 is a chromatin factor
homologous to human AF1031 and may
mediate the repressive effect of siRNAs
on their target genes directly.

Our analysis revealed that zfp-1 and rde-
4 mutant animals have strikingly similar
profiles of misregulated genes; close to 250
genes are commonly regulated by both
zfp-1 and rde-4.27 This functional link
between upstream and downstream RNAi
factors indicated the possibility of a
significant role for RNAi-induced chro-
matin silencing in the regulation of
endogenous genes. Additional analysis of
the microarray data further supported a
direct role for RDE-4 and ZFP-1 in the
regulation of RNAi targets: several studies
had reported the cloning of hundreds
of endogenous siRNAs antisense to the
protein coding genes,15,19,20 and we found
a statistically significant enrichment of
genes with siRNAs in the sets of genes
upregulated in zfp-1 (p value 10222) and
rde-4 (p value 10219) mutants, but not
among the downregulated genes.27 These
data strongly suggested that the genes
upregulated in the studied mutants may
represent direct targets repressed by RNAi.
The downregulated genes might be
affected by the mutations indirectly. The
genome-wide localization of ZFP-1 is
consistent with its direct role in negatively
regulating endo-siRNA targets32 (Cecere
et al., in preparation).

Modulation of Insulin Signaling
by ZFP-1 and RDE-4

Functional analysis of genes misregulated
in the zfp-1 and rde-4 mutants revealed a
connection to stress response and longe-
vity. First, translation-related genes tar-
geted by endogenous siRNAs were notably
upregulated in rde-4 and zfp-1 mutant
animals.27 Second, metabolic genes
expressed in the intestine, which promote
longevity and resistance to oxidative
stress,33 were downregulated in the same
mutants.27,32 Inhibition of translation34-36

and the activation of genes encoding
proteins combating oxidative-stress
damage, such as superoxide dismutase,37

are essential for fitness in unfavorable
conditions. Since the gene expression
signature in the rde-4 and zfp-1 mutants
was the opposite of that favored during
stress, it suggested that these mutants
should be deficient in stress responses.
Indeed, we found them to be short-lived,32

consistent with previous reports,38,39 and
sensitive to oxidative stress (paraquat) and
pathogens (P. aeruginosa).32

Although ZFP-1 and endogenous RNAi
factors inhibit a number of genes whose
regulation may contribute to increased
fitness, we found that downregulation
of the 3-phosphoinositide-dependent
kinase-1 (PDK-1)40 by ZFP-1 and
RDE-4 is most significant for the normal
life span and stress resistance of
C. elegans.32 Indeed, the short lifespan
and increased stress sensitivity of the zfp-1
and rde-4 mutants is fully suppressed by
the loss-of-function mutation in pdk-1.32

PDK-1 is a conserved kinase activated in
response to insulin and phosphatidylino-
sitol (PI3), whose major targets are AKT
kinases40 (Fig. 1). In C. elegans, activation
of AKT-1/2 through the insulin-signaling
pathway leads to the phosphorylation and
inactivation of DAF-16/FOXO41,42 and
SKN-1/Nrf,43 the key transcription factors
promoting stress response and longevity
(Fig. 1). Therefore, modulation of the
insulin-signaling pathway has a large
impact on the global transcription profile
of an organism. The best-known factor
antagonizing insulin and PI3K signaling is
the lipid phosphatase PTEN (DAF-18 in
C. elegans).44 In addition, a serine/threo-
nine protein phosphatase PPTR-1 has
been shown recently to antagonize
AKT-1 phosphorylation and activation45

(Fig. 1). Our work demonstrates that
transcriptional modulation of signal trans-
duction components has a potential for
inducing significant biological effects as
well. The zfp-1 gene has been previously
identified as a direct target of DAF-16,38

and we find that DAF-16 has a modest
positive effect on zfp-1 expression.32 This
connection suggests a possibility of a
positive feed-forward loop, which can be
induced in response to initial DAF-16
activation during stress (Fig. 1).32

Currently, mechanistic studies of the
components of the multiple RNAi path-
ways in C. elegans are conducted largely
independently of investigations of their
biological roles. Many reports identify
changes in the expression of endo-siRNA
target genes in mutants deficient in endo-
siRNA production.17,18,46-51 It is often
assumed that specific phenotypes of RNAi
mutants are due to the combined effect of
misregulation of a multitude of targets. We
find that misregulation of just one gene,
pdk-1, fully explains the reduced lifespan
and stress sensitivity of rde-4 mutant
animals since rde-4; pdk-1 double mutants
are long-lived and stress resistant, like
pdk-1(sa709).32 Therefore, it is important
to conduct careful epistasis and/or rescue
experiments when gene expression changes
are thought to cause specific phenotypes.

The role of a dsRNA-binding protein
RDE-4 in exogenous RNAi is relatively
well understood: it is required for the
generation of siRNAs.29,30,52 However, its
contribution to endogenous siRNA produc-
tion is not so clear, as it is not uniformly
required47,51 and seems to participate in
more than one pathway.48,50 We have
connected the biological phenotype of the

Figure 1. Insulin-signaling pathway and
its modulators in C. elegans (adapted from
Fig. 2C, Mansisidor et al., 2011). Factors
promoting longevity and resistance to
oxidative stress are shown in magenta font;
factors restricting oxidative stress responses
are shown in blue.
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rde-4 null mutant to the regulation of the
pdk-1 gene. endo-siRNAs targeting pdk-1
are very unabundant and mostly correspond
to the repeat elements present at the pdk-1
promoter.32 Repeat-derived promoter endo-
siRNAs have been documented for many
other genes expressed higher in the rde-4
mutants.32 Therefore, repetitive elements in
promoters appear to be utilized for gene
expression regulation and adaptive responses
in C. elegans similarly to several instances
known in plants.53,54

Endo-siRNAs and Epigenetic
Inheritance of Fitness

Endogenous RNAi in C. elegans targets
both repetitive elements and euchromatic,
often essential, genes.16,17,48 Is there gene
expression regulation by endogenous
RNAi that is not connected to control of
repetitive elements? The WAGO system
of redundant Argonautes,17 as well as the
specific nuclear RNAi pathway of NRDE
proteins,55 appear to mediate genome
surveillance, while gene-specific endo-
siRNAs largely exist in a complex with
CSR-1 Argonaute.16 Consistently, we find
that endo-siRNA target genes expressed
higher in the rde-4 and zfp-1 mutant
larvae27 mostly represent CSR-1 targets
(Cecere et al., in press).

The inhibition of gene expression by an
RNA interference mechanism is the epi-
genetic equivalent of a genetic mutation.
The existence of a large pool of endo-
genous short RNAs antisense to many
genes (CSR-1-bound)16 may provide a
background of random epigenetic muta-
tions present in individuals. If selective
pressure is applied to a population of such
organisms or cells, not only genetic, but
also epigenetic variation could be subject
to selection. Selection for epigenetic traits
is faster and is also more flexible since it
can be easily reversed.

I propose that siRNA molecules repre-
sent the effectors of epigenetic variation
and selection and that changes in siRNA
levels leading to corresponding changes in
gene expression can be modulated by the
environment to ensure maximum fitness
of the organism (Fig. 2).

The model outlined in Figure 2 predicts
several important features of siRNA-based
epigenetic adaptation to the environment:

(1) background levels of endo-siRNAs
specific to virtually any gene; (2) the
ability of endo-siRNAs to significantly
downregulate the expression of their
corresponding gene; (3) heritability of
endo-siRNAs; (4) differences between
individuals in the composition of endo-
siRNA pools. There are several lines of
evidence supporting these predictions:
(1) Cloned endo-siRNAs correspond to
virtually every gene of C. elegans,16-18,48

although some genes have thousands of
them and others only a few. (2) An inverse
correlation between the amount of endo-
siRNA present and the mRNA expression
level of the corresponding gene in
C. elegans has been reported.17,18,46-51 (3)
RNAi is heritable in C. elegans30,56,57 and
characteristics of the heritable RNAi agent
are consistent with those of siRNAs.30 In
addition, inheritance of functional
Drosophila piRNAs specific for transposon
sequences has been reported,58 and a
connection between epigenetic inheritance
and sperm RNA exists in mice.59 (4)
Although there is no direct evidence to

support the variation in endo-siRNA
abundance or the variation in the com-
position of endo-siRNA pools between
individuals, our analysis of RNAi inheri-
tance noted a high degree of variation
between siblings inheriting RNAi
(Grishok 2001, thesis research). Instead
of a large number of F2 progeny being
affected moderately by RNAi, a relatively
small number of individuals demonstrated
a very high level of RNAi while others
were virtually unaffected.

Epigenetic RNAi-based mechanisms are
not likely to be limited to lower organisms
and may be involved in the immune
escape and drug-resistance of malignant
tumors and in other cases where cells
evolve to escape the action of therapeutic
agents. The revelation that the epigenome
in the form of short RNAs is capable of
modulating the response of organisms to
environmental stress may help elucidate
new ways of adaptation to harsh environ-
ments, and C. elegans promises to be a
perfect model organism for future dis-
coveries in this exciting field.

Figure 2. Model for the adjustment of endogenous siRNA pools and epigenetic gene expression
regulation to environmental conditions. In population I there is a stochastic production and background
variation in siRNA pools targeting genes 1, 2 and 3. In organism/cell A, the expression of gene 1 is
reduced, in organism/cell B, gene 2 is, in organism/cell C, gene 3 is. When the environment changes
to the advantage of organism/cell B, its progeny will dominate the ensuing population II.
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