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While heart rate variability (HRV) is a relevant non-invasive tool to assess the autonomic
nervous system (ANS) functioning with recognized diagnostic and therapeutic
implications, the lack of knowledge on its interest in neonatal medicine is certain. This
review aims to briefly describe the algorithms used to decompose variations in the length
of the RR interval and better understand the physiological autonomic maturation data
of the newborn. Assessing newborns’ autonomous reactivity can identify dysautonomia
situations and discriminate children with a high risk of life-threatening events, which
should benefit from cardiorespiratory monitoring at home. Targeted monitoring of
HRV should provide an objective reflection of the newborn’s intrinsic capacity for
cardiorespiratory self-regulation.

Keywords: autonomic nervous system, sudden infant death syndrome (SIDS), life-threatening events, neonate,
cardiac monitoring

INTRODUCTION

Like adult pathology (1), the impact of autonomic nervous system (ANS) dysfunctions on children’s
health is well established. Regardless of age (2), heart rate variability analysis (HRV) is a relevant
non-invasive tool of real-time or delayed evaluation of autonomic function with recognized
diagnostic and therapeutic implications (3–8). Measurement tools that consider variations in the
length of the RR interval, beat after beat, are widely available, and reference values according to the
child’s age have been published (9, 10).

This narrative review aims to overview the various HRV analysis techniques to evaluate
autonomic nervous system maturation in neonates. We will also discuss the potential implications
of ANS maturation studies to prevent sudden infant death syndrome and guide cardiac monitoring
in neonatology units.

GENERALITIES ABOUT CARDIAC SIGNAL PROCESSING

Analysis of HRV obtained from the heart electrical signal by a monitor connected to two or three
thoracic electrodes can be carried out offline (e.g., from a cardiac Holter) or in real-time from
sliding windows analyzing cardiac irregularity according to a sampling frequency between 200 and
1000 Hz (11–13).
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A series of R-R intervals with an accuracy from 1 to 5 ms
is generated from each detected R peak. Missing or ectopic
beats and artifacts are corrected using cubic interpolations (12).
The curve of these intervals (tachogram) is then processed by
algorithms (Figure 1).

Linear Analysis
In this configuration, signal analysis conventionally relies on the
Fast Fourier Transform (FFT), method to assess the different
frequencies in the RR series which requires the acquisition
of stationary data with signal stability during the sampling
period (13).

Time-Domain Analysis (12)
It is based on the means and standard deviations measurements
of the short and long-term variations of the RR intervals. The
standard deviation of the RR intervals (SDNN), the standard
deviation of the mean of all RR intervals for 5-minute segments
(SDANN), and the mean of the standard deviation of all 5-minute
RR intervals (SDNNIDX) represent long-term global variations.
The percentage difference between adjacent normal RR intervals
greater than 50 msec (pNN50) and the square root of the mean
of the sum of the differences between normal RR intervals
squared (rMSSD) represent the rapid changes associated with
the parasympathetic activity. The geometric indices calculated on
the density distribution of the RR intervals correspond to the
assignment of the number of RR intervals of the same length to
each value of their length.

The Poincaré plot is a scatter plot developed by plotting
each RR interval against the previous one. It is analyzed
quantitatively by fitting an ellipse whose shape is plotted with
the average RR interval as the ellipse’s center. SD1 (short-term
variability) represents the standard deviation of the Poincaré
plot perpendicular to the identity line. In contrast, SD2 (long-
term variability) means the standard deviation of the plot along
this identity line.

Frequency Domain Analysis (12)
A frequency spectrum from 0 to 2 Hz segmented into three
main bands of interest as standardized by the Task Force in
1996 (11) and defines the regulation of the human cardiac
signal: very low frequencies (VLF) from 0 to 0.04 Hz reflect the
long-term regulatory mechanisms (thermoregulation, vasomotor
tone peripheral, renin-angiotensin system), low frequencies
(LF) from 0.04 to 0.15 Hz correspond to the involvement of
mainly the sympathetic system and more incidentally of the
parasympathetic system, and high frequencies (HF) of 0.15 to
2 Hz in newborns correspond to the ventilatory component
under the exclusive control of the parasympathetic system. Total
power (Ptot) represents overall variability. Normalized indices
(LFnu, HFnu) and LF/HF ratio estimate sympathetic modulation
and autonomic balance.

Geometric Analysis (12)
This analysis defines the triangular index (integral of the
density distribution divided by the maximum of the density

distribution) and the TINN index (triangular interpolation
of the RR interval histogram, i.e., the width of the base
of this triangle). These measurements quantify the overall
HRV primarily influenced by slow oscillations of the
RR intervals.

Non-linear Analysis (12)
Transition periods are evaluated by segmentation of the signal
with the wavelet transform method (14), allowing better
evaluation of non-stationary signals and more refined real-time
analysis. The indices resulting from this approach provide
information on the complexity of autonomic regulations. We
can distinguish fractal values, which quantify the repetition
of the patterns displayed at different scales. Fractal values
are based on trend fluctuation analysis (α1, α2, H), slope
(1/f), exponent (Hurst, Higuchi, Katz, Lyapunov). Entropy
values can also estimate the regularity and complexity
of a pattern over different lengths (entropy indices of
Shanon and its derivatives, conditional entropy, sampled
and approximated entropy).

Another non-linear approach consists in measuring the
deceleration (DC) and acceleration (AC) capacities of two
successive RR beat sequences to estimate the vagal and
sympathetic powers.

Cardiorespiratory Coupling
Other approaches to autonomic steady state analysis incorporate
the link of instantaneous fluctuations between heart and
respiratory rates over time using wavelet transforms. This is
the cardiorespiratory coherence whose most significant reflection
is represented by the physiological sinus arrhythmia caused
by the respiratory cycle in the full-term baby with a healthy
heart. In this case, if the child inhales and exhales, the
HR increases and decreases in synchrony. In a situation of
physiological stress, this coupling between heart rate and
respiration could be attenuated. However, respiratory immaturity
and the severity of central apneas are inversely correlated with
gestational age and current treatment strategies based on caffeine
and non-invasive respiratory assistance make it possible to
overcome the initial stage of immature breathing. So when
the full term approaches, the cardiorespiratory coupling is
usually efficient. Currently the analysis of the cardiorespiratory
coherence is not routinely used to guide monitoring for
discharge but mainly concerns anesthesia and the perioperative
period and proves to be of interest for evaluating nociception
(15–17).

PHYSIOLOGICAL AUTONOMIC
MATURATION

In neonatal medicine, understanding vital physiological systems
during the first months of life must integrate the notion of
autonomic control system maturation. Thus in utero, it has been
established that at least 37 weeks of maturation are necessary to
achieve complete autonomous maturation at birth, particularly
the parasympathetic system (2, 17, 18).
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FIGURE 1 | Electrocardiographic signal decomposition and beat-to-beat measurement (ms) of the RR suite to obtain a spectrogram over a given period, processed
by mathematical models adapted to linear sequences (time domain, frequency domain) or non-linear sequences (chaos, fractal, entropy, and Poincaré plot).

For premature newborns regardless of gestational age
(GA)(19, 20)and including late prematurity (21), cardiac
reactivity, and the baroreflex loop are altered at theoretical term
compared to term newborns (22, 23) (Figure 2), even if with
postnatal age there is a significant increase in HRV parameters,
in particular for the high-frequency index (HF), recognized as a
relevant indicator of parasympathetic maturation.

HRV is a good indicator for detecting and monitoring a stress
level related to labor and delivery for the full-term newborn. After
birth, the autonomic balance changes significantly during the
first day of life. The slight sympathetic predominance observed
at birth decreases in a few days in favor of the parasympathetic
system, whose reactivity quickly becomes efficient (23). The
rapidity of the cholinergic response (in milliseconds) compared
to the thousand times slower adrenergic response (in seconds)
will facilitate the onset of sudden cardiac slowdowns in response
to extrinsic (noise, pain) or intrinsic (gastrointestinal reflux)
stress (24). The sympathovagal balance of this neonatal period,
specific to each individual, will then slowly modulate during
the first months of life in favor of the parasympathetic branch,

which will gradually become predominant, as described in
the longitudinal AuBE (Autonomic Baby Evaluation) cohort
(Figure 3). During the first 2 years of life, the healthy
child benefits from a significant gain in overall autonomic
maturation and gradually reaches a new equilibrium, resulting
in a predominant parasympathetic activity compared to the
sympathetic activity and, therefore, a fast and fine regulation
gain (10).

Therefore, we must consider that this essential balance for
homeostasis and cardiorespiratory control closely depends not
only on wakefulness (wakefulness, calm sleep, active sleep) but
also on postnatal age (25).

IMPACT ON THE DECISION TO STOP
CARDIORESPIRATORY MONITORING IN
NEONATAL CARE UNITS

In the neonatal unit, the decision to stop cardiorespiratory
monitoring before discharge requires careful tracking of daily
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FIGURE 2 | The observable difference over 5 min in quiet sleep, between a full-term newborn (40 wGA) and a premature newborn (36 wGA), with a temporal
analysis (ms) of the RR spaces (top windows), or with a frequency domain representation (ms2 / Hz) (bottom windows).

modulations of heart rate, bradycardias, and desaturations
and understanding the intrinsic self-regulatory capacities of
newborns, and so by extension to analyze the basal autonomic
balance and the ANS reactivity.

When the corrected term is reached, the cholinergic response
is very efficient and faster than the adrenergic response. This
singularity implies a physiological increase in the number of
daily cardiac slowdowns as the term approaches for premature
children. What matters then is not to count the daily bradycardias
but to have a certainty on the capacity for sympathetic self-
regulation (response), which must not be deficient. In other
words, when the baby approaches the theoretical term, this
vagal predisposition should not be considered as a pathological
element. Conversely, a lack of orthosympathetic responsiveness
could increase the risk of an inadequate cardiorespiratory
response after internal or environmental stress. This lack of
sympathetic response would increase the risk of Sudden Infant
Death Syndrome (SIDS), especially in the premature population
(26, 27).

In clinical practice, the occurrence of sinus bradycardias in
a child who did not have it before may be the first symptom
of a new problem and requires careful clinical examination.
But when the baby approaches the theoretical term, a reflection
on the capacity of autonomic self-regulation of the heart and
respiratory rate should make it possible to safely stop the
cardiorespiratory monitor in the vast majority of cases. Thus
neonatal bradycardias do not justify continuing monitoring if,

although numerous, they remain isolated, asymptomatic, brief
(< 10 s), not deep (> 80 bpm), and followed by rapid cardiac
acceleration testifying to an adapted sympathetic response.
A complimentary assessment of newborns’ autonomic “capital”
and their “responsiveness” makes it possible to identify children

FIGURE 3 | From birth to the age of 2 years, evolution of heart rate variability
indices in the frequency domain. Ptot: total power of the spectrum (ms2 / Hz),
LF: low frequency (ms2 / Hz), HF: high frequency (ms2 / Hz) – Data from the
AuBE cohort.
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with a high potential for life-threatening event, who alone should
benefit from cardiorespiratory monitoring at home (28–30).

This careful observation of the heart rate variability and
complexity of respiratory rhythms, either in real-time or from a
24-hour cardiac Holter monitor, should become a valuable tool
for considering autonomic control for neonatologists.

AUTONOMOUS MATURATION AND
LIFE-THREATENING EVENTS

Autonomic imbalance in the first few months may involve
inappropriate cardiorespiratory responses after internal or
environmental stress (31–35).

The neonatologist’s search for a congenital or acquired
autonomic deregulation state as an objective risk factor for severe
life-threatening event or unexpected infant death syndrom (28)
should be a constant concern. In the SIDS triple risk model
involving vulnerable children, exogenous stress, and critical
development period, the cardiorespiratory autonomic control
immaturity and abnormal arousal responses are predominant
(33, 34). In an epidemiological survey of 20,000 children, Kato
et al. have shown an association between central abnormalities of
the cardiorespiratory response on awakening and life-threatening
events and sudden death (34). In prematurity, Lucchini et al.
showed a perfect correlation between the different experimental
conditions of sleep-wake or prone and the multiparametric
indices of HRV (30). Finally, the recent review by R. Horne (35)
considers the association between cardiovascular control during
infant sleep and the various components of the triple risk of SIDS,
including maternal smoking.

Cardiorespiratory modulations during awakening periods
are neurophysiologically mediated by the cortico-hypothalamic
pathways and the cardiorespiratory nuclei of the brainstem
(solitary tract, ambiguous nucleus, dorsal pneumogastric
nerve). The molecular contribution of cardiorespiratory control
inhibitory neurotransmitters such as GABA (γ-aminobutyric
acid), adenosine, serotonin, endorphins, and prostaglandins
in the genesis of apnea and bradycardia (36, 37) has been
proposed in SIDS patients in particular with the identification
of an abnormal serotoninergic response in the bulb and
the arcuate nucleus of the hypothalamus, possibly due
to genetic polymorphisms (38–40). Livolsi et al. reported
overexpression of muscarinic M2 receptors in the brain,
serum, and heart; and an increase in the enzymatic activity of
acetylcholinesterase in case of severe life-threatening event or
SIDS (41, 42).

All of these neurobiological considerations converge toward
autonomic dysfunction as a preponderant element in the
occurrence of SIDS.

ACQUIRED DYSAUTONOMIA IN
NEONATOLOGY

Studying the autonomic status of the child also has a
predictive potential in many clinical situations frequent in the
neonatal period, such as sepsis (43), anoxia (44), retinopathy
of prematurity (45), and growth deficit (46). The pathogenic
link between acute inflammation and dysautonomia during the
neonatal period deserves to be refined even if it has been shown
in case of chronic inflammatory diseases or diabetes (47, 48)
an impairment of autonomic control and an increased risk of
cardiovascular disease.

As part of routine care, analysis of HRV assessed in a non-
linear domain could be of interest to predict extubation failure in
very low birth weight premature infants (49).

It should also be remembered in a full-term neonatal model
without pulmonary disease that in the case of non-invasive
ventilation, the application of a continuous positive nasal
pressure modifies the heart and respiratory rate variability by
reducing the parasympathetic efferent activity without change in
sympathetic efferent activity (50).

CONCLUSION

The main interest of an HRV analysis from continuous
monitoring is to obtain an objective reflection of the intrinsic
capacity of the newborn to achieve perfect cardiorespiratory self-
regulation. A state of congenital or acquired dysautonomia could
be a central prerequisite for the occurrence of deleterious and
life-threatening events.

The challenge of a real-time HRV assessment must be
continued and complemented by clinical studies. It should make
it possible to better target children at risk of SIDS.
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