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State-of-the-art next-generation sequencing (NGS)-based subclonal reconstruction
methods perform poorly on somatic copy number alternations (SCNAs), due to not only it
needs tosimultaneouslyestimate thesubclonalpopulation frequencyand theabsolutecopy
number for each SCNA, but also there exist complex bias and noise in the tumor and its
paired normal sequencing data. Both existing NGS-based SCNA detection methods and
SCNA’s subclonal population frequency inferring tools use the read count on radio (RCR) of
tumor to its paired normal as the key feature of tumor sequencing data; however, the
sequencing error and bias have great impact on RCR, which leads to a large number of
redundant SCNA segments that make the subsequent process of SCNA’s subclonal
population frequency inferring and subclonal reconstruction time-consuming and
inaccurate. We perform a mathematical analysis of the solution number of SCNA’s
subclonal frequency, and we propose a computational algorithm to reduce the impact of
false breakpoints based on it. We construct a new probability model that incorporates the
RCRbiascorrectionalgorithm,andbystringing itwith the falsebreakpoint filteringalgorithm,
we construct a whole SCNA’s subclonal population reconstruction pipeline. The
experimental result shows that our pipeline outperforms the existing subclonal
reconstruction programs both on simulated data and TCGA data. Source code is publicly
available as a Python package at https://github.com/dustincys/msphy-SCNAClonal.

Keywords: somatic copy number alternation, subclonal reconstruction, subclonal frequency, absolute copy
number, bias correction
INTRODUCTION

Tumor heterogeneity introduces challenges in cancer tissue diagnosis and subsequent treatment
(Nowell, 1976). Tumor heterogeneity cannot be inferred by the properties of biomolecular through
the ontology or pathway analysis (Cheng et al., 2017; Cheng et al., 2018c), but could be inferred by
measuring thequantity of biomoleculars (Cheng et al., 2018b;Cheng et al., 2018d;Cheng et al., 2019). To
decipher cell composition in bulk cells, somatic copy number alternations (SCNAs), most commonly
found in tumor cells (Beroukhim et al., 2010), are utilized as the representative to determine tumor
subclonal populations in a tumor–normal tissue paired manner (Oesper et al., 2013; Li and Xie, 2015).
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The benefit of using SCNA to conduct subclonal reconstruction is
that theWGS data doesn’t have to be deeply sequenced (Li andXie,
2015), because SCNA affects large, multi-kilobase-sized or
megabase-sized regions of the genome, which allows the average
copy number of these regions to be accurately estimatedwithwhole
genome sequencing (WGS) (Deshwar et al., 2015).

SCNA’s subclonal reconstruction algorithms attempt to infer
the population structure of heterozygous tumors based on the
subclonal population frequency of SCNA (Deshwar et al., 2015).
However, the cellular prevalence and the absolute copy number are
intertwined and next-generation sequencing (NGS)-based
subclonal reconstruction needs to simultaneously estimate
population frequency and the absolute copy number for each
SCNA. The solution space of subclonal frequency of SCNA
remains poorly understood, and there might exist multiple
solutions for subclonal frequency for some SCNAs (Oesper et al.,
2013), which makes the infinite site assumptions (ISAs) (Kimura,
1969; Hudson, 1983; Jiao et al., 2014) invalid. ISA is the commonly
acceptedandpowerful assumption,whichposits that eachmutation
occurs only once in the evolutionary history of the tumor.

To infer the SCNA’s subclonal population frequency based on
NGS data, the location of SCNAs in the genome needs to be
obtained first. The SCNA breakpoints are detected through
multiple bin-merging processes, during which rcr of tumor to
its paired normal is used as a key feature (Xi et al., 2010).
However, the sequencing error and bias have great impact on
RCR, which leads to false positive breakpoints and incorrect
subclonal reconstruction (Please refer to Figures S2 and S3,
Tables S2 and S3 in the Supplementary). The higher sensitivity
the SCNA detection tools show, the more prone to the sequencing
error the tools would be. For example, BIC-seq (Xi et al., 2010)
first splits whole genome into small bins, then uses the Bayesian
Information Criterion as the bin merging and stopping criterion
to detect SCNA breakpoints. When sensitivity parameter l of
BIC-seq is very high, the true positive rate and the false discovery
rate will decrease simultaneously (Xi et al., 2010), which means
the SCNA regions will be separated into small fragments by the
false positive breakpoints (Xi et al., 2010). The choice of
parameter l is equivalent to setting type I error; in other words,
when performing the loop of combining windows, two
neighboring windows that should be combined are left
separated apart. Since the reconstruction algorithm of subclone
depends on the proportion of subclone populations of somatic
mutation to define mutation set and its subpopulation (Deshwar
et al., 2015) (Please refer to Figure S4 for the definition of
subpopulation and subclonal population), in order to more
precisely estimate the subclonal population ratio of every SCNA
fragment, we need to choose a smaller l to ensure the high true
positive rate of breakpoints, so as to more accurately estimate the
subclonal population frequency. However, the false positive
breakpoints split the SCNA regions into many small SCNA
fragments, which violates ISA and results in many redundant
input data and causes the subclone reconstruction process to be
extremely slow and time consuming.

Existing (NGS)based subclonal reconstructionmethods, suchas
ThetA (Oesper et al., 2013) and Mixclone (Li and Xie, 2015), use
Frontiers in Genetics | www.frontiersin.org 2
expectation maximation (EM) or maximum likelihood method
(MLM) to infer the subclonal frequency and the absolute copy
number of every input data. To reduce the searching space,
MixClone assumes that the number of subclonal population is
less than 3, and this number (1 or 2) needs to be predefined.During
the maximization step of the EM process, MixClone assumes the
subclonal frequencies of all the subclonal population only equal to
several combinations of discrete values to further reduce the
searching space. Thus, MixClone’s accuracy is compromised for
speed of computation.On the other side, Theta (Oesper et al., 2013)
does not make any compromise on searching space. Thus, Theta is
extremely time consuming while search optimal subclonal
frequency in (0,1) for every input data, which makes it unable to
perform subclonal reconstruction for more than three
subclonal populations.

With the ever increasingdataofbiotechnology comes the chance
of developing computational toolkit (Cheng et al., 2016; Cheng
et al., 2018a;Chenget al., 2019) tofindout thepathogenyofdiseases;
in this article, we provide a pipeline for reconstructing SCNA’s
subclonal population-based NGS data. We first perform a
mathematical analysis of the solution number of SCNA’s
subclonal frequency, propose and prove the theorem of solution
number of SCNA’s subclonal frequency, and present a method to
filter out false SCNA breakpoints based on it. Then we propose a
probability model that incorporates rcr bias correction algorithm
we previously developed, and we construct an SCNA’s subclonal
population reconstruction pipeline by stringing it with the false
breakpoint filtering algorithm. We model the read depth of tumor
sample as a Poisson distribution with the expected tumor read
count proportional to the absolute copy number and subclonal
frequency. We use the tree-structured stick breaking Dirichlet
process (Prescott Adams et al., 2010) to generate the tree
structure of tumor’s evolutionary history, and use the Markov
Chain Monte Carlo (MCMC) to obtain the result of subclonal
reconstruction. The experimental result shows that our pipeline
outperforms the existing subclonal reconstruction programs both
on simulated data and TCGA data.
MATERIALS AND METHODS

Solution Space of SCNA’s Subclonal
Population Frequency
The RCR and the b-allele frequency (BAF) of the heterozygous
single nucleotide polymorphism (SNP) locus in the SCNA
segment are commonly used as input for the sequencing data-
based SCNA’s copy number and subclonal frequency inferring
tools (Wang et al., 2007; Oesper et al., 2013; Li and Xie, 2015).
Since the number of reads mapped in certain genome region is
proportional to the copy number of this region, the RCR is set to

be proportional to
�Cj

2 by existing tools (Oesper et al., 2013; Li and

Xie, 2015), where
�Cj

2 denotes its average copy number of the jth
SCNA segment. Let fj denote the subclonal population cellular
prevalence of the jth SCNA segment; CT

j denote its absolute copy

number; mT
jk represent the BAF of the kth heterozygous SNP
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locus in the jth SCNA segment; �mj represent the average BAF of
the kth heterozygous SNP locus in the jth SCNA segment. Then
we have the following equation set

�Cj = fj*C
T
j + (1 − fj)*2,

�Cj =
1
�mjk

fj*C
T
j *m

T
jk + (1 − fj)*2* 1

2

h i
, k = 1,…,Kj :

8<: (1)

where Kj is the total number of heterozygous SNP loci in the jth
SCNA segment. Since the B allele locates either in paternal or
maternal haploid, both mT

jk and (1  − mT
jk) could possibly be the

BAF value in the same SCNA fragment and both �mjk and (1 − �mjk)
could possibly be the average BAF value in the same SCNA
fragment. To reduce the complexity, we use m̂T

jk to denote the
smaller one of mT

jk and (1  − mT
jk); b�mjk to denote the smaller one

of mT
jk and (1 − �mjk). Here we give a theorem to help answer the

solution space of equation set 1 and we prove it in the
Supporting Information.

THEOREM 1. Given �Cj and fb�mjkgKj

k=1 and let x =
CT
j m̂

T
jk−1

CT
j −2

, we have
the following conclusions:

1. If �Cj < 2, there is only one solution fj in Equation set 1.

2. If �Cj > 2 and �Cj <
1b�mjk there is only one solution of fj in

Equation set 1.
3. If �Cj > 2 and �Cj ≥

1b�mjk , there are infinite solutions of fj in

Equation set 1.
4. If �Cj > 2 and �Cj ≥

1b�mjk , there are multiple solutions of fj in

Equation set 1 on the curves of the family of function b�mjk =

x(1 − 2
�Cj
) + 1

�Cj
, under the restriction of maximum absolute

copy number Cmax. Suppose segment sj ′ and sj″ are the two

solutions for given �Cj and fb�mjkgKj

k=1, then
CT
j0 m̂

T
j0k−1

CT
j0−2

=
CT
j00 m̂

T
j00k−1

CT
j00−2

.

The multiple solution area would be �Cj ∈ (2, min(Cj′, Cj″)) andb�mjk ∈ (min (m̂T
j0k, m̂

T
j00k), 2).

As shown in Figure 1, given the observation value �Cj and b�mjk

and maximum copy number Cmax = 15, only 7/43 of the curves of
the family of function b�mjk = x(1 − 2

�Cj
) + 1

�Cj
present multiple fj

solutions (Please refer to Table S1 for the detail information of
multi-solution range).

The Algorithm of Filtering Out False
Positive SCNA Breakpoints
We assume that there are no two adjacent SCNAs that present the
same �Cj and b�mjk andmeanwhile the different fj andCT

j according to
Theorem1.Weuse the samemethoddescribed in Li andXie (2015)
tomodel the read count ratio of tumor and its paired normal. Based
on the Lander–Waterman model (Lander and Waterman, 1988),
the probability of sampling a read froma given segment depends on
three main factors: 1) its copy number, 2) its total genomic length,
and 3) its mappability, which depends on factors such as repetitive
sequence andGCcontent (Li andXie, 2015). For each segment j, we
associate a coefficient j) to account for the effect of its mappability
and genomic length. Thus, the expected tumor read countsmapped
Frontiers in Genetics | www.frontiersin.org 3
to segment j, which is denoted as lj, are proportional to �Cjqj. For
example, for segment x and segment y, we have

lx
ly

=
�Cxqx
�Cyqy

(2)

Because the mappability coefficients matter only in a relative
sense, we take qx=qy = DN

x =D
N
y , as these segments should have

the same sequence properties between the normal and tumor
samples. Thus, Equation 2 is transformed into

log (lx=D
N
x ) − log (ly=D

N
y ) =

�Cx
�Cy

: (3)

However, our previous study (Chu et al., 2017a) has shown
the RCR of tumor to its paired normal presents a log-linear GC
content bias, and has described a bias correction software “Pre-
SCNAClonal” (Chu et al., 2017a) to correct this bias specifically.

Let dDS
i =D

N
i denote the corrected read count ratio of tumor

sample and its paired normal, and let F() denote the bias

correction process. Then we havedDS
i =D

N
i = F(DS

i =D
N
i ) and

log dDS
i =D

N
i

� �
− log dDS

j =D
N
j

� �
= log

�Ci
�Cj

: (4)

Then we use the following steps to filter out false positive
SCNA breakpoints.

1. First, BIC-Seq with a small l is used to detect SCNA
breakpoints. Then the whole genome is separated into
SCNA fragments by these breakpoints. We use fsjgJj=1 to

denote this SCNA fragment set.
2. Next, Pre-SCNAClonal (Chu et al., 2017a) is used to correct

the bias of RCR.
3. Next, the hierarchical clustering algorithm is used to cluster

fsjgJj=1 based on log  (dDS
j =D

N
j ) of every segment with the

maximum amount of cluster predefined as Cmax * t, where
t is the number of subclonal populations. Suppose in this
step, there are N clusters obtained by the hierarchical
clustering algorithm. We denote the nth cluster as Sn where
n = 1, 2,…, N. For convenience, we call this step the
aggregation step.

4. Next, the MeanShift algorithm is used to perform an

unsupervised cluster search on ∪sj∈Sn fb�mjkgKj

k=1, where Sn is

obtained by step 3. Assume there are Mn BAF clusters

detected in ∪sj∈Sn fb�mjkgKj

k=1, and we use Y(b�mjk) ∈ f1,…,Mng
to represent the cluster index. Then for every sj ∈ Sn we define
the BAF cluster of sj to be the BAF cluster of fb�mjkgKj

k=1

with the largest number. Then each Sn is split into

subclusters fSn,mgMn
m=1 based on the BAF cluster of each sj.

For convenience, we call this step the decomposition step.
5. For each Sn,m, n = 1,2,…,N, m = 1,2,..,Mn, we merge two

adjacent SCNA fragments, which are on the same
chromosome and the distance between them is less than a
predefined threshold r.
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The space complexity of the algorithm of filtering out
false positive SCNA breakpoints is o(J2). The computational
complexity of “MeanShift” and “hierarchical clustering” are
o(oN

n=1(In*osj∈SnKj)
2) and o(J3), where In is the number of

iterations for Sn. Thus. the time complexity of the algorithm
of filtering out false positive SCNA breakpoints is o(J3 +

oN
n=1(In*osj∈SnKj)

2). The detail validation of this algorithm

are described in Section 4 in the Supplementary (Please
refer to Figures S5–S8 for the results).

Normal Segments Detection Method
The task of normal segments detection is to find out all the
segments that �Cj = 2, since the copy number CN

j in sj in normal
sample equals 2, normally. A cancer genome differs from the
reference genome by gains and losses of segments, or intervals, of
the reference genome (Oesper et al., 2013).

However, due to two different sequencing processes and the
coverage may not exactly be the same for tumor and its paired

normal,dDS
j =D

N
j does not always equal to 1 for the normal segments

(Li and Xie, 2015). In this paper, we use the same normal segments
detection method described in our previous work (Chu et al.,
2017a), which utilizes BAF information to detect normal segments.

Equation set 1 implies following conclusion

fj = 0 or CT
j = 2 ⇔ �Cj = 2,

fj = 0 or CT
j = 0 or mT

jk =
1
2 ⇔ �mT

jk =
1
2 :

(5)
Frontiers in Genetics | www.frontiersin.org 4
We detect the normal segments Ntm from Stm according to
Equation 5 by the following two steps. First, we filter out all the
segments sj ∈ Stm with �mT

jk ≠
1
2 for k = 1,…,Ksj . In the remaining

segments, the possible CT
j could be any one in {0, 2, 4,…}, since

all the possible genotypes GT
jk of allele at the kth site for mT

jk =
1
2

could be any one in {∅, PM, PPMM,…}. Next, we obtain all the
normal segments Ntm from these segments by selecting the

segments with the read depth dSjk at the kth heterozygous SNP site

equal to the coverage of the alignedWGSdata of the tumor sample.

The Probability Model of Subclonal
Population Frequency
Figure 2 shows the probabilistic graphical model of SCNA’s
subclonal population frequency. In this figure, S denotes the set
of all the SCNA segments; N denotes the set of segments that
contain no SCNA. We use the same method described in Li’s
study (Li and Xie, 2015) to set the probability of BAF to obey
binomial distribution

bSjkjdSjk,mT
jk, fj  ∼ Binomial dSjk, b�mjk

� �
, (6)

where bSjk denotes the number of tumor reads that contain B
allele at the kth heterogeneous SNP locus and dSjk denotes the
total number of tumor reads mapped at this locus. In this figure,
GT
jk denote the allele’s genotype at the kth heterogeneous snp

locus in segment sj.
According to Equation 4, we have the expected tumor read

counts mapped to segment j
FIGURE 1 | The solution space of Equation set 1 given the observation value �Cj and b�mjk and maximum copy number Cmax = 15. In this figure, k denotes the

number of solutions; x =
CT

j m̂
T
jk−1

CT
j −2

, where CT
j is the absolute copy number of SCNA in the jth segment sj, m̂T

jk is the normalized BAF of tumor reads mapped at the kth

heterozygous SNP loci in the jth segments sj; b�mjk denotes the normalized average tumor reads mapped at the kth heterozygous SNP loci in the jth segments sj; �Cj

denotes the average copy number of segment sj; fj denotes the subclonal frequency of segment sj.
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lj = F−1
�Cj

�Ci
�dDS

i =D
N
i

� �
� DN

j (7)

where F−1() denotes the reverse process of bias correction. Let
|N| denote the number of baseline segments (Li and Xie, 2015)
(in which the absolute copy number CT

j = 2). We use
the average of read count’s log ratio of all the baseline

segments ϑ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

−jNj

s
to calculate the expectation of
tumor read count, and model the tumor read count as a
Poisson distribution

DS
j jDN

j ,C
T
j , fj  ∼ Poisson F−1

�Cj

2
� ϑ

� �
� DN

j

� �
(8)

It could be deduced from the first equation in Equation set 1

that �Cj > 2 ⇔ CT
j > 2. Therefore, we may conclude thatdDS

j =D
N
j >

ϑ ⇔ CT
j > 2, since �Ci must equal 2 if si contains no SCNA. We set

CT
j obeys the categorical distribution

CT
j   ∼ Categorical ς ϑð Þð Þ, (9)

where function ς (ϑ) denotes CT
j ‘s range; ς (ϑ) = {0, 1, 2} ifdDS

j =D
N
j < ϑ; ς (ϑ) = {2, 3,…, Cmax} if

dDS
j =D

N
j > ϑ.
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The subclonal population frequency of certain mutation equals
the sum of all its subpopulation frequencies (for details, refer to
Figure S1 in the Supplementary), and all the subpopulation
frequencies in the tumor sample sums to 1. Therefore, all the
subpopulation frequencies in the tumor sample obey the Dirichlet
distribution, and this Dirichlet distribution obeys the tree-
structured Dirichlet process (DP) (Prescott Adams et al., 2010).
Suppose there are P subpopulations in a tumor sample; let x1,…, xp
denote all the subpopulation frequencies

x1,…, xP  ∼ Dirichlet(a1,…,aP), (10)

where a1,…, ap are the concentration parameters. In this paper, we
seta1 =… =ap = 1, then Equation 10 is transformed into a uniform
distribution of (p −1)-dimension simplex. Therefore, the prior
probability of subclonal frequency fj equals the probability of the
tree structure. In Figure 2, G denotes the tree-structured DP; H
denotes the base distribution;a and g are the scaling parameters ofG.

We use MCMC to obtain the prior distribution of fj since the
probability of tree-structured DP cannot be explicitly expressed.
We use the slice sampling method described in Prescott’s study
(Prescott Adams et al., 2010) to generate tree structure. The
complete posterior probability of the subclonal population
frequencies of all the SCNA segments

Pr fj
� �

sj∈SnNj DS
J

� �
sj∈SnN, bSjk

n oKj

k=1

	 

sj∈SnN

,T

 !

∝ Pr DS
J

� �
Sj∈SnN, bSjk

n oKj

k=1

	 

Sj∈SnN

j fj
� �

Sj∈S gN

 !

� Pr fj
� �

Sj∈SnN
� �

=
Y

N∈TCT
j ∈

o
0,1::: Cmaxf g

o
GT
jk∈z CT

j

� �
mT
jk

o
∈h GT

jk

� �Y
Sj∈N

1

DS
j !

� F−1
�Cj

2
�jNj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

s0@ 1A� DN
j

0@ 1ADS
j

�

264

e−f
−1 �Cj

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

jN

s0@ 1A� DN
j

�
YKj

k=1

dSjk

bSjk

0@ 1Ab�mbSjk
jk

1 − b�mjk

� � dSjk−b
S
jk

� �35 : (11)

where T denotes the tree structure, and N denotes a node in T.
We select the tree structure with maximum posterior probability

Tmax =
argmax Pr

T(i)
DS

j

� �
Sj∈SnN, bSjk

n oKj

k=1

	 

Sj∈SnN






 fj
� �(i)

Sj∈SnN,T
(i)

 !
, (12)

where T(i) and ffjg(i)sj∈SnN denote tree structure and subclonal
population frequencies of the ith sampling process. The absolute
copy number of the ith sampling process is
FIGURE 2 | Bayesian network model for subclonal population frequency. In
this figure, G denotes the tree-structured Dirichlet process; H denotes the
base distribution; a and g are the scaling parameters of G; fj denotes the

subclonal frequency of SCNA in segment sj; DS
j denotes the number of tumor

reads mapped in segment sj, while DN
j denotes the number of normal reads

mapped in segment sj; CT
j denotes the absolute copy number of SCNA in

segment sj; ϑ denotes the geometric mean of the read count ratio of all the
baseline segments N; Cmax is the maximum absolute copy number pre-

defined; GT
jk denotes the tumor genotype of the kth heterozygous SNP loci in

the jth segments sj; uTjk denotes the tumor BAF of the kth heterozygous SNP

loci in the jth segments sj;bS
jk and dS

jk denote the number of B-allele and the

total allele at the kth heterozygous SNP loci in the jth segments sj.
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CT
j

n o(i)

Sj∈SnN=∪N∈T(i)

argmax

CT
j

n o
Sj∈N

Y
Sj∈N

1
DS
J !

F−1
�Cj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

jNj

s0@ 1A� DN
j

0@ 1ADS
j

�

264
e−F

−1 �Cj

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

jNj

s0@ 1A� DN
j �

YKj

k=1

dSjk

bSjk

0@ 1Ab�mbSjk
jk

1 − b�mjk

� � dSjk−b
S
jk

� �35
, (13)

where fCT
j g(i)sj∈SnN are absolute copy numbers with the maximum

posterior probability if the i'-th sampling process is the solution
of Equation 12.

The Pipeline for Reconstructing SCNA’s
Subclonal Population-Based NGS Data
As shown in Figure 3, the pipeline consists of five models. The
tumor and its paired normal sequence alignment sequencing
data in BAM format are used as input of the pipeline. The SCNA
segments are detected by BIC-seq (Xi et al., 2010), then the bias
of read count ratio is corrected by the correction model (Chu
et al., 2017a) we previously proposed. We filter out the false
positive breakpoints by the algorithm we proposed in this paper,
then we use the probability model of subclonal population
frequency proposed in this paper to infer the subclonal
frequency of each SCNA segment. Finally, we use the tree
structure learning algorithm (Prescott Adams et al., 2010) to
reconstruct the SCNA’s subclonal population.
RESULTS

In this section, we evaluate the performance of probabilistic
model on both simulated and real datasets and compare its
Frontiers in Genetics | www.frontiersin.org 6
performance with existing tools. Existing tools such as Mixclone
(Li and Xie, 2015) and TheatA (Oesper et al., 2013) could not
calculate the subclonal frequencies of more than three subclonal
populations. Therefore, we use the simulated data, which contain
more than three subclonal populations and TCGA benchmark
data together to evaluate our model.

Results From Simulated Data
We use Pysubsim-tree (Chu et al., 2017b) to simulate a tumor’s
NGS read alignment data from Chromosome 21 with the
evolution history configuration shown in Figure 4 and the
acquired SCNA’s configuration listed in Table 1. In Figure 4,
each circle represents a subpopulation; the squares with character
a, b, c, d, e, and f represent five SCNAs; the number on the right
side of the circle is the frequency of the subpopulation.

We set the first 50 cycles of the MCMC sampling process as
burn-in and use the result of the following 300 cycles to calculate
the probability of the evolutionary relationship between
subpopulations. We set a = 1.0, g = 1.0, H to be the uniform
distribution. Figures 5A, B are the dot-plots of the distribution
of the output of subclonal population frequency model. Figure
5C shows the partial order plot (Jiao et al., 2014) of the
evolutionary relationship obtained by the model proposed in
this paper. The arrows in this figure denote the direct
evolutionary relationship of the two subpopulations. The width
of the arrow denotes the probability of this evolutionary
relationship present in the 300 cycles of the MCMC process.
Suppose fTigIi=1 denotes all the trees obtained in all the cycles of
the MCMC process, ab

!
denotes the evolutionary relationship

from subpopulation a to b. Then the probability of this
evolutionary relationship is
FIGURE 3 | The structure of the whole NGS data-based SCNAs’ subclonal reconstruction pipeline.
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According to Theorem 1, a and e have only one solution of fj
while the others are not. The distribution of absolute copy numbers
shown inFigure 5A is consistent with Theorem 1. The distribution
of e’s subclonal frequency is quite scattered inFigure5Bbecause the
small subclonal frequency and the absolute copy number of e
(closed to normal) cause the coverage to decrease by 5%, which is
almost the same as the noise. The subclonal frequencies of other
SCNAs are highly distributed at the positions of subclonal
frequencies listed in Table 1. Each SCNA’s absolute copy number
and subclonal frequency with the maximum posterior probability
are listed in Table 2. The subclonal frequencies of b and c are not
correct because they have multiple solutions of subclonal
frequencies according to Theorem 1, while the others are correct.
The distribution of absolute copy number and subclonal frequency
in Figure 5 and the result listed in Table 2 show that our SCNA
probabilitymodel could correctly calculate the subclonal frequency
of SCNA.

Results From Breast Cancer
Sequencing Data
We use the ngs data “HCC1954-spiked1-n25t35s40” and
“HCC1954-spiked1-n25t55s20” (denoted as “n25t35s40” and
“n25t55s20” for convenience) of Cancer Genome Atlas (TCGA)
Benchmark 4 dataset, which is publicly available at the National
Frontiers in Genetics | www.frontiersin.org 7
Cancer Institute GDC Data Portal (https://gdc.cancer.gov/
resources-tcga-users/tcga-mutation-calling-benchmark-4-files) to
further validate the subclonal frequency model proposed in this
paper. HCC1954 is an immortal cell line derived from an invasive
ductal carcinoma of the breast diagnosed in a 61-year-old woman
(Bignell et al., 2007). “G15512.HCC1954.1” is the NGS data of this
cell line, which contains one subclonal population with purity 0.99;
however, this data has no ground truth of absolute copy number of
the SCNA regions. “HCC1954-spiked1-n25t35s40” is generated by
merging 35% of “G15512.HCC1954.1” with 25% of its paired
normal NGS data and 40% of “G15512.HCC1954.1” with some
SCNAs randomly spiked in it. Therefore, there are two subclonal
populations in the tumor sample “HCC1954-spiked1-n25t35s40,”
and their subclonal frequencies are 75% and 40%, respectively. The
ISA is invalid since each subclonal population contains multiple
SCNAs; thus, we set the prior probability of tree structure to obey
uniform distribution, and thus Equation 11 could be rewritten as
follows:

Pr fj DS
j

n o
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n okj
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Figure 6 shows the subclonal frequencies obtained by the
model proposed in this paper. In this figure, “P” denotes the
parent subclonal population (subclonal frequency 75%) and “C”
denotes the child subclonal population (subclonal frequency
40%). As shown in Figure 6, the subclonal frequencies of these
two population obtained by the model proposed in this paper are
72% and 42% for sample “n25t35s40” and 77% and 25% for
sample “n25t55s20,” which are the most closed to the fact in
comparison with MixClone and ThetA.
DISCUSSION

Generally, SCNAs with larger subclonal population frequency
could relatively be more precisely located. However, due to the
FIGURE 4 | The evolution process of subclonal population in the simulation
data. In this figure, each circle denotes a subpopulation; the number on the
left is its frequency; each square inside the circle denotes an SCNA; each
arrow points an offspring subpopulation.
TABLE 1 | The SCNA’s configuration for each subpopulation of the simulation data.

SCNA Chrom Position Length CT
j Gj fj

a chr21 17478172 500000 0 Ø 0.95
b chr21 27485802 500000 3 PPM 0.03
c chr21 30959067 500000 4 PPPM 0.01
d chr21 35841868 500000 5 PMMMM 0.05
e chr21 43277023 500000 1 M 0.03
f chr21 25056314 500000 7 MPPPPPP 0.01
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twice sequencing procedures of tumor and its paired normal, the
read information of the genomic regions with the same copy
number in tumor sample is not exactly the same as its paired
normal’s. Moreover, the lower read coverage of NGS makes the
noise/error more likely to be mistaken for an SCNA. As shown in
Figure 7, the number of SCNA breakpoints obtained by SCNA
detection tool is proportional to the subclonal population
frequency. If there exists a large proportion of false negative
Frontiers in Genetics | www.frontiersin.org 8
breakpoints, it will cause the read count in the segments
incapable to reveal the copy number property, then it will
affect all the read count-based SCNA analysis tools. On the
other hand, if there exists a large proportion of false positive
breakpoints, the segment clustering step of filtering out the false
positive breakpoints could reduce the data size and make the
read count information more robust to noise by merging the
SCNA segments with the same absolute copy number and
subclonal population frequency. As shown in Theorem 1, the
SCNA segments with the same RCR and average B-allele
frequency are indistinguishable to the NGS-based SCNA
analysis tools. Merging two non-adjacent SCNA segments with
the same NGS properties could not affect the result of the NGS-
based SCNA analysis tools.

Tree-Structured Stick Breaking (TSSB) process (Prescott
Adams et al., 2010) could learn the tree structure of the
hierarchical data. A tree structure space could be generated
FIGURE 5 | The result of subclonal reconstruction based on simulation data. (A, B) Dot-plots of the distribution of absolute copy number and subclonal frequency
inferred by the 300 cycles of MCMC process. (C) The partial plot of the subclonal frequency.
TABLE 2 | The results of subclonal population frequency inferring based on
simulation data.

a b c d e f

CT
j result 0 7 5 5 1 7

CT
j fact 0 3 4 5 1 7

fj result 0.950 0.106 0.075 0.501 0.304 0.106
fj fact 0.95 0.30 0.10 0.50 0.30 0.10
February 2020 | Volume 10 | Article 1374
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by intertwining two DP; then as described in Prescott’s paper
(Prescott Adams et al., 2010), one can imagine throwing a dart
(data) on the tree space and considering which node the dart
hits. If we know subclonal number L in advance, then we could
generate the tree structure in two steps. Step 1: generate a tree
using all the data; Step 2: sort nodes by the sum of the size of
the genome region hit, then find out the top L nodes and throw
the rest of the darts (data not in the L nodes) into these L nodes
Frontiers in Genetics | www.frontiersin.org 9
randomly. Figure 7 shows that subclonal frequency affects the
number of breakpoints; thus, there might present false positive
or false negative breakpoints in the result of the SCNA
detection tool. The false positive breakpoints could be
filtered out by the algorithm in this paper. Even if there exist
false breakpoints, the redundant data that contains the same
SCNA might hit the same node in the tree space generated by
the TSSB process. Thus, the redundant data affects the time
FIGURE 6 | The subclonal proportion of SCNAs in HCC1954 data. In this figure, SCNAModel is the subclonal frequency inferring model proposed in this paper.
FIGURE 7 | Breakpoints distribution on chromosome 1 of mixed “HCC1954” samples. Here the “n5t95” to “n95t5” respectively denote the tumor sample from
“HCC1954.mix1.n5t95” to “HCC1954.mix1.n95t5.” “n0t100” denotes the tumor sample; “HCC1954” contains no normal contamination. Each of these samples
contains one tumor subclone. All the breakpoints are obtained by BIC-seq (Xi et al., 2010).
February 2020 | Volume 10 | Article 1374
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and space consumption, but could not affect the result of
subclonal reconstruction theoretically.
CONCLUSION

In this paper, we first perform a mathematical analysis of the
solution space of SCNA’s subclonal frequency. Then based on
the mathematical analysis, we propose an algorithm to filter out
the false breakpoints and we construct a new probability model
to reconstruct SCNA’s subclonal population, which incorporates
the algorithms of RCR bias correction we previously proposed.
We use the tree-structured stick breaking DP (Prescott Adams
et al., 2010) to generate the tree structure space of tumor’s
evolutionary history. In the probability model, the BAF of the
heterozygous SNP locus in the SCNA segment is modeled as a
binomial distribution and the read depth of tumor sampling data
is modeled as a Poisson distribution with respect to the potential
bias in RCR. We generate the distribution of subclonal frequency
from the distribution of subpopulation frequency, which is
drawn from the tree structure space. By stringing the model
with the false breakpoint filtering algorithm, we construct a
whole SCNA’s subclonal population reconstruction pipeline,
which is capable of inferring SCNA’s absolute copy number
and its subclonal population frequency and its evolutionary
process while there are a lot of false positive SCNA breakpoints
and the RCR presents bias. The results show that the model
proposed in this paper could more accurately estimate the
absolute copy number of SCNA segments and their subclonal
population frequencies in comparison with existing methods
both on simulated data and TCGA data.
Frontiers in Genetics | www.frontiersin.org 10
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