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Unfolded protein response (UPR) often coordinates with autophagy to maintain cellular pro-
teostasis. Disturbance of proteostasis correlates with diseases including diabetes and neu-
rological complications. In a recent article in Clinical Science, Kong et al. highlighted the
critical role of endoplasmic reticulum (ER) stress-autophagy axis in maintaining cognitive
functions and provided pharmacological evidence with respect to cognitive improvements
in a diabetic mouse model. These novel findings present new insights into the pathological
mechanisms and therapeutic implications with the ER stress modulators in diabetes-related
cognitive dysfunction.

The ever-increasing prevalence of diabetes mellitus worldwide has imposed a great burden upon pub-
lic health [1]. Diabetes is a chronic and progressive metabolic disorder characterized by hyperglycemia,
usually results from either insulin deficiency (Type 1 diabetes, T1D) or insulin insensitivity (Type 2 dia-
betes, T2D). Cognitive dysfunction has become an important comorbidity of diabetes. Particularly, both
T1D and T2D increase the risk of cognitive dysfunction, from cognitive decrements, mild cognitive im-
pairment (MCI) to dementia [2–4]. This co-occurrence increases with the progression and duration of
diabetes. However, cognitive dysfunction can occur throughout the course of diabetes, even on predia-
betic stage, in patients with impaired fasting glucose [5,6]. Of note, the incidence rate of both diabetes
and cognitive dysfunction is increased upon aging, whereas the latter can also occur in youth with T1D
or T2D [7–9]. In addition, diabetes accelerates the progression of MCI to dementia [10]. Importantly,
patients with diabetes often display a group of comorbidities involved with multiple organ dysfunctions,
including hyperlipidemia, hypertension, macrovascular and microvascular diseases. Together with the
acute hypo- or hyperglycemia, these complications per se may also be risk factors for cognitive dysfunc-
tion in diabetes [11,12]. Thus far, understanding the mechanisms of underlying cognitive dysfunction
merits further research efforts.

Proteostasis disturbance is a feature of many diseases such as diabetes and neurological complications.
Many metabolic stimuli such as hyperglycemia can lead to accumulation of unfolded or misfolded pro-
teins inside the endoplasmic reticulum (ER) lumen, a condition referred to as ‘ER stress’. ER stress ini-
tiates unfolded protein response (UPR) by three ER membrane sensors, inositol-requiring enzyme 1α
(IRE1α), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6). UPR is
a cellular defensive process for relieving protein folding stress. The consequences of UPR involve pertur-
bation of protein synthesis, trafficking, degradation or apoptosis under extreme conditions. Interestingly,
macroautophagy (hereafter referred to as autophagy), a self-degradative cellular process, shares many fea-
tures with UPR with respect to clearing unfolded or misfolded proteins and inducing apoptosis. UPR and
autophagy are thus essential for cellular homeostasis. With this respect, these two pathways integrate a col-
lection of mechanisms involved in multiple cellular functions, including inflammation, glucose and lipid
metabolism and energy balance. As such, ER stress and autophagy are involved in a range of pathological
processes.

In volume 132 issue 1 of Clinical Science [13], Kong and colleagues highlighted the role of ER stress and
autophagy pathways in diabetes-related cognitive dysfunction (Figure 1). In streptozotocin (STZ)-induced
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Figure 1. The ER stress-autophagy axis regulates diabetes-related cognitive dysfunction

(A) At normal state, hippocampal neurons survive with low levels of ER stress and autophagy, whereas in diabetes, unresolved ER

stress further enhances autophagy and ultimately lead to apoptosis, and thus declines cognitive functions. (B) Cross-talk of ER

stress-autophagy axis. Details presented in the text.

diabetic mice, they demonstrated that neuronal injuries mainly occurred in hippocampus rather than the cerebral
cortex region, with pathologic alterations including less neuronal density, dysfunctional synaptic plasticity, damaged
mitochondria and elevated apoptosis. Concomitantly, they observed remarkable increase in ER stress with high phos-
phorylation levels of IRE1α, PERK, JNK and high levels of GRP78 and CHOP, together with autophagy markers
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Beclin1 and LC3 II/LC3 I ratio in diabetic hippocampus. These findings suggest the vulnerability of hippocampus
and the critical role of ER stress and autophagy in hippocampal neurons in diabetic disease. Next, Kong and col-
leagues found pharmacological inhibition of ER stress by 4-phenylbutyrate (a chemical chaperone enhancing protein
folding efficiency) or JNK inhibitor SP600125 reduced autophagy and apoptosis induced by high glucose in primary
hippocampal neurons. In contrast, inhibition of autophagy by bafilomycin A1 aggravated ER stress and apoptosis.
Indeed, autophagy is essential for structural and functional synaptic plasticity in hippocampal neurons [14]. Thus,
ER stress evokes autophagy in a coordinated way to alleviate cellular stress upon glucotoxicity, and especially, this
mechanism could be a cell autonomous effect in hippocampal neurons. Of note, although ER stress and autophagy
can function independently, a growing body of evidence suggests an intensive cross-talk exists between these two
pathways in many cell types including pancreatic β-cells, adipocytes, cardiomyocytes and hippocampal neurons, es-
pecially under diabetic status. Moreover, this cross-talk has been shown in multiple ways [15]. For example, IRE1α
undergoes autophosphorylation upon ER stress, which then phosphorylates JNK via TRAF2-ASK1 complex. JNK
further phosphorylates BCL2 and leads to the dissociation of Beclin1 from BCL2/Beclin1 complex, and thus ac-
tivates Beclin1 and stimulates autophagy. Moreover, IRE1α also initiates sXBP1 splicing and subsequently LC3 II
conversion to promote autophagy. Whereas PERK phosphorylates eIF2α, which further induces ATF4 and CHOP to
release Beclin1 from the inhibition of BCL2. In addition, ATF4, sXBP1 and ATF6 can stimulate autophagy-related
gene expression including Atg3, Atg5 and Atg12 (Figure 1B). The cross-talk, however, could be cell type-specific
and dependent on pathological conditions. Taken together, Kong and colleagues shed light on this cross-talk in dia-
betic hippocampal neurons, and thus provided exciting clues with modulators targeting ER stress-autophagy axis in
diabetes-related cognitive dysfunction.

Importantly, Kong and colleagues further examined ER stress inhibitor in STZ-induced diabetic mice. They
found administration of 4-phenylbutyrate improved cognitive function such as spatial learning and memory abil-
ities, whereas emotional and locomotor activities are not affected. Several other studies also support the efficacy of
ER stress inhibitors, including Guanabenz that enhances eIF2α phosphorylation [16] and ISRIB that inhibits ATF4
induction [17], in cognitive improvements in different rodent models. In contrast, activation of autophagy often
displays cognitive improvements [18,19]. To date, existing clinical treatments of dementia including cholinergic neu-
rotransmitter modifying agents (donepezil, galantamine and rivastigmine) and noncholinergic agent (memantine)
are largely limited to Alzheimer’s dementia, with only improvement or delay of the symptoms [20], whereas no treat-
ments of MCI are available. Management of diabetes seems to be beneficial for cognitive improvement, as indicated
in a short-term study of metformin combined with rosiglitazone or glyburide in diabetic elderly [21]. However, other
large and randomized trials fail to see any long-term benefits of cognitive improvement after intensive glycemic con-
trol in both T1D [22] and T2D patients [23,24]. Moreover, the recurrence of cerebral hypoglycemic episodes is also
a challenge in diabetic population. Thus, diabetes-related cognitive dysfunction may have distinct underlying mech-
anisms due to the marked pathological differences. Of note, modulators by targeting ER stress-autophagy axis have
shown benefits not only in insulin sensitivity, but also in cerebral ischemia and cognitive function, at least in rodent
models [13,18,19,25]. However, studies with more specific compounds and genetically modified mouse models by
targeting the distinct signaling components are still major needs. Collectively, these research efforts may offer new
opportunities for developing more effective and safer pharmacological treatments against diabetes-related cognitive
dysfunction.
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