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Abstract: Hepatocellular carcinoma (HCC) arises in the background of chronic liver diseases, includ-
ing hepatitis and liver cirrhosis caused by hepatitis C virus (HCV) infection. It is well known that
HCV eradication using antiviral drugs can efficiently inhibit hepatocarcinogenesis. Recent advances
in and development of direct-acting antiviral (DAA) drugs has revolutionized the treatment of HCV
infection, and the vast majority of HCV patients can achieve HCV eradication using DAAs. However,
mounting evidence clearly indicates that HCC inevitably occurs in a subset of patients after successful
viral eradication using DAA therapy. Cancer is a genetic disease, and the accumulation of genetic
and epigenetic aberrations may cause hepatocarcinogenesis in chronically damaged liver, even after
virus elimination. In this review, we highlight HCC development after HCV eradication and discuss
the current understanding of the molecular mechanisms of tumorigenesis after virus elimination,
focusing on the genetic and epigenetic background of chronically damaged liver tissues.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most prevalent and fourth most lethal
cancer worldwide [1]. HCC development is associated with various risk factors, including
infection with hepatitis B or hepatitis C virus (HCV), obesity, alcohol consumption, hepatic
steatosis, and exposure to aflatoxin B1. HCV infection is a leading cause of hepatocarcino-
genesis, especially in North America, Europe, and East Asia [2]. About 70% of people with
HCV develop chronic hepatitis, and 15–30% of HCV patients progress to cirrhosis within
20 years. The reported annual incidence of HCC in chronic hepatitis patients infected with
HCV is 1–4%, but rises to 3–8% in cases of HCV-related liver cirrhosis [3], which is higher
than that in patients with non-alcoholic steatohepatitis (NASH)-related cirrhosis (1–2%) [4].
Given recent advances in antiviral treatment, especially direct-acting antivirals (DAA),
most HCV patients achieve the persistent eradication of the viruses, the so-called sustained
viral response (SVR). It is widely recognized that HCV eradication can markedly reduce the
incidence of HCC. However, it should be noted that HCC may inevitably recur in a subset
of patients after achievement of SVR [5,6]. In this review, we highlight the clinical and basic
aspects of hepatocarcinogenesis after HCV eradication and discuss recent findings on the
molecular basis of post-SVR HCC development.

2. Progress of Anti-HCV Therapy and Its Protective Effect
against Hepatocarcinogenesis

Antiviral therapy against HCV has significantly advanced over the past decade. Inter-
feron (IFN)-α was the first drug to be approved as an antiviral therapy for patients with
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HCV infection [7]. However, the SVR rate after 24 weeks of treatment with IFN-α monother-
apy is only 6%, and increases to only 13–19% after 48 weeks of treatment [8,9]. Ribavirin,
an orally administered guanosine analog, is reported to have an excellent antiviral effect
in chronic hepatitis C patients [10], and when combined with IFN-α2b for 48 weeks, it
achieved an SVR rate of 38% [8]. Further antiviral advancement was achieved with the
development of pegylated-IFN. Phase 3 trials evaluating the combination of pegIFN-α2a
and ribavirin, and pegIFN-α2b and ribavirin revealed that they achieved SVR rates of
42–46% in patients infected with HCV genotype 1 and 76–82% in those infected with HCV
genotype 2 or 3 [11,12]. In 2011, the first-generation orally bioavailable NS3-4A protease
inhibitor, telaprevir, was approved for use in combination with pegIFN-α and ribavirin for
patients infected with HCV genotype 1 [13]. Since 2014, the availability of IFN-free therapies
combining multiple DAAs for patients with HCV-related chronic hepatitis or compensated
cirrhosis has increased the SVR rate to over 95% [14,15]. In addition, a 12-week regimen of
sofosbuvir plus velpatasvir was approved for patients with HCV-related decompensated
cirrhosis in 2019 [16].

Since the approval of IFN-based therapy, numerous studies have reported the pro-
tective effect of anti-HCV therapy against hepatocarcinogenesis. For example, a study by
Ikeda et al. involving 1643 chronic hepatitis C patients (1191 treated with IFN therapy
and 452 without IFN therapy) found the rate of 10-year cumulative HCC incidence to be
12.0% in untreated patients, 15.0% in IFN therapy non-responders, 2.0% in incomplete
responders who did not achieve SVR but achieved normal ALT levels, and 1.5% in patients
who achieved SVR [17]. A prospective randomized controlled study on the effects of IFN
therapy against hepatocarcinogenesis found that in patients with HCV-related compensated
cirrhosis, IFN therapy significantly improved liver function and decreased the incidence of
HCC (4% in IFN-treated patients versus 17% in untreated patients) [18]. These findings
indicated that IFN-mediated eradication of HCV may contribute to the reduction of HCC
development in patients with chronic HCV infection.

3. Suppression of HCC Development by DAA Therapy

It is well recognized that HCV eradication using IFN therapy can effectively reduce the
risk of HCC development. However, a series of studies in 2016 reported an unexpectedly
high rate of HCC incidence in patients with HCV-related chronic liver disease after SVR
achievement using DAAs. Conti et al. reported that HCC developed in 26 of 344 (7.6%)
cirrhotic patients who had been treated with DAA and followed for 24 weeks, suggesting
that DAA-mediated eradication of HCV did not reduce HCC occurrence [19]. Similarly,
DAA therapy seems to increase de novo HCC occurrence in patients with HCV-related
cirrhosis [20]. These reports have raised concern that DAA therapy promotes HCC devel-
opment after SVR. However, later studies involving large cohorts of HCV-positive patients
and longer follow-up periods after SVR achievement suggest that DAA treatment does not
increase the risk of HCC development and that, similar to IFN therapy, it may suppress
HCC development [21]. Indeed, several studies clearly demonstrated that there was no dif-
ference in the rates of early HCC recurrence in patients who received IFN therapy relative
to those who received DAA therapy, and that there were no significant differences between
DAA regimens [22,23]. A retrospective cohort analysis of 17,836 patients revealed that both
IFN therapy and DAA therapy significantly reduced the risk of hepatocarcinogenesis when
compared with no treatment. Moreover, in cirrhosis patients who achieved SVR, those
treated with either IFN therapy or DAA therapy had a significantly lower HCC incidence
rate when compared with untreated patients [24].

Several recent reports show that IFN-free DAA therapy has the same inhibitory effect
on hepatocarcinogenesis as IFN-based therapy and that it improves patient prognosis as
much as IFN-based therapy. A large cohort study of 22,500 patients treated with DAAs
(mean age 61.6 years, 39.0% with cirrhosis, 19,518 with SVR, and 2982 without SVR)
indicated that the risk of hepatocarcinogenesis was reduced significantly in patients who
achieved SVR (hazard ratio (HR): 0.28; 95% confidence interval (CI): 0.22–0.36) [25]. Another
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cohort study of 62,354 patients (35,871 treated with IFN, 4535 treated with IFN+DAA, and
21,948 treated with IFN-free DAA) showed that the inhibition of hepatocarcinogenesis
upon achieving SVR with DAA therapy was as significant as when using IFN or IFN+DAA
therapy [5].

4. Risk Factors for HCC Development after HCV Eradication Using DAA Therapy

Numerous studies have identified the clinical factors associated with the risk of HCC
development or recurrence after DAA-mediated SVR [26].

Several studies have shown that liver cirrhosis is closely associated with the risk of
HCC development and, consistently, that liver fibrotic markers are useful for predicting
HCC after SVR achievement using DAA therapy. It is reported that before treatment
of patients with cirrhosis with DAAs, those with pre-SVR FIB-4 scores of ≥ 3.25 had a
higher annual HCC incidence than those with FIB-4 scores of < 3.25. In cases of advanced
fibrosis, FIB-4 scores of > 3.7 at baseline and FIB-4 scores of > 3.3 one year after treatment
were associated with de novo HCC [27]. A non-invasive method of measuring liver
stiffness using ultrasonography revealed that those with a liver stiffness measurement
(LSM) of ≥ 20 kPa at follow-up or those with LSM values of 10–20 kPa and albumin levels
of < 4.4 g/dL were at the highest risk of HCC development after DAA treatment [28,29]. A
recent evaluation of clinical outcomes following DAA therapy in patients with compensated
and decompensated cirrhosis found that for patients with SVR, the cumulative HCC-free
survival at 2 years for those with Child-Pugh A cirrhosis and Child-Pugh B/C cirrhosis
was 94.5 and 87.6%, respectively [30].

A history of HCC treatment is another high risk factor for HCC development after
DAA therapy. For example, a multicenter prospective study revealed that in patients who
had received curative HCC treatment for a median duration of 17 months, de novo HCC
occurred in 48 of 1161 (4.1%) patients, while HCC recurrence occurred in 40 of 124 (32%)
patients [31]. Interestingly, HCC recurrence was significantly higher in patients with a
history of more than two HCC treatments when compared with those with only one
treatment [32]. Because of the high HCC recurrence rate even after HCV eradication, it is
debatable whether DAA therapy offers SVR benefits to patients with HCC history. How-
ever, accumulating evidence suggests that DAA therapy may improve clinical outcomes
in patients after curative HCC treatment. A study by Cabibbo et al. examined whether
DAA therapy improved overall survival (OS) in patients with HCV-related cirrhosis after
successful treatment for early-stage HCC and found that DAA therapy significantly im-
proved OS and reduced the rate of hepatic decompensation. However, HCC recurrence
was not significantly different between the DAA and no DAA groups [33]. A multicenter
retrospective cohort study revealed that, compared with patients who did not receive an-
tiviral therapy, mortality risk was significantly lower in patients with a history of HCC who
achieved SVR after DAA therapy [34]. Dang et al. demonstrated that SVR was indepen-
dently associated with a 60–70% risk reduction in both all-cause mortality and liver-related
mortality in patients with HCV-related HCC [35]. Taken together, these findings indicate
that DAA therapy could offer survival benefit even after curative HCC treatment, although
the development of predictive markers of HCC recurrence is required.

Previous studies also identified various factors associated with the increased incidence
of HCC after DAA-mediated SVR. Hepatic steatosis is known to increase the incidence
of HCC, and it was shown that nonalcoholic fatty liver disease (NAFLD) is associated
with increased incidence of HCC in chronic HCV patients after viral eradication [36–38].
Excessive drinking has been shown to significantly increase the prevalence of metabolic
syndrome and is an important carcinogenic risk factor. In the multicenter cohort study
with 2055 patients with HCV, 75 patients developed HCC during the mean observation
period of 4.1 years after antiviral therapy, and obesity (BMI ≥ 25 kg/m2) and heavy
alcohol consumption (≥60 g/day) were significant risk factors for development of HCC
after SVR [39]. In addition, advanced age is a high risk factor for the development of
HCC, and patients aged ≥75 years should continue careful surveillance for HCC even
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after HCV elimination [40]. From the viewpoint of the laboratory findings, patients with
HCC development or recurrence after SVR were characterized by lower platelet counts
(<80,000/µL), low albumin levels (<3.9 g/dL), and elevated AFP levels (>3.3 ng/mL) on
post-SVR blood tests [41]. Debes et. al. evaluated serum levels of immune mediators before,
during, and after DAA treatment for HCV infection. Comparing patients who developed
HCC after DAA treatment with controls, 12 immune mediator (cytokines, growth factors,
and apoptosis markers) levels were found to be significantly higher in serum before DAA
treatment [42]. Although it was revealed that patients with genotype 3 tend to have a
higher incidence of HCC [43], other papers reported that no significant difference was
observed in HCV genotype as a virological factor associated with developing HCC after
SVR [44,45].

5. Molecular Basis of Post-SVR Hepatocarcinogenesis: Genetic Alterations

The clinical observations described here raise the question of why HCC develops even
after the eradication of HCV, a major putative HCC carcinogen. To answer this question,
it is important to note that cancer development is based on the accumulation of genetic
aberrations [46]. Recent international projects on comprehensive genetic analyses have
elucidated the mutational landscape of liver cancers, including HCC [47–51]. One of the
most common genetic alterations in HCC is TERT gene-associated aberrations, including
promoter mutations and chromosomal translocations. Other major molecular factors altered
in HCC include Wnt/β-catenin, p53/cell cycle, PI3K/Akt/mTOR, and RAS/RAF/MAPK
signaling pathways, as well as chromatin-remodeling factors [47]. In addition, genes
involved in various other processes, including oxidative stress, TGF-β signaling, and liver
differentiation are also mutated in some HCC subtypes [52]. Since HCC tumorigenesis is
considered to be driven by a stepwise accumulation of genetic aberrations in the chronically
damaged liver, the genetic alterations accumulated in HCV-infected cirrhotic livers and
early-stage HCC might provide clues about the genetic basis of hepatocarcinogenesis after
HCV eradication [53].

We previously carried out whole exome sequencing analyses on non-cancerous cir-
rhotic liver tissues and found that HCV-positive cirrhotic livers frequently harbor numerous
somatic mutations on various genes, including tumor-related genes [54]. To elucidate the
landscape of genetic alterations in cirrhotic liver, we recently conducted a comprehensive
genetic analysis of more than 200 regenerative nodules of cirrhotic liver tissues [55]. Tar-
geted deep sequencing clearly showed that HCC-related somatic mutations are harbored by
some of the tumor-related genes with low allelic frequencies, including TP53, CTNNB1, and
ARID1A, although TERT promoter mutations, the most common genetic change in HCC,
were not detected. These findings are consistent with those of two other large-scale genetic
analyses on cirrhotic liver tissues [56,57]. On one hand, in a genetic analysis of non-tumor
liver tissues of METAVIR stage F1 to F4, Zhu et al. identified significantly mutated genes in
cirrhotic liver tissues, including ARID1A loss of function mutations. On the other hand,
Brunner et al. conducted a whole genome sequencing (WGS) study on 482 microdissections
from five normal and nine cirrhotic liver tissues and found that cirrhotic liver tissues not
only had single nucleotide variations but also harbored structural chromosomal variations,
including chromothripsis, a chromosomal crisis event associated with carcinogenesis.

The fact that various somatic mutations latently accumulate in the liver when chron-
ically damaged by HCV infection prompted us to explore the mutational landscape of
earlier-stage hepatocarcinogenesis. Using WGS, we evaluated the multistep accumula-
tion of HCC-related genetic alterations in nodule-in-nodule HCC specimens consisting
of progressed hypervascular HCC developed in the early hypovascular tumor arising
from a common origin [58]. Notably, TERT-associated genetic changes were generally
observed in the early stage of hepatocarcinogenesis, while case-specific cell-cycle/cell
proliferation-associated pathways were altered in the progressive phase of multistage
hepatocarcinogenesis. Importantly, early HCC tissues had already acquired numerous
somatic mutations, including single nucleotide variations as well as dynamic chromosomal
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alterations such as copy number alterations, long deletions, chromosomal translocations,
and even chromothripsis [58].

Taken together, these findings indicate that non-cancerous liver tissues, mainly liver
cirrhosis due to chronic HCV infection, possess a somatic mutational burden and have
already entered the multistep process towards hepatocarcinogenesis (Figure 1) [59]. Further
analyses would be required to assess the comprehensive genetic aberrations in the liver
tissue after HCV eradication.

Figure 1. Accumulated genetic alterations in hepatitis C virus (HCV)-infected liver contributes to
hepatocarcinogenesis even after HCV eradication. Persistent HCV infection and associated chronic
inflammation results in the stepwise accumulation of genetic and epigenetic aberrations. Although
achieving sustained viral response (SVR) with direct-acting antiviral (DAA) treatment suppresses the
progression of liver fibrosis and carcinogenesis, accumulated genetic aberrations may lead to hepato-
cellular carcinoma (HCC) development after HCV eradication. In addition, liver fat accumulation,
impaired glucose tolerance, and alcohol consumption may accelerate carcinogenesis.

6. Molecular Basis for Post-SVR Hepatocarcinogenesis: Epigenetic Alterations

It is also known that HCV infection can induce epigenetic alterations to hepatocytes
underlying hepatitis and/or cirrhosis [60–63]. Interestingly, Hamdane et al. reported that
HCV-induced epigenetic changes with liver cancer risk persist after SVR [64]. Through
ChIP sequencing of post-SVR and HCV-positive livers, they showed that HCV-induced
modifications of the histone mark, H3K27ac, persist in human liver samples after DAA-
mediated HCV cure. Integrated analysis of histone modification and gene expression data
revealed that SPHK1 upregulation remains after HCV eradication, and interestingly, the
high expression of SPHK1 is significantly associated with HCC risk after SVR. To elucidate
the landscape of transcriptional changes in post-SVR livers, we recently conducted total
transcriptomic analysis on post-SVR livers [65]. Comparison of total gene expression data
in post-SVR livers relative to HCV-positive and normal liver tissues revealed that some
oncogenic pathways are upregulated in post-SVR liver tissues. Interestingly, some abnormal
gene expression profiles caused by HCV infection did not return to normal even after HCV
eradication. Consistently, in vitro experiments using HuH7, a human liver cell line that
was infected once with the JFH-1 strain of HCV and then treated with DAA to eradicate
HCV, revealed that various oncogenic pathways were upregulated upon JFH-1 infection
and that some pathways remained upregulated even after complete HCV eradication. The
oncogenic pathways that were sustained after SVR are associated with cell proliferation, cell
adhesion, the cell cycle, and inflammation (Figure 2). Taken together, these findings indicate
that genetic, epigenetic, and transcriptional alterations caused by chronic HCV infection are
maintained even after viral eradication, and that aberrations with malignant potential might
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remain imprinted in the liver even after HCV eradication. Interestingly, a previous study
revealed that HCC tumorigenicity can stem from a metabolic plasticity, allowing them to
thrive in a broader range of glucose concentrations [66], suggesting that metabolomics and
proteomics in addition to transcriptomics on the liver tissues after SVR are necessary for
further analyses. Although genetic, epigenetic, and transcriptional alterations caused by
HCV infection are a potential molecular basis for post-SVR hepatocarcinogenesis, there
are only a few multi-omics studies on post-SVR cases. However, because each of these
studies involved small patient cohorts, omics-based studies with larger cohorts are needed
to validate the findings from multi-omics profiles associated with post-SVR carcinogenesis
and to elucidate the molecular basis of post-SVR HCC. In addition, because HCV infection
and SVR are tightly associated with immunologic responses to the virus, new techniques,
such as single-cell RNA sequencing and spatial gene expression mapping technologies, are
powerful tools for elucidating the pathogenesis of post-SVR liver tissues and the molecular
basis of hepatocarcinogenesis after HCV eradication [67,68].

Figure 2. Irreversible transcription profiles even after HCV eradication. A subset of transcriptional
changes caused by HCV infection can remain in hepatocytes even after HCV eradication. Such
transcriptional alterations may contribute to enhanced cell proliferation, promotion of apoptosis, and
dysregulation of intracellular signaling.

7. Conclusions

Because chronic inflammation is a major cause of tumorigenesis, the elimination of
pathogens that induce chronic inflammation reduces the incidence of tumors, although
the risk of tumorigenesis persists. For example, Helicobacter pylori (H. pylori) is a well-
known risk factor for gastric cancer, and although its eradication reduces gastric cancer
incidence, 0.35% of patients who achieve H. pylori eradication develop gastric cancer [69].
We previously found that genomic aberrations accumulate in gastric mucosa infected with
H. pylori, suggesting that non-tumor gastric tissue with chronic inflammation is highly
susceptible to carcinogenesis [70]. Therefore, persistent inflammation driven by chronic
infection, including by viruses and bacteria, may cause the accumulation of genetic or
epigenetic aberrations in various organs, leading to tumorigenesis even after the pathogens
are eradicated. Because HCC may develop in patients who achieve HCV eradication,
periodic HCC screening is necessary after HCV eradication, especially in cases with liver
cirrhosis and/or history of HCC treatment.
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