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Abstract
Background: Complex networks are studied across many fields of science and are particularly
important to understand biological processes. Motifs in networks are small connected sub-graphs
that occur significantly in higher frequencies than in random networks. They have recently gathered
much attention as a useful concept to uncover structural design principles of complex networks.
Existing algorithms for finding network motifs are extremely costly in CPU time and memory
consumption and have practically restrictions on the size of motifs.

Results: We present a new algorithm (Kavosh), for finding k-size network motifs with less
memory and CPU time in comparison to other existing algorithms. Our algorithm is based on
counting all k-size sub-graphs of a given graph (directed or undirected). We evaluated our
algorithm on biological networks of E. coli and S. cereviciae, and also on non-biological networks: a
social and an electronic network.

Conclusion: The efficiency of our algorithm is demonstrated by comparing the obtained results
with three well-known motif finding tools. For comparison, the CPU time, memory usage and the
similarities of obtained motifs are considered. Besides, Kavosh can be employed for finding motifs
of size greater than eight, while most of the other algorithms have restriction on motifs with size
greater than eight. The Kavosh source code and help files are freely available at: http://Lbb.ut.ac.ir/
Download/LBBsoft/Kavosh/.
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Background
Large networks, such as social networks, computer and
biological networks, consisting of thousands to millions
of vertices, have recently attracted much attention [1]. Bio-
logical networks, including protein-protein interaction
networks, gene regulatory networks, and metabolic net-
works, are among those most widely studied [2-4]. In
order to extract meaningful information from the vast
amount of data encrypted in the networks, powerful
methods for computational analysis need to be devel-
oped. Milo et al.(2002) proposed that the existence of spe-
cific sub-graphs that repeat themselves in a specific
network or even among various networks would be con-
sistent with the tenets of evolutionary theory. Each of
these sub-graphs, defined by a particular pattern of inter-
actions between vertices, may reflect a framework in
which particular functions are achieved efficiently. These
sub-graphs are called network motifs. Motifs are of nota-
ble importance largely because they may reflect functional
properties. Nevertheless, as possible associated functions
may be unknown initially, defining motifs independent
of function and based on frequency of occurrence is com-
monly accepted. As such, motifs can be considered as sub-
graphs, which occur at significantly higher frequencies in
the network under investigation than in random net-
works. The task of discovering motifs in networks is
known as motif-finding problem. The various proposed
protocols for finding motifs are designed to identify either
all possible sub-graphs or the most frequent ones.

Mfinder, Pajek, MAVisto, and FANMOD are the notable
existing tools for the motif-finding problem [5-8]. Rele-
vant features for evaluation of these tools include whether
or not they can present results of analysis visually; they are
capable of enumerating sub-graphs; a sampling protocol
is used instead of analysis of the entire network; sub-
graphs are discovered or only queried graphs are found; as
well as the memory usage and time needed in each algo-
rithm and the growth of CPU time with sub-graph size.
The memory usage and CPU time determine the maxi-
mum size of sub-graphs that can be analyzed. Mfinder,
the first motif-mining tool, implements two kinds of
motif finding algorithms: a full enumeration and a sam-
pling method. The sampling protocol is the faster one,
that assigns probability values to motifs identified, and
infers frequencies from these values [5]. It is also the only
tool without the option of a visual presentation and
results are only provided in the format of a text. Concern-
ing motif discovery Pajek only offers limited functional-
ity, because it only finds specific motifs such as triads and
particular tetrads in a network [6]. FANMOD algorithm is
clearly the best among these with regard to computational
time [8]. For example, for enumeration of all 5-size sub-
graphs in the transcriptional network of Escherichia coli
using a laptop with a 1.5 GHz Pentium M processor and

512 MB RAM, Mfinder, MAVisto, and FANMOD requires
180, 620, and 10 seconds, respectively [8]. There are 1.4 ×
106 5-size sub-graphs in this network. The only problem
with FANMOD is that it can handle sub-graphs consisting
maximally of eight vertices. Its memory usage increases
notably both with increase in sub-graph size and network
size. In addition to the mentioned tools, NeMoFinder
given by J. Chen and et al. [9] is an efficient network motif
finding algorithm for motifs up to size 12 only for pro-
tein-protein interaction networks, which are presented by
undirected graphs. Also in the case of protein interaction
networks, some clustering tools are used to simplify the
motif finding problem. MCODE [10] and MULIC [11] are
two clustering approaches to be used. "Power graph analy-
sis" is an approach for understanding protein interaction
networks features [12]. Obviously the algorithms
designed for both directed and undirected graphs are
more time-consuming and general. We aim to derive an
algorithm with lower CPU time and less memory usage
that would be capable of supporting sub-graphs of all
sizes. This is particularly important for analysis of biolog-
ical networks where the total number of sub-graphs
growths exponentially by the size of sub-graph. Our algo-
rithm is based on counting all sub-graphs of a given
graph(both directed and undirected). For enumeration of
sub-graphs in the network, a novel and efficient method
is presented. We evaluate our algorithm on the biological
networks: the metabolic pathway of bacteria E. coli [13]
and the transcription network of yeast S. cerevisiae [14],
and also non-biological networks: a real social network
and an electronic network. The obtained results of our
algorithm are compared with three well-known motif
finding tools: Mfinder, MAVisto, and FANMOD [5,7,8].
By this comparison, we show the efficiency of our algo-
rithm. Also, our tool can be employed for finding motifs
of size greater than eight, while most of the other algo-
rithms have restriction on the size of motifs.

Methods
Definitions
A network considered as a large graph consists of vertices
and edges. A directed graph (or network) is usually shown
by G = (V, E) where V is a finite set of vertices and E is a
finite set of edges, where E ⊆ (V × V). An edge e = (u, v) ∈
E goes from vertex u, the source, to another vertex v, the
target. The vertices u and v are incident with the edge e and
adjacent to each other. A sub-graph of the graph G = (V, E)
is a graph Gs = (Vs, Es) where Vs ⊆ V and Es ⊆ (Vs × Vs) ∩ E.

The in-degree and out-degree of a vertex is defined as the
number of edges coming into the vertex and the number
of edges going out of it, respectively. The degree of a vertex
is the total number of edges it is incident to. We define the
sub-graph size as the number of vertices present in the sub-
graph.
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Two sub-graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic if there is a one-to-one correspondence between their
vertices, and there is an edge directed from one vertex to
another vertex of one sub-graph if and only if there is an
edge with the same direction between the corresponding
vertices in the other sub-graph.

For a particular sub-graph GP, all sub-graphs isomorphic
to GP in the network are considered as matches of GP . The
frequency of a particular directed sub-graph in an input
network is the number of its matches in the network. In
this paper, it is assumed that different matches can have
overlap in vertices or edges. Motifs are defined as sub-
graphs, which have higher frequencies in the network than
in random networks of equal size.

Algorithm
Our algorithm for finding network motifs is called Kavosh
and consists of four subtasks: Enumeration: finding all sub-
graphs of a given size that occur in the input graph; Clas-
sification: classifying each found sub-graph into isomor-
phic groups; Random graph generation: generating random
graphs with respect to the input network (enumeration
and classification are also performed on random graphs)
and Motif identification: distinguishing motifs among all
found sub-graphs on basis of statistical parameters. In
Kavosh, one of the most significant subtasks is the enumer-
ation part. This subtask makes Kavosh different from other
algorithms. Building an implicit tree according to the
restrictions that will be discussed later causes improve-

Illustration of Kavosh algorithmFigure 2
Illustration of Kavosh algorithm. The implicit built trees 
rooted at vertex 1 of size 4 for network in Figure 1.(a) Trees 
built according to (1,1,1) pattern. According to this pattern, 
after selecting vertex 1 in root, one of its neighbors must be 
selected, so the second selected vertex is vertex 2. Continu-
ing the selecting process, one of the neighbors of the vertex 
2 (vertex 6) and after that vertex 4 is selected. All chosen 
vertices are shown by specified circles in this figures. (b) 
Trees built according to (1,2) pattern. (c) Trees built accord-
ing to (2,1) pattern. (d) Tree built according to (3) pattern.

A sample input networkFigure 1
A sample input network. An instance of a network.
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ment in both time and memory usage. The tree structure
with its restrictions ensures that each individual sub-graph
is enumerated only once that leads us to an efficient solu-
tion. Also using some powerful tools such as "revolving
door ordering" algorithm [15] in this subtask, is an advan-
tage of our algorithm.

Classification is another major subtasks of motif finding
algorithms. In Kavosh, NAUTY algorithm which is the
best known tool for this subtask is used. This is another
feature for the efficiency of Kavosh. The details of the sub-
tasks are presented below:

Enumeration
Here we present an efficient method for enumeration of
sub-graphs of size k. For counting all k-size sub-graphs of
a given graph G = (V, E) whose vertices are numerically
labeled, all sub-graphs that include a particular vertex are
discovered. Subsequently, this vertex is removed from the
network, and the process is repeated consecutively for suc-
cessive vertices.

For counting the sub-graphs of size k that include a partic-
ular vertex, trees with maximum depth of k, rooted at this
vertex and based on neighborhood relationship are
implicitly built. Children of each vertex include both
incoming and outgoing adjacent vertices. To descend the
tree, a child is chosen at each level with the restriction that
a particular child can be included only if it has not been
included at any upper level. After having descended to the
lowest level possible, the tree is again ascended and the
process is repeated with the stipulation that vertices vis-
ited in earlier paths of descendent are now considered
unvisited vertices. A final restriction in building trees is
that all children in a particular tree must have numerical
labels larger than the label of the root of the tree.

The protocol for extracting sub-graphs can now be
described in greater details. The protocol makes use of the
composition operation of an integer. For extraction of
sub-graphs of size k, all possible compositions of the inte-
ger k - 1 must be considered. The compositions of k - 1
consist of all possible manners of expressing k - 1 as a sum
of positive integers. Summations in which the order of the
summands differs are considered distinct. A composition
can be expressed as k2, k3 , ... km where k2 + k3 + ... + km = k
- 1. To count sub-graphs based on the composition, ki ver-
tices are selected from the i -th level of the tree to be verti-

Table 1: Total number of sub-graphs of different sizes in different networks (rows indicate different sizes of sub-graph and columns are 
related to different networks).

3 4 5 6 7 8 9 10

E. coli(672, 1276) 2590 12896 80724 558080 4019781 29294103 212782828 1529707241

S. cereviciae(688, 1079) 13150 183174 2508149 32883898 416284878 5184710063 61755820688 700928564818

Social(67, 182) 488 2183 10599 52156 254674 1224376 5764767 26429201

Electronic(97, 189) 1121 4316 19675 97038 495274 2572125 13512688 71614362

Sample graph with its adjacency matrixFigure 3
Sample graph with its adjacency matrix. A sample 
graph is shown in (a). As there are 4 vertices in this graph, 
there are 4! permutations on its vertices to indicate its differ-
ent adjacency matrices and so different strings according to 
NAUTY description. The adjacency matrix in (b) reflects (1, 
2, 3, 4) ordering of vertices. Among all different permuta-
tions (2, 1, 3, 4) ordering, creates the largest string which its 
related adjacency matrix is shown in (c) and this is the one 
known as canonical labeling.

Edge switching operatorFigure 4
Edge switching operator. Edge replacement for generat-
ing random networks. As shown in this figure, the replace-
ment process does not change the vertex degrees.
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ces of the sub-graphs (i = 2, 3, ... m). The k - 1 selected
vertices along with the vertex at the root define a sub-
graph within the network.

As an example, we can consider finding sub-graphs of size
4 (k = 4). All compositions of k - 1 = 3 need to be consid-
ered; these are (1,1,1), (1,2), (2,1) and (3). For example,
sub-graphs defined by (1,1,1) would include the root ver-
tex and one valid child vertex at each of three subsequent
levels.

It is possible that for a particular level i, ki < ni, where ni is
the number of vertices present at level i. At level i, C(ni, ki)
(C(n, k) is the number of different combinations of k ele-
ments through n elements) different selection of vertices
need to be considered. Here, by using the "revolving door
ordering" algorithm [15] all combinations containing ki
vertices from the ni vertices are selected. The "revolving
door ordering" algorithm is considered the fastest algo-
rithm for generating combinations of vertices. The pseu-
docode for our algorithm for the enumeration subtask,
which produces all k-size sub-graphs present in an input
graph G = (V, E), is presented in Algorithm 1 (see appen-
dix 1).

In this algorithm, the vertex u defines the root of a tree.
Each vertex is marked as visited, if and only if it has been
observed as an adjacent of any selected vertex in the upper
levels. Si (i = 0,..., m, m ≤ k- 1) is the set of all vertices from

the i-th level included in a particular sub-graph. The sub-
task Enumerate_Vertex is described in Algorithm 2 (see
appendix 2). This algorithm enumerates all sub-graphs in
which a particular vertex acts as root. In Algorithm 2, the
Validate function (see appendix 3) used to create list of
valid vertices from which vertex selection can be made is
described in Algorithm 3. The Initial_Comb and
Next_Comb functions make use of the "revolving door
ordering" algorithm as described earlier to make vertex
combination selections at each level.

The above algorithms clearly identify all k-size sub-graphs
in the network. Also, the constrictions placed on the man-
ner in which trees are constructed also ensure that no sin-
gle sub-graph will be counted more than once. Because, if
a selected vertex (vertex v) for the current level (level i)
were allowed to be among vertices adjacent to vertices at
levels before i - 1, sub-graphs would be duplicated and
enumerated more than once. This is because vertex v
could be one of the vertices selected for two different com-
positions of a graph of size k. This possibility is precluded
by algorithm 3 because vertices adjacent to vertices at lev-
els <i - 1, are not allowed to be candidate vertices for level
i.

This step is described by an example on a given graph
shown in Figure 1. For this graph, all 4-size sub-graphs
containing the vertex 1, are going to be found. This is illus-
trated in Figure 2. The vertex 1 is considered as the root of

Table 3: Computational cost for different algorithms on the E. coli network (rows indicate different sizes of sub-graph and columns are 
related to different algorithms), times are in seconds.

3 4 5 6 7 8 9 10

Kavosh 0.30 1.84 14.91 141.98 1374.01 13173.74 121110.31 1120560.16

FANMOD 0.81 2.53 15.71 132.24 1205.97 9256.61 - -

MAVisto 13532.0 - - - - - - -

Mfinder 31.0 297.0 23671.8 - - - - -

Table 2: Number of non-isomorphic sub-graphs in different networks (rows indicate different sizes of subgraph and columns are 
related to different networks).

3 4 5 6 7 8 9 10

E. coli 12 83 590 3884 23587 136569 768121 4223040

S. cereviciae 7 34 174 888 4809 27003 183307 1083282

Social 13 108 773 5062 30217 165958 854023 4161577

Electronic 4 13 49 199 907 4333 20692 96483
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the tree and its label is considered as visited. As mentioned
before, all the compositions of k - 1 = 3 are considered as
the different patterns of selection. Starting with the com-
position (1, 1, 1) as the selecting pattern, valid children of
the root are found. Due to its neighbors, the vertices 2, 3
and 5 are the valid ones, which according to the pattern
one of them have to be chosen. The labels of these three
vertices are now visited. Using the "revolving door order-
ing", the vertex 2 is the first chosen vertex. By using this
pattern, one of the valid vertices of the vertex 2 has to be
selected. The vertex 2, has three neighbors, the vertices 1,6
and 7. But the vertex 1 is previously visited, so it is not a
valid child. So this process continues with the vertices 6
and 7, which are visited now. Again using "revolving door
ordering", the vertex 6 is selected to be continued. As the
pattern shows, one of the valid children of the vertex 6
have to be chosen as the last vertex of the sub-graph. The
vertex 6 has five neighbors, the vertices 2, 3, 4, 5 and 7, but
just the vertex 4 has not been visited yet, so its only valid
child is the vertex 4. The vertex 4 is selected as the last ver-
tex of the sub-graph. Now the vertices 1, 2, 6 and 4 make
a sub-graph involved in the network of size 4, containing
the vertex 1.

By recursively ascending the tree, for processing the other
choices of selection, the lower vertices, are not visited any-
more. So at this point, recursively ascending vertex 7,
causes that the vertex 4 is not visited anymore. By continu-
ing using this pattern, only one other sub-graph with ver-

tices 1, 5, 6 and 7 is found; the details are shown in Figure
2a.

The composition (1, 2) is the next selecting pattern to be
considered. The same as the previous selecting pattern, the
vertices 2, 3 and 5 are the valid vertices in the first level
which one of them have to be chosen according to the first
element of the composition. Using "revolving door order-
ing", the vertex 2 is selected and is processed. The same as
the previous pattern, the vertices 6 and 7 are the valid chil-
dren of the vertex 2. Here, in this step, two vertices of this
level have to be chosen according to the second element
of the composition which is 2. So both the vertex 6 and 7
are selected now, and produce the sub-graph containing
the vertices 1, 2, 6 and 7. Recursively ascending to level
two, the next selection is the vertex 3. By ascending, the
vertices 6 and 7 that became visited in the last step are reset
to unvisited. Among all the neighbors of the vertex 3, the
vertices 4, 6 and 7 are valid. Using "revolving door ordering",
all different selections of two vertices from these three ver-
tices are computed, which results in three different sub-
graphs containing the vertices { 1, 3, 4, 6},{ 1, 3,4, 7} and
{ 1, 3, 6, 7}. Details are shown in Figure 2b.

In the same manner, the selecting pattern (2, 1) finds the
sub-graphs containing the vertices {1, 2, 3, 6}, {1, 2, 3,
7}, {1, 2, 3, 4}, { 1, 2, 5, 6}, { 1,2, 5, 7}, { 1, 2, 5, 4}, {
1, 3, 5, 4}, { 1, 3, 5, 6} and { 1, 3, 5, 7} which is shown
in Figure 2c. And using the pattern (3), the sub-graph with
vertices { 1, 2, 3, 5} is found, its tree is shown in Figure 2d.

Table 5: Computational cost for different algorithms on a social network (rows indicate different sizes of sub-graph and columns are 
related to different algorithms), times are in seconds.

3 4 5 6 7 8 9 10

Kavosh 0.04 0.23 1.63 10.48 69.43 415.66 2594.19 14611.23

FANMOD 0.46 0.84 3.07 17.63 117.43 845.93 - -

MAVisto 393 1492 - - - - - -

Mfinder 12 49 798 181076.8 - - - -

Table 4: Computational cost for different algorithms on the S. cereviciae network (rows indicate different sizes of sub-graph and 
columns are related to different algorithms), times are in seconds.

3 4 5 6 7 8 9 10

Kavosh 1.35 34.59 1003.92 20212.99 746385.86 17111178.28 337076691.32 7211199226.13

FANMOD 2.20 41.41 1111.95 24292.05 926745.34 18851135.4 - -

MAVisto 15784 - - - - - - -

Mfinder 32 306 33548.2 - - - - -
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It should be noted that the reason for the efficiency of our
enumeration algorithm would be the implicit tree con-
structed by the underlying recursion in our algorithm. The
depth of this implicit recursion tree depends on the
number of elements in a composition of k.

Classification
After discovering a sub-graph involved as a match in the
input network, in order to be able to evaluate the size of
each class according to the input network, there is a need
to classify it into isomorphic classes. The most powerful
algorithm, which is usually used for finding isomorphism
is NAUTY [16]. In this algorithm, a unique identifier is
assigned to each class of isomorphism and called the
canonical labeling. The canonical labeling is generated by the
transformation of the adjacency matrix into a string by
concatenating it row-by-row. As different orderings of the
vertices generate different strings, an ordering of the verti-
ces with the lexicographically largest or smallest string is
chosen as canonical labeling between all possible permuta-
tions. As an example for the graph illustrated in Figure 3
with the corresponding adjacency matrix, the canonical
labeling is 0101001100010000, related to the (2,1,3,4)
ordering of vertices, which is the lexicographically largest
string among all possible strings obtained by different
orderings on vertices.

In this step of our approach, the adjacency matrix of each
obtained sub-graph in the first step, is given to NAUTY as
an input in order to generate its canonical labeling as the
class identifier of that sub-graph.

This obtained identifier causes increment of the size of the
corresponding class of isomorphism, by one.

Random graph generation
According to the definition of a motif, the proper determi-
nation of sub-graph significance, needs comparison by an
ensemble of appropriate random graphs. So generation of
this ensemble due to a given random graph model is a
necessary step of the algorithm. One of the popular ran-
dom graph models on which we also focused is to pre-
serve the degree sequence of the original graph in random
graphs. There has been some researches concerning the
problem of sub-graph distribution within such graphs for
directed sparse random graphs [17,18]. Since biological
networks are scale-free networks [4,19] the fraction of ver-
tices having k edges, p(k), decays as a power law p(k) ~k-λ,
where λ is often between 2 and 3, therefore they are
sparse. So using this random graph model is appropriate
for them.

In our approach, similar to Milo's random model [17,18]
switching operations are applied on the edges of the input
network repeatedly, until the network is well randomized.
This switching operation is applied on the randomly cho-
sen vertices of the network as it is shown in Figure 4. By
applying this switching operation repeatedly on the input
network, an ensemble of random networks is generated.

For each network in the generated ensemble sub-graphs
are found by using step 1 of the algorithm, and then using
step 2, the size of the isomorphism classes for found sub-

Table 7: Performance of Kavosh on different networks(number of sub-graphs counted per second, rows indicate different sizes of sub-
graph and columns are related to different networks).

3 4 5 6 7 8 9 10

E. coli(672, 1276) 8633 7008 5414 3930 2925 2223 1756 1365

S. cereviciae(688, 1079) 9740 5295 2498 1626 557 302 183 97

Social(67, 182) 12200 9491 6502 4976 3668 2945 2222 1808

Electronic(97, 189) 14012 11988 9740 8519 6413 6093 4785 3970

Table 6: Computational cost for different algorithms on an electronic network (rows indicate different sizes of sub-graph and columns 
are related to different algorithms), times are in seconds.

3 4 5 6 7 8 9 10 11 12

Kavosh 0.08 0.36 0.02 11.39 77.22 422.614 2823.70 18037.56 135752.35 997893.27

FANMOD 0.53 1.06 4.34 24.24 160.00 967.99 - - - -

MAVisto 210.0 1727.0 6696000.0 - - - - - - -

Mfinder 7.0 14.0 109.8 2020.2 - - - - - -
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graphs are evaluated. This generation is necessary for com-
paring the real network with some random networks in
order to obtain the significance of each sub-graph.

Motif determination
By using the result of the last step, the significance of each
sub-graph found in the input network is calculated. Here,
some statistical measures are introduced, that lead us to
the probable motifs in the input network.

Frequency
This is the simplest measurement for estimating the signif-
icance of a motif. For a given network, assume that GP is a
representative of an isomorphism class involved in that
class. The frequency is defined as the number of occurrence
GP in the input network.

Zscore
This measure reflects how randomly the class occurred in
the input network. For the assumed motif GP, this meas-
ure is defined as below:

where Np is the number which GP occurred in the input

network,  is the mean number which GP occurred in

random networks and σ is the standard deviation. The
larger Zscore, the more significant is the motif.

Pvalue
This measure indicates the number of random networks
in which a motif GP occurred more often than in the input
network, divided by the total number of random net-
works. Therefore, Pvalue ranges from 0 to 1. The smaller
the Pvalue, the more significant is the motif.

These are some statistical measures implied in our algo-
rithm to indicate the significance of a motif. For each
motif found in step 1, according to the result obtained
from step 2 and 3, these measures are calculated in this
step.

Until now, motifs found in the input network are availa-
ble including some statistical measures related to them. As
mentioned in the previous step, three different measures
are used in this algorithm. There are no exact thresholds
for these measures to distinguish a motif, and the more
restricted thresholds; the more precise is the motif. But
according to the experimental results by Milo (Milo et al.,

Zscore G
Np Nrand

P( )
( )

,=
−

s

N rand

5-size motifs of E.Coli, found by KavoshFigure 6
5-size motifs of E.Coli, found by Kavosh. The most significant sub-graphs of size 5 in E. coli network.

4-size motifs of E.Coli, found by KavoshFigure 5
4-size motifs of E.Coli, found by Kavosh. The most significant sub-graphs of size 4 in E. coli network.
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2002), the following conditions may be used to describe
a network motif:

1. By using 1000 randomized network, the Pvalue is
smaller than 0.01.

2. The frequency is larger than four.

3. By using 1000 randomized network, the Zscore is
larger than one.

According to the above conditions and with respect to the
sufficient preciseness, the patterns with significant meas-
ures are the ones which describe network motifs.

Results and Discussion
In this section, we present the results of applying Kavosh
to some real networks. Applications were made to net-
work instances that are both biological and non-biologi-
cal. The metabolic pathway of the bacteria E. coli and the
transcription network of yeast S. cereviciae [14], a real
social network, and an electronic network were targeted.
These instances for testing the algorithm were up-to-date
versions of the motif detection tests used by other existing
algorithms (Kashtan, 2004). The biological networks, as
reflected by the number of vertices therein, were notably
larger than the non-biological networks used here. The
numbers of sub-graphs of different sizes observed in each
network are presented in Table 1. The numbers of differ-
ent isomorphic groups of specific sizes observed are pre-

Memory comparisonFigure 8
Memory comparison. Comparison of memory usage between FANMOD and Kavosh for two different networks (in 
MBytes). (a) social network. (b) E. coli network.

9-size motifs of E. Coli, found by KavoshFigure 7
9-size motifs of E. Coli, found by Kavosh. The most significant sub-graphs of size 9 in E. coli network.
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sented in Table 2. In all the networks, both the number of
sub-graphs and the number of isomorphic groups
increase exponentially with sub-graph size. Application of
the FANMOD algorithm for finding sub-graphs and iso-
morphic groups of sizes up to eight, resulted in the iden-
tification of the same numbers as Kavosh(data not
shown).

Additionally, here we present some sub-graphs, which are
determined as motifs by Kavosh. We present five most sig-
nificant sub-graphs of size 4, 5 and 9 in the E. coli network
in Figures 5, 6 and 7, respectively. In this section, we aim
to compare the efficiency and power of Kavosh with three
previously presented programs. We apply each of the four
algorithms (FANMOD, MAVisto, Mfinder and Kavosh) to
the networks described. The computer system we used was
equipped with a 3.2 GHz AMD Opteron processor and 8
GB RAM. For each of the real networks, 100 random net-
works were generated as described. Subsequently, each of
the algorithms was applied to the real and all randomly
generated networks. The CPU time and memory needed
to perform this task was assessed for the different algo-
rithms (Tables 3, 4, 5, and 6, and Figure 8). For all net-
works, the CPU time was maximum for MAVisto. As our
algorithm is a full enumeration algorithm, we apply full
enumeration version of Mfinder. The CPU time of
Mfinder, although generally at least an order of magni-
tude less than that of MAVisto, was still an order of mag-
nitude or larger than that of FANMOD and Kavosh. The

CPU times of FANMOD and Kavosh were comparable for
the E. coli network but in other networks the CPU time for
Kavosh is less than the time for FANMOD (Tables 3, 4, 5,
and 6). Although their time differences are sometimes not
very significant, but this is because of the limitations in
implementing a general motif finder tool in comparison
with a limited one. Also, the time performance of Kavosh
according to the number of found sub-graphs and sub-
graph size in four tested network is given in table 7. This
table shows the numbers of sub-graphs counted per sec-
ond for each network. The largest degree is an important
reason for different performances in networks. The largest
degree in S. cereviciae, E. coli, electronic and social net-
works are respectively 71, 23, 14 and 11. As the table
shows these degrees have influence in the performance.
Another important aspect in this performance is that as
the sub-graph size increases, the classification part takes
more time, and this makes the algorithm slower for larger
sub-graohs. In terms of memory usage, both MAVisto and
Mfinder were inefficient and our computer systems could
not support finding even relatively small sub-graphs, par-
ticularly in the larger tested networks. The combined
effects of large CPU time and large memory usage in effect
precluded size 6 sub-graph identification in even the
smallest electronic network by MAVisto. Mfinder could
not identify size 6 sub-graphs in the tested biological net-
works under the conditions of our computer system. FAN-
MOD produced results for sub-graphs of size up to 8 in all
networks used. The limitation of size 8 is inherent in the
implementation protocol of FANMOD. Kavosh does not
have this limitation, and the size of sub-graphs queried is
only limited by computer power. Using the system
described here, sub-graphs of size up to 10 were identified
by Kavosh in all the networks used. For the smaller elec-
tronic network, sub-graphs of size 11 and 12 could also be
identified (data not shown).

The FANMOD CPU time was generally somewhat larger
than that of Kavosh. Importantly, FANMOD memory
usage was considerably higher than the memory usage of
our Kavosh (Figure 8). In all tables, the time values are in
seconds and the empty cells indicate that the algorithm
cannot support that specific size or its time cannot be cal-
culated because of the complexity.

Additionally, we present the memory usage for both
Kavosh and FANMOD, which was computed with the val-
grind-3.2.3 package [20]. The chart in Figure 8 compares
FANMOD with Kavosh and shows that how better Kavosh
works in comparison to FANMOD in this case. As it is
shown in Figure 8, the growth of sub-graph numbers
according to its size causes large requirement in memory.
So, memory usage will be one of the problems for finding
motifs of larger size.

Table 9: Computational cost for Kavosh and FANMOD 
algorithms on Drosophila melanogaster PPI network (times are 
in seconds, rows indicate different sizes of sub-graph and 
columns are related to different algorithms) and the numbers of 
sub-graphs.

3 4 5

Kavosh 7 491 36740

FANMOD 10 591 39638

Number of sub-graphs 1201000 54112042 2963193730

Table 8: Computational cost for Kavosh and FANMOD 
algorithms on Homo sapiens network (times are in seconds, 
rows indicate different sizes of sub-graph and columns are 
related to different algorithms) and the numbers of sub-graphs

3 4 5

Kavosh 15 2160 29794

FANMOD 36 5292 -

Number of sub-graphs 2750397 232652426 23287189708
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As we can see in the tables 3, 4, 5, and 6, the only compa-
rable algorithm with ours is FANMOD, but still is not as
efficient as our algorithm. In addition to the above results,
in order to show the high performance of our algorithm
on large networks, we apply both Kavosh and FANMOD
on Homo sapiens PPI network [21] and on Drosophila
melanogaster PPI network [22], both included more than
104 nodes. Because of the high growth of the number of
sub-graphs, these large networks are tested for sub-graphs
of size 3, 4, and 5. The results of both Kavosh and FAN-
MOD on Homo sapiens PPI network and Drosophila
melanogaster PPI network are rfespectively shown in
tables 8 and 9. As the tables show, Kavosh performs much
better for larger networks.

Conclusion
To improve the efficiency of our algorithm the compari-
son of the obtained results with three well-known motif
finding tools is discussed. For comparison, the CPU time,
memory usage and the similarities of obtained motifs are
considered. Also, Kavosh can be employed for finding
motifs of size greater than eight, while most of the other
algorithms have restriction on motifs with size greater
than eight. Besides, comparing with other algorithms
Kavosh has better performance for large networks. In con-
clusion, the presented method (Kavosh) is a general motif
finder that has no restrictions on motif size and also it has
less time and memory consuming in comparison with
other existing algorithms.
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Appendix: Algorithms
Appendix 1
Input: G: input graph.

Output: extract all k-size sub-graphs of graph G.

1: for each u ∈ G do

2: Visited [u] ← true

3: S0 ← u

4: Enumerate_Vertex(G, u, S, k - 1, 1)

5: Visited [u] ← false

6: end for

Algorithm 1: Kavosh(G)

Appendix 2
Input: G: input graph, u: Root vertex, S: selection (S = { S0,
S1,..., Sk - 1} is an array of the set of all Si), Remainder:
number of remaining vertices to be selected,

i: Current depth of the tree.

Output: all k-size sub-graphs of graph G rooted in u.

1: if Remainder = 0 then

2: return

3: else

4: V alList ← Validate(G, Si-1, u)

5: ni ← Min(|V alList|, Remainder)

6: for ki = 1 to ni do

7: C ← Initial_Comb(V alList, ki)

(Make the first vertex combination selection accord-
ing)

8: repeat

9: Si ← C

10: Enumerate_Vertex(G, u, S, Remainder- ki, i + 1)

11: Next_Comb(V alList, ki)

(Make the next vertex combination selection
according)

12: until C = NILL

13: end for

14: for each v ∈ V alList do

15: Visited [v] ← false

16: end for

17: end if

Algorithm 2: Enumerate_Vertex(G, u, S, Remainder, i)
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Appendix 3
Input: G: input graph, Parents: selected vertices of last
layer, u: Root vertex.

Output: Valid vertices of the current level.

1: V alList ← NILL

2: for each v ∈ Parents do

3: for each w ∈ Neighbor [u] do

4: if label [u] < label [w] AND NOT Visited [w] then

5: Visited [w] ← true

6: V alList = V alList + w

7: end if

8: end for

9: end for

10: return ValList

Algorithm 3: Validate(G, Parents, u)
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