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Precision medicine in prostate cancer
Precision medicine is an emerging field that uses 
genetic and environmental markers to determine 
the diagnosis of disease subcategories, the prog-
nosis of patients, the choice of therapeutic, and 
accurate dosing. Such practices have become 
increasingly sophisticated, involving information 
obtained from genomics, metabolomics, and pro-
teomics. Moreover, precision medicine method-
ologies are now available throughout the space of 
medical oncology: drug design, drug develop-
ment, use of currently approved medications, and 
salvage therapy.

Developments in the medical treatment of pros-
tate cancer have historically depended on a more 
sophisticated understanding of how androgens 
influence the disease. In the 1940s, acting on 
observations from surgical castration,1 Huggins 
and Hodges discovered that restricting testicular 
androgen production by means of oral estrogen 
analogues led to slower progression in many 
patients who developed metastatic disease.2,3 In 
the 1960s, several groups discovered the andro-
gen receptor (AR),4–6 leading to the development 
of the first antiandrogens.7 Agents used to coun-
teract adrenal hyperplasias, ketoconazole, and 
aminoglutethimide8,9 were later repurposed to 
counteract prostate cancer in 1976 and 1983; 

these agents work by blocking the production of 
adrenal androgens. In the early 1980s, Andrew 
Schally developed the first luteinizing hormone 
releasing hormone (LHRH) agonists that were 
found to block testicular androgen production.10 
However, such therapies are only temporarily 
effective in patients with disease outside of the 
prostate gland, and the majority of patients 
develop castration-resistant prostate cancer 
(CRPC). Effective CRPC treatments have only 
been discovered in the past 13 years, when doc-
etaxel chemotherapy was found to prolong overall 
survival.11,12 Nevertheless, treatment decisions 
were not typically based on the recognition of 
interindividual differences or a diversity of thera-
peutic options.

While a priori assessment of disease markers 
remains rare, recent advances in prostate cancer 
therapy have involved markers of prostate tumo-
rigenesis, progression, and acquired therapeutic 
resistance (Table 1). Several of these markers are 
not involved in androgen pathways, reflecting a 
more nuanced understanding of the molecular 
drivers of prostate cancer. Such recognition of 
interindividual differences and a better under-
standing of the disease has led to several effective 
therapeutics that can be utilized in various disease 
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subgroups harboring different genetic and muta-
tional backgrounds. Prognostic tests have also 
recently emerged that can determine the likeli-
hood of disease recurrence, metastases, and pros-
tate cancer specific mortality (PCSM). The 
purpose of the present review is to discuss the 
recent progress of personalized approaches to the 
treatment of prostate cancer.

Selective therapeutics

Antiandrogens
There are currently several classes of antiandro-
gens.14 Previously, antiandrogen therapy con-
sisted of AR ligands that prevent AR transcription 
by blocking androgen binding (i.e. flutamide, 
nilutamide, and bicalutamide). In 603 treatment-
naïve patients with disseminated prostate cancer, 
flutamide and leuprolide compared with placebo 
and leuprolide significantly prolonged duration of 
progression-free (16.5 versus 13.9 months) and 
overall (35.6 versus 28.3 months) survival.15 In 

457 patients initially treated with orchiectomy, 
nilutamide compared with placebo had a signifi-
cantly higher proportion of patients with normal 
prostate-specific antigen (PSA) at 3 months (59% 
versus 28%) and longer progression-free (21.2 
versus 14.7 months) and cancer-specific survival 
(37.0 versus 29.8 months).16 In 205 patients with 
stage III or IV prostate cancer, bicalutamide with 
an LHRH agonist versus an LHRH agonist alone 
demonstrated a higher proportion of patients with 
normal PSA at 3 months (79.4% versus 38.6%) 
and a greater estimated 5-year overall survival 
rate (75.3% versus 63.4%).17,18

Newer antiandrogens typically also block AR tran-
scription via multiple mechanisms. For instance, 
enzalutamide, apalutamide, and darolutamide are 
AR ligands which inhibit androgen binding, AR 
nuclear translocation, and the DNA-binding 
capacity of the AR. Niclosamide prevents AR 
binding to promoter sites on DNA and promotes 
AR proteolysis. EPI-001 and niphatenones both 
prevent AR-DNA binding. Because they target 

Table 1.  Genetic abnormalities in prostate cancer and potential therapies.

Gene Type of aberration Function and traits Potential therapy

BRCA2 Somatic mutations Repairs DNA strand breaks
Tumor suppressor

Olaparib

CYP17A1 Differential expression in 
the tumor microenvironment

Involved in sterol synthesis Ketoconazole, 
abiraterone, 
seviteronel

SOX2 Differential expression in 
tumor cells undergoing 
lineage plasticity

Transcription factor 
important for stem cells

EGFR inhibitors

OATP1B3 Differential expression in 
tumor cells, and inherited 
polymorphisms

Transporter of drugs, 
hormones and small 
molecules

–

AR-V7 Splice variants Androgen receptor variant. 
Marker of resistance 
to abiraterone and 
enzalutamide

Miclosamide, 
onalespib, aurora A 
kinase inhibitors

TMPRSS2-
ERG

Somatic mutations Fusion of an enzyme and a 
transcription factor. Found 
in 40%–80% of prostate 
cancers13

–

MSI Somatic mutations and 
hypermutability resulting 
from Lynch syndrome

Frequent mutational status Pembrolizumab

CYP17A1, cytochrome P450 17A1; EGFR, epidermal growth factor receptor; MSI, microsatellite instability; OATP1B3, 
organic anion transporting polypeptide 1B3; SOX2, sex determining region Y box2.
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multiple elements of the androgen biosynthesis 
and gene expression pathways at once, newer 
antiandrogens inhibit intratumoral AR transcrip-
tion more strongly than older antiandrogens and 
are typically more effective. For instance, 396 men 
with CRPC were treated with enzalutamide or 
bicalutamide with androgen deprivation therapy 
(ADT) in the double-blind, phase II STRIVE 
trial.19 Patients treated with enzalutamide showed 
significantly better results than those with bicaluta-
mide, including a proportion of patients with at 
least a 50% PSA decline (81% versus 31%), at least 
a 90% PSA decline (65% versus 9%), and progres-
sion-free survival (19.4 versus 5.7 months).

Androgen synthesis inhibitors
In order for the AR to adopt its active conforma-
tion, bind DNA, and subsequently activate effector 
genes, it must first bind either testosterone or its 
more preferred ligand, dihydrotestosterone (DHT). 
To prevent transcription of AR-downstream genes, 
which lead to cellular growth, various therapeutics 
target the androgen synthesis pathway in an effort 
to deplete the cells of potential AR ligands. The 
cytochrome P450 17A1 (CYP17A1) enzyme con-
verts pregnenolone to 17α-hydroxypregnenolone 
by its hydroxylase activity and 17α-
hydroxypregnenolone to dehydroepiandrosterone 
by its lyase activity; 17α-hydroxypregnenolone and 
dehydroepiandrosterone are important precursors 
for testosterone and DHT.

Therapeutics, such as abiraterone and ketocona-
zole, inhibit both reactions catalyzed by the 
CYP17A1 enzyme, while seviteronel selectively 
inhibits its lyase activity. Once testosterone is syn-
thesized, the 5α-reductase enzyme converts it into 
DHT, which has a stronger affinity for the AR. 
Thus, androgen synthesis inhibitors have a place 
in prostate cancer treatment, and abiraterone is a 
standard of care for patients with metastatic, 
CRPC regardless of previous treatment with doc-
etaxel.20,21 In 1195 patients with metastatic, 
CRPC previously treated with docetaxel, patients 
treated with abiraterone experienced a signifi-
cantly longer overall survival than those treated 
with placebo (15.8 versus 11.2 months). In 1088 
patients with metastatic, CRPC who had not 
received docetaxel, the abiraterone treatment 
group experienced a significantly longer radio-
graphic progression-free survival than the placebo 
group (not reached versus 8.3 months) and a 
longer overall survival, even though not significant 
(35.3 versus 30.1 months). Abiraterone was also 

tested in 1199 patients with metastatic, castration-
sensitive disease, and it showed significantly better 
results compared with placebo in radiographic 
progression-free (33.0 versus 14.8 months) and 
overall survival (not reached versus 34.7 months).22 
Unfortunately, while androgen synthesis inhibi-
tors effectively stem tumor growth for a brief 
period of time, resistance to these therapies even-
tually develops, and prostate cancer can progress 
without androgen signaling.

Cytotoxic chemotherapy
Cytotoxic chemotherapy, such as docetaxel and 
cabazitaxel, remains a mainstay of prostate can-
cer treatment based on several studies. The 
TAX327 trial showed that in 1006 patients with 
metastatic, castration-resistant disease treated 
with mitoxantrone, docetaxel weekly or doc-
etaxel every 3 weeks, overall survival favored the 
last group (16.5, 17.4 versus 18.9 months), so 
docetaxel every 3 weeks has become the stand-
ard.11 Indication for docetaxel was expanded to 
include metastatic, castration-sensitive disease 
based on two trials, STAMPEDE and 
CHAARTED.23,24 In the STAMPEDE trial with 
2962 patients, the group treated with docetaxel 
and ADT with or without radiotherapy exhibited 
a significantly longer overall survival compared 
with the group treated with ADT with or without 
radiotherapy (81 versus 71 months). This finding 
was duplicated in the CHAARTED trial with 
790 patients, in which patients treated with doc-
etaxel and ADT showed a significantly longer 
overall survival compared with those treated with 
ADT (57.6 versus 44 months). For patients with 
metastatic, castration-resistant disease already 
treated with docetaxel, cabazitaxel was shown to 
be efficacious.25 In 755 patients treated with 
either cabazitaxel or mitoxantrone, the former 
group showed a significantly longer overall sur-
vival (15.1 versus 12.7 months). Thus, docetaxel 
and cabazitaxel are standards of care in meta-
static prostate cancer.

Previous dogma stated that the taxanes acted by 
inducing G2/M cell cycle arrest.26 Yet, several 
studies have now demonstrated that docetaxel 
and cabazitaxel also disrupt microtubules that are 
required for AR nuclear translocation, and that 
docetaxel is a substrate for dysregulated trans-
porters that are expressed de novo in prostate can-
cer.14 Thus, even the application of docetaxel and 
cabazitaxel is warranted in some genetic contexts 
and not others.
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Targeting AR cofactors
In addition to blocking androgen biosynthesis and 
AR gene signaling, drugs have recently been devel-
oped to target transcriptional coactivators and epi-
genetic regulators of AR. One such example is the 
bromodomain and extraterminal (BET) inhibitor, 
JQ1. JQ1 works by inhibiting the two bromodo-
mains in BRD4 that are essential for its binding to 
the AR. Because BRD4 is the factor that helps the 
AR recruit RNA polymerase II to gene promoters, 
inhibition of BRD4 with JQ1 results in a loss of 
AR-driven gene transcription. In a VCaP xeno-
graft model, enzalutamide demonstrated a pro-
metastatic effect that was not seen with JQ1 
treatment. JQ1 also inhibited tumor growth and 
AR target gene expression more than enzaluta-
mide. However, JQ1 only altered gene expression 
in AR-positive cell lines, indicating that JQ1 treat-
ment would be the most effective earlier in prostate 
cancer before patients’ tumors progressed to cas-
tration resistance.27 While this treatment has yet to 
be tested in a clinical setting, these in vitro and in 
vivo results heavily suggest that AR cofactors and 
transcriptional regulators pose attractive targets for 
therapeutic development.

Therapeutic options for gene dysregulation 
in prostate cancer

ADT resistance
AR splice variants. While numerous AR splice 
variants have been identified, AR-V1 to AR-V7 
are spliced in such a way that truncates the AR’s 
ligand binding domain and confers the potential 
for constitutive activation of the AR. However, 
AR-V2, AR-V3, and AR-V4 are not observed in 
clinical prostate cancer.28,29 AR-V1 is expressed 
more frequently in CRPC, but it lacks several 
amino acids that decrease its ability to localize to 
the nucleus, and its expression is not correlated 
with treatment outcome in patients.28,29 The 
AR-V7 splice variant excludes the ligand binding 
domain, making it the most relevant AR splice 
variant in prostate cancer. This deletion results 
in a constitutively active AR that can translocate 
to the nucleus and signal gene expression even in 
the absence of testosterone or DHT.14,28,29 The 
upregulation of the AR-V7 splice variant likely 
occurs due to the increased expression of various 
splicing factors, such as splicing factor proline 
and glutamine-rich (SFPQ), that is observed in 
prostate cancer.30–32 However, as of yet there are 
no clinically approved treatments targeting these 
factors.

Patients with AR-V7 experienced lower response 
rates and survival after treatment with enzaluta-
mide and abiraterone compared with those with-
out the variant.33,34 Patients with AR-V7 had better 
response to and survival with taxanes than with 
abiraterone and enzalutamide. These phenomena 
are attributable to an absence of the ligand-binding 
domain. Such differences in response and survival 
by treatment type did not occur for patients lack-
ing AR-V7. Therefore, AR-V7 may be a useful 
biomarker for prostate cancer treatment selection.

Candidate agents, which may target AR-V7, 
include niclosamide, onalespib, and aurora A 
kinase inhibitors. Niclosamide is an antihelmin-
thic drug, which reduces AR-V7 protein levels 
and inhibits growth of AR-V7-expressing cancer 
cells in vitro and in vivo.35 It also shows synergistic 
effects with enzalutamide or abiraterone in vitro 
and in vivo.35,36 Onalespib, a heat shock protein 
inhibitor, reduces the generation of AR-V7 by 
introducing alternative splicing events.37 Aurora 
A kinase inhibition reduces AR-V7 mRNA and 
protein levels.38 In summary, specific agents may 
soon become available for patients for whom abi-
raterone and enzalutamide are ineffective.

ADT evasion via CYP17A1 androgen synthesis.  In 
normal prostate cells, AR-mediated gene signaling 
is activated by gonadally derived testosterone, 
which is subsequently converted into the more 
potent androgen, DHT. However, in prostate can-
cer, tumors utilize the CYP17A1 enzyme to con-
vert androgen precursors from the adrenal glands, 
such as dehydroepiandrostenedione (DHEA), into 
testosterone, thereby evading the low androgen 
environment caused by chemical or surgical castra-
tion. The CYP17A1 enzyme specifically catalyzes 
the synthesis of androgen and glucocorticoid pre-
cursors (17α-hydroxypregnenolone and 17α-
hydroxyprogesterone) through hydroxylase activity 
and weak androgens (DHEA and androstenedi-
one) via lyase activity.39 Once these precursors are 
converted to testosterone, the steroid-5α-reductase 
isoenzyme-2 (SRD5A2) reduces testosterone to 
DHT, which has an even higher affinity for the AR 
than testosterone and, subsequently, plays a larger 
role in upregulating androgen-dependent gene 
transcription.40 While SRD5A2 is the dominant 
isozyme in normal prostate tissue, prostate tumors 
upregulate the SRD5A1 enzyme.

As a result of its role in developing resistance to 
ADT, CYP17A1 is an established target for 
prostate cancer therapy. Ketoconazole, an 
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antifungal, weakly and nonspecifically inhibits 
CYP17A1 and has been noted to be active in 
prostate cancer at high doses.9 A newer agent, 
abiraterone, more selectively inhibits CYP17A1 
resulting in decreases in circulating androgens 
(DHEA, testosterone, and dihydrotestoster-
one). Thus, abiraterone inhibits AR signaling, 
prolongs survival, and is a standard therapy for 
metastatic, castration-resistant cancer.41,42 
Since abiraterone inhibits CYP17A1 hydroxy-
lase sixfold more selectively than CYP17A1 
lyase, it causes glucocorticoid deficiency and 
must be administered with prednisone. Another 
CYP17A1 inhibitor, seviteronel, more selec-
tively inhibits the lyase function of CYP17A1 
and thereby reduces androgen biosynthesis, AR 
signaling, and tumor growth without causing 
glucocorticoid deficiency. Therefore, should 
seviteronel demonstrate similar or superior effi-
cacy to abiraterone, it may also become a stand-
ard option.43,44

OATP1B3. The organic anion transporting poly-
peptide (OATP) family of transporters is impli-
cated in prostate tumorigenesis, with relevant 
potential therapy to be developed. As indicated 
by their name, the OATP family of transporters 
carries drugs, hormones including testosterone, 
and small molecules, and thus is essential for a 
functional liver, which processes and detoxifies 
numerous substances.45 OATP family expression 
has also been noted in other organs, such as 
breast, lung, and prostate, and specifically 
OATP1B3, a member of this family, has been 
implicated in prostate tumorigenesis.46 Testoster-
one uptake differed among the cells exhibiting 
different polymorphisms, and the patients who 
harbored the haplotypes with reduced testoster-
one uptake exhibited longer progression-free and 
overall survival than those who did not. Further-
more, OATP1B3 mRNA and protein expression 
directly correlated with Gleason scores, implicat-
ing it as a biomarker of aggressive disease.47 
Therefore, OATP1B3 inhibition leading to tes-
tosterone reduction may have a role in prostate 
cancer therapy.

It was also recently determined that in addition 
to testosterone, OATP1B3 has the ability to 
transport docetaxel and abiraterone into the 
cell.48,49 The knowledge that OATP1B3 is 
upregulated in resistance can allow physicians 
to make more informed decisions regarding the 
sequence of taxane and androgen biosynthesis 
targeting drugs.

Therapeutic options for somatic mutations 
in prostate cancer

AR mutations
As tumors grow and progress, they accumulate 
somatic mutations that benefit the tumor. Because 
the AR plays a large role in the development of 
prostate cancer, mutations that allow the AR to 
bind alternative ligands, such as estrogen and 
progesterone, and continue to signal gene expres-
sion in the absence of androgens are selected for. 
Among the more than 70 different missense 
mutations identified in prostate cancer, H874Y, 
F876L, T877A, and W741L/C are particularly 
interesting because they are linked to drug resist-
ance and disease progression.14,50,51

Each of these mutations changes the conforma-
tion of the AR by replacing amino acids in the 
ligand binding pocket, so that it can bind ligands 
other than testosterone and DHT. The H874Y 
and T877A somatic mutations similarly affect the 
AR and create more space in the ligand binding 
pocket, allowing the AR to bind estradiol, proges-
tins, and cyproterone acetate, among other 
ligands.14,52,53

The F876L and W741L/C mutations relate more 
directly to drug resistance. The F876L mutation 
alters the ligand binding pocket so that enzaluta-
mide binds the AR and promotes its activation 
rather than inhibition.54 Similarly, the W741L/C 
mutation promotes bicalutamide binding in a way 
which moves the AR into its active conforma-
tion.55,56 Such mutations create obstacles for 
designing effective treatment of CRPC.

TMPRSS/ERG.  An important discovery was noted 
in 2005, in which TMPRSS2-ETS gene fusions 
were noted in 23 of 29 prostate cancer tissues, iden-
tifying it as an important somatic mutation.57 This 
discovery was notable because such gene transloca-
tions and consequent fusions had been well 
described for other malignancies, which include 
BCR-ABL in chronic myeloid leukemia, MYC-
IGH in Burkitt’s lymphoma, and EWS-FLI1 in 
Ewing’s sarcoma but not for prostate cancer.58–60 
As a result of the gene fusions, TMPRSS2 may 
mediate the overexpression of ETS family mem-
bers, ERG or ETV1. This is significant because 
ERG is a frequently expressed oncogene in prostate 
cancer, and TMPRSS2-ERG fusions mediate inva-
sion in both in vitro and in vivo models of prostate 
cancer.61,62 When coupled to serum PSA, urine 
detection of TMPRSS2-ERG has been shown to 
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enhance the ability to predict prostate cancer in tis-
sue biopsy.63 However, TMPRSS2-ERG has been 
an elusive therapeutic target, with mixed results 
from clinical trials of agents including inhibitors of 
poly ADP ribose polymerase 1 (PARP1), DNA 
protein kinase, and histone deacetylase 1.64 Never-
theless, the potential of a successful, targeted ther-
apy for a majority of prostate cancers has sustained 
research efforts into TMPRSS2-ERG.

BRCA1/2.  BRCA1 and BRCA2 mutations have 
emerged as potential therapeutic targets in cer-
tain patients with prostate cancer because cells 
expressing such mutations have a significantly 
diminished capacity to repair double-stranded 
DNA (dsDNA) breaks. Studies have reported on 
the frequencies and relative importance of 
BRCA1/2 mutations. In 692 men with metastatic 
disease, 0.9% had germline mutations in BRCA1 
and 5.3% in BRCA2.65 In 251 Ashkenazis with 
prostate cancer, 2% had BRCA1 mutations com-
pared with 3.2% with BRCA2.66 BRCA1 muta-
tion carriers had no increased risk of prostate 
cancer, in contrast to a 4.8-fold increased risk 
among BRCA2 mutation carriers.

Since normal (BRCA1/2-positive) cells efficiently 
repair dsDNA breaks, tumor cells that have 
acquired BRCA1/2 mutations can be specifically 
targeted.67,68 Olaparib, a PARP inhibitor, pre-
vents repair of single-stranded DNA (ssDNA) 
breaks, leading to rapid accumulation of dsDNA 
breaks in BRCA1/2 mutated cells. A phase I study 
showed that not only did olaparib have a favora-
ble side-effect profile, it also showed antitumor 
activity only in those with BRCA1 or BRCA2 
mutation.69 The TOPARP-A trial assessed olapa-
rib as a therapy among 50 patients with meta-
static, CRPC, most of whom were pretreated 
with abiraterone (96%), androgen deprivation, 
and docetaxel (100% each).70 In TOPARP-A, the 
16 responders included all seven patients with a 
BRCA2 mutation. Thus, olaparib may become 
part of the prostate cancer therapeutic regimen 
for a subset of patients with DNA repair defects. 
Of interest, circulating cell-free DNA (cfDNA) 
samples collected during the TOPARP-A trial 
showed great promise for precision medicine as a 
prognostic, predictive, and resistance bio-
marker.71 Reduction in their levels correlated 
with overall survival. Not only were DNA repair 
mutations detectable in cfDNA, their allelic fre-
quencies decreased in responders, and cfDNA 
could be utilized to detect emergence of resist-
ance to therapy.

Microsatellite instability
The US Food and Drug Administration approved 
the use of pembrolizumab in patients harboring 
tumors with microsatellite instability (MSI) regard-
less of the tumor site.72 A minority of prostate 
tumors (~4–25%) demonstrate MSI,73 which is 
defined by hypermutability of repeated sequences of 
DNA resulting from mismatch repair deficiencies 
and leads to heritable risk of prostate cancer.74,75 
Such mutational burden results in sensitivity to 
blockade of the programmed cell death protein 1 
(PD-1), a negative feedback pathway that represses 
T helper 1 (Th1) cytotoxic immune response.76

Therapeutic resistance mechanisms

ARv7
Since Antonarakis and colleagues linked the pres-
ence of AR-V7 mRNA in circulating tumor cells 
with resistance to both enzalutamide and abira-
terone, AR-V7 has been at the forefront of pros-
tate cancer resistance research.77 As mentioned 
previously, the AR-V7 splice variant excludes the 
AR’s ligand binding domain, which is the target 
of both enzalutamide and (indirectly) abirater-
one. Without the ligand binding domain, there is 
no place for enzalutamide to bind and, as a result, 
AR-V7 continues to translocate to the nucleus 
and activate AR-dependent gene transcription. 
Abiraterone works by inhibiting the synthesis of 
both testosterone and DHT, however the AR-V7 
isoform no longer depends on ligand binding for 
activation, and therefore the therapeutic activity 
of abiraterone no longer has an effect.

Additionally, a growing body of evidence suggests 
that AR-V7 may play a role in an overlapping 
resistance mechanism to both abiraterone and 
docetaxel. In a clinical study, patients who 
received docetaxel treatment following abirater-
one did not respond as well to docetaxel as those 
who had not received prior abiraterone treatment.78 
Furthermore, patients who were abiraterone 
resistant also demonstrated resistance to subse-
quent docetaxel treatment.

Sex determining region Y box2
Sex determining region Y box2 (SOX2) is an essen-
tial stem cell transcription factor that promotes 
enzalutimide resistance by promoting lineage plas-
ticity, a process by which prostate tumor cells 
undergo dedifferentiation to neuroendocrine cells 
that simultaneously display luminal, basal, and 
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epithelial characteristics.79 SOX2 expression also 
promotes growth and inhibits apoptosis in untreated 
CRPC cells,80,81 and its expression is clinically asso-
ciated with biochemical recurrence, lymph node 
metastasis, migration, and invasion of prostate can-
cer cells.82 Although no SOX2 inhibitor for pros-
tate cancer therapy has been developed, an 
epidermal growth factor receptor (EGFR) inhibitor 
reduces SOX2 expression in prostate cancer cells, 
implicating a possible therapeutic option.83

Prognostic genetic testing
Integration of genomics and pharmacogenomics 
into patient care is closely connected with improve-
ment of diagnostics, and RNA profiling tests, such 
as Decipher(GenomeDx, San Diego, CA), 
Oncotype DX (Genomic Health, Inc., Redwood 
City, CA), and Prolaris (Myriad Genetic 
Laboratories, Inc., Salt Lake City, UT), can offer 
additional information for providers and patients 
with prostate cancer (Table 2). Decipher predicts 
metastasis and prostate-cancer-specific mortality 
after radical prostatectomy.84,85 Oncotype DX pre-
dicts biochemical recurrence after radical prostatec-
tomy and prostate-cancer-specific mortality in 
patients under active surveillance.86,87 Prolaris pre-
dicts biochemical recurrence, metastasis, and pros-
tate-cancer-specific mortality after radical 
prostatectomy, as well as mortality in those under 
active surveillance.88–90 How these tests will fare 
compared with one another remains to be deter-
mined. Although they are currently not part of treat-
ment planning for prostate cancer, they may become 
so in the future. Unfortunately, Decipher, Oncotype 
DX, and Prolaris provide prognostic, but not pre-
dictive information, and they are costly (greater 
than $3000 per test).91 The lack of predictive infor-
mation deters widespread adoption, and a 24-gene 
signature, reported to predict which patients with 
prostate cancer would benefit the most from post-
operative radiation, may address the deficiency.92 A 
retrospective study noted that patients with high 
Post-Operative Radiation Therapy Outcomes Score 
(PORTOS (Genome Dx, San Diego, CA)) who 
had postoperative radiotherapy were less likely to 
have metastasis at 10 years compared with those 
with high PORTOS who did not. After PORTOS is 
validated in additional trials and patients, and 
becomes commercially available, it may become a 
useful tool in prostate cancer management.

Another issue facing pharmacogenomics is uti-
lization of information from diagnostic tests. Several 
companies, including Foundation Medicine 

(Cambridge, MA), employ high-throughput 
sequencing to detect germline or somatically 
acquired genomic perturbations in patients with 
solid and hematological malignancies.94–96 
Personalized, targeted treatments based on the 
genomic information thus acquired have led to 
mixed results, ranging from no difference in out-
come to improved response rates in metastatic 
breast cancer. This spectrum of responses affirms 
that genomic aberrations and a multitude of other 
factors influence treatment response, and further-
more, survival. In addition, understanding of dis-
ease mechanism and treatment resistance needs 
to improve to take advantage of genomic diagnos-
tic information. Foundation Medicine offers sev-
eral tests, including FoundationACT, which is 
designed to detect mutations in cancers of breast, 
colon, lung, and prostate. Hopefully, 
FoundationACT and other genomic diagnostic 
tests will yield discoveries, which will ultimately 
lead to improved responses in prostate cancer.

Future of precision medicine in prostate 
cancer
As outlined so far, successful establishment of 
precision medicine in prostate cancer hinges on 
numerous factors, including accurate diagnostic 
tests, specific gene targets, and effective treat-
ments. In order to put precision medicine into 
practice, clinicians and scientists need to be able 
to readily access clinical and genomic data of 
patients, and some search tools include Oncology 
Data Retrieval Systems (OncDRS (Dana Farber 
Cancer Institute, Cambridge, MA)) and 
GeneMed (National Cancer Institute, Bethesda, 
MD).97,98 Physicians can utilize OncDRS to 
quickly search and obtain clinical and genomic 
data of patients with cancer, and such informa-
tion can be used to tailor treatment and design 
clinical trials. Within a year of release, OncDRS 
aided data retrieval for more than 50 publica-
tions. GeneMed has facilitated a molecular profil-
ing-based assignment of cancer therapy 
(MPACT) clinical trial [ClinicalTrials.gov identi-
fier: NCT01827384] by operating as a hub to 
integrate information from biostatisticians, clini-
cians, and sequencing laboratory. This trial uses 
next-generation sequencing to identify actionable 
mutations in patients with advanced solid tumors 
and randomize eligible patients to two arms, one 
with a targeted drug for mutation, and the other 
with a nontargeted drug. The list of targeted 
drugs includes inhibitors of MEK, mTOR, 
PARP, and Wee1. Upon disease progression, 
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patients on the arm with the nontargeted drug 
can cross over to the arm with the targeted drug, 
and outcome measures include response rate and 
progression-free survival. At the time of writing 
the trial is ongoing and recruiting participants 
[ClinicalTrials.gov identifier: NCT01827384].

Overall, precision medicine is not yet standard 
practice in prostate cancer, so more work is needed. 
Unlike BRCA2 and CYP17A1, SOX2, OATP1B3, 
AR-V7, and TMPRSS2-ERG currently do not 
have approved targeted agents. It also appears 
that therapeutics such as pembrolizumab are 
effective in certain tumors with high microsatel-
lite instability or mismatch repair deficiencies.99,100 
Thus, detection of genomic abnormalities with 
appropriate treatments may help establish pre-
cision medicine in prostate cancer. In addition, 
results from genomic diagnostic tests, such as 
Decipher, Oncotype DX, Prolaris, PORTOS, 
and FoundationACT need to be interpreted with 
caution because no large randomized clinical trial 
has supported their routine use in patient care. 
Another reason to apply caution is that a consider-
able variation of gene expression levels exists 
among tissue cores from the same patients, so 
multiple biopsies from the same patients may 
need to be subjected to genomic diagnostic tests, 
and their results averaged before application.101 
Although FoundationACT reduces sampling bias 

by using peripheral blood, it, too, has not been 
validated in a large prospective study. Also, scores 
from Decipher, Oncotype DX, and Prolaris varied 
both within and among tissue cores from the same 
patients, which indicates a need for a uniform, 
standardized genomic diagnostic test in prostate 
cancer. Despite these concerns, the field is moving 
toward precision medicine aided by advances in 
diagnostics, therapeutics, understanding of dis-
ease mechanism, and integration of clinical and 

Table 2.  Genomic diagnostic tests for prostate cancer.

Test Test material Methodology Sample type Distinguishing 
features

Decipher Tumor RNA 
expression

Whole transcriptome 
microarray of 22 
coding and noncoding 
RNAs

Tissue Predicts metastasis

Oncotype DX Tumor RNA 
expression

RT-PCR of 12 
cancer-related and 5 
reference genes

Tissue Predicts BCR

Prolaris Tumor RNA 
expression

RT-PCR of 31 cell 
cycle and 15 reference 
genes

Tissue Predicts BCR and 
metastasis

PORTOS Tumor RNA 
expression

RT-PCR of 24 DNA 
damage, immune and 
radiation response 
genes

Tissue Predicts response to 
postoperative radiation 
therapy

FoundationACT Somatic mutations 
in cell-free DNA

ctDNA of 62 genes and 
6 gene fusions

Peripheral 
whole blood

Advantageous if tissue 
is not available

Modified and adapted from Falzarano et al.93

BCR, biochemical recurrence; ctDNA, circulating tumor DNA; RT-PCR, reverse transcriptase polymerase chain reaction.

Figure 1.  Components of precision medicine 
cooperating towards a better outcome (dx: 
diagnostic).
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genomic data (Figure 1). Therefore, clinicians 
and scientists are well positioned to take advan-
tage of the new resources to establish precision 
medicine in prostate cancer.
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