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Summary

Targeted restoration of immunological tolerance to self-antigens or innocuous environmental aller-
gens represents the ultimate aim of treatment options in autoimmune and allergic disease. Antigen-
specific immunotherapy (ASI) is the only intervention that has proven disease-modifying efficacy as 
evidenced by induction of long-term remission in a number of allergic conditions. Mounting evidence 
is now indicating that specific targeting of pathogenic T cells in autoinflammatory and autoimmune 
settings enables effective restoration of immune homeostasis between effector and regulatory cells 
and alters the immunological course of disease. Here, we discuss the key lessons learned during the 
development of antigen-specific immunotherapies and how these can be applied to inform future 
interventions. Armed with this knowledge and current high-throughput technology to track immune 
cell phenotype and function, it may no longer be a matter of ‘if’ but ‘when’ this ultimate aim of tar-
geted tolerance restoration is realised.
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Introduction

The treatment of allergy and autoimmunity urgently 
requires novel therapeutic approaches; current med-
ical interventions broadly aim to manage symptoms of 

disease but do not address their underlying cause, i.e. loss 
of immunological tolerance. Immunosuppressive drugs 
have both short- and long-term adverse effects, most 
importantly compromised immune function in immune 
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surveillance of cancer and protection from infectious dis-
eases. A major benefit to antigen-specific immunotherapy 
(ASI) is that it has the potential to modify disease with 
reduced reliance on conventional broad-range systemic 
immunosuppression.

Allergy is an incredibly common health concern, af-
fecting more than 20% of the population in developed 
countries [1], with prevalence in the UK being one of the 
highest reported globally (estimated 44% of adults) [2]. 
Despite prevalence of allergic diseases reaching an epi-
demic scale, clinical focus has remained on maintaining 
an allergen-free lifestyle and access to anti-histamines 
and epinephrine rather than specific treatments.

The prevalence of autoimmune conditions has also 
risen steadily in recent decades, with current estimates 
suggesting one in eight people worldwide have at least 
one autoimmune condition [3]. Autoimmune diseases 
often require lifelong therapy with immunosuppressive 
drugs which at best slow down disease progression, there-
fore, new specific treatments represent a major advance 
in the field. We believe that the goal of novel approaches 
should be to target disease-associated antigens and sup-
press allergen-specific or autoreactive T cells that recog-
nise them in order to re-instate immunological balance.

Antigen-specific immunotherapy: a histor-
ical perspective

‘Immunological tolerance’ was formally defined in 
Peter Medawar’s Nobel Prize winning speech as a ‘state 
of indifference or non-reactivity towards a substance 
that would normally be expected to excite an immuno-
logical response’ [4]. Prior to this definition, research 
investigating manipulation of immunity to generate a 
state of non-reactivity was underway. Specific tolerance 
induction was documented in the scientific literature as 
early as 1827. Dakin described the indigenous practice 
of ingesting poison ivy leaves to reduce poison ivy rash 
[5], i.e. tolerance induction via delivery of the offending 
antigen.

Pioneers in the field first published clinical appli-
cations of specific tolerance in 1911, with Wells and 
Osborne utilising the mucosal route of delivery in guinea 
pigs, inducing systemic non-responsiveness by feeding 
vegetable proteins [6], and Noon and Freeman using 
increasing subcutaneous doses of grass pollen extract to 
desensitise a hay-fever sufferer [7]. At the time, allergic re-
actions were assumed to be caused by antigenic ‘toxins’. 
Injection of small doses of antigen (‘toxin’) was therefore 
predicted to induce ‘anti-toxins’ to neutralise the threat. 
Although we now appreciate allergens are not toxins, 
their early observations that delivery of whole allergen 

could re-establish non-reactivity to these antigens was 
correct. Interestingly, Noon also noted a transient re-
duction in resistance after high doses of allergen prior to 
resistance increasing to above its prior level, indicative 
of transient immune response before establishing robust 
immune regulation. Induction of antigen-specific T cell 
anergy preceded by short-term T cell activation has been 
shown to be a feature of both allergen and autoantigen 
tolerance induction [8–10].

In the >100 years since these early reports, there has 
been steady interest in allergen immunotherapy (AIT) and 
significant clinical data supporting its disease moderating 
impact [11,12]. Improvements in antigen production, 
standardisation, and purity have significantly improved 
safety and efficacy such that subcutaneous and/or sublin-
gual allergen delivery have shown efficacy in prevention 
of bee venom [13, 14], house dust mite [10], grass pollen 
[15–17], peanut [18, 19], milk [20, 21], cat dander [22], 
and birch pollen allergies [23, 24]. At present, however, 
ASI is yet to be fully translated into autoimmune disease 
treatment regimes.

Developing ASI for autoimmune dis-
eases: lessons from the field of allergen 
immunotherapy

Parallel development of antigen-specific immunotherapy 
interventions for autoimmune and allergic diseases has 
facilitated considerable knowledge transfer between the 
disciplines. In both settings, over-active antigen-specific 
T and B cells can be controlled by administration of 
antigen or antigenic peptides. Importantly, approaches 
used in the clinic today for allergy are safe to administer, 
do not exacerbate disease flares and are able to establish 
potent immune regulation to alter disease course.

Target antigen

The correct antigen(s) must be targeted to achieve disease 
suppression. In allergy, this can be more straightforward; 
identifiable symptoms are usually triggered by single or a 
small number of antigens; however, complexity can arise 
if patients are sensitised to a broad range of allergens. 
Purified protein antigen reduces the risk of potentially 
immunogenic contaminants in crude extracts, including 
innate pattern-recognition receptor ligands.

Recombinant allergen proteins represent the gold-
standard for immunotherapeutic applications, al-
lowing for tightly controlled purity of antigen to be 
produced in high quantity. Recombinant grass [25] 
and Bet v 1 (birch) allergens [26] have been tested 
in patients with similar safety and efficacy to natural 
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antigen. Genetically modified recombinant antigens have 
been designed with mutated IgE-binding motifs or as 
fragmented constitutive overlapping peptides to reduce 
the risk of IgE cross-linking, while maintaining T cell re-
activity and represent a powerful tool for engineering a 
safer product for desensitisation [27–29].

The complexity of autoimmune diseases poses a 
significant challenge to antigen identification. Immune 
responses vary considerably between patients and at 
different time points of disease progression [30, 31]. 
At present, our knowledge of disease-initiating and 
propagating autoantigens in many autoimmune dis-
eases is incomplete and further complicated by epitope 
spreading [32]. Despite this, ASI has shown promise 
in inducing tolerance towards specific auto-antigens. 
A series of studies in the 1980–90’s indicated that dis-
ease in rodent models of autoimmune disease including 
experimental autoimmune encephalomyelitits (EAE) 
[33, 34], collagen-induced arthritis [35], and non-
obese-diabetes [36] could be ameliorated by ASI. More 
recently, clinical trials utilising tolerogenic peptides in 
the treatment of multiple sclerosis (MS), type 1 dia-
betes, systemic lupus erythematosus, and Graves’ dis-
ease have been safe, well tolerated and indicate that 
disease severity can be lessened [37–39]. Such trials are 
the outcome of decades of research into the identifica-
tion of relevant auto-antigens and T cell epitopes in 
these diseases.

Experience has shown that when the pathogenic 
autoantigen is defined, e.g. thyroid-stimulating hor-
mone receptor (TSHR) in Graves’ disease, it is pos-
sible to target disease pathogenesis and deliver clinical 
benefit [40]. Where the autoantigen(s) responsible are 
not fully defined or disease is driven by reactivity to mul-
tiple antigens, it is possible to control disease severity by 
targeting only one antigen within the same affected tissue 
via bystander or linked suppression.

Immune regulation: the need for active 
suppression and bystander regulation

Linked suppression occurs when antigen-specific T cell 
tolerance induction to an immunodominant epitope of 
antigen A  leads to suppression of immune responses 
against other epitopes within antigen A. Bystander sup-
pression enables antigen-specific T cells directed against 
antigen A  to indirectly dampen immune responses 
against antigens B, C, and so on, by involvement of T 
cell-mediated suppression of antigen presenting cells and 
neighbouring T cells (Fig. 1). Both linked and bystander 
suppression have been reported outcomes of ASI in mul-
tiple allergic and autoimmune disease settings.

The processes by which this localised antigen-
independent suppression occurs are still poorly under-
stood, although bystander suppression plays an 
identifiable role in murine peptide tolerance models of 
EAE and in allergic contexts [41, 42]. In cat allergy, tol-
erance induction using 12 Fel d1 peptides not only sup-
pressed patient responses to these Fel d1 peptides, but 
also to Fel d1 peptides not included in the therapy [43].

IL-10, secreted by anergic Type 1 regulatory-like (Tr1-
like) cells, regulatory T cells (Treg), regulatory B cells 
(Breg), and tolerogenic dendritic cells, is thought to be cen-
tral in establishing broader regulation following antigen-
specific therapy [44]. Its role in establishing bystander 
suppression is likely due to its ability to downregulate 
costimulatory molecules and MHC-II on the surface of 
antigen-presenting cells (APC) [45–47], thus reducing 
antigen-presentation and T cell priming potency of APC. 
IL-10 is also able to directly suppress both T and B cell 
responses via inhibition of co-stimulatory signalling 
[48–50]. This not only suppresses subsequent immune 
responses to the initial antigen targeted, but also other 
disease-relevant antigens nearby in the inflamed tissue.

Tolerance-induced Tr1-like and Treg express high 
levels of coinhibitory receptors CTLA-4, LAG-3, PD-1, 
TIM-3, and TIGIT [51, 52]. The inhibitory receptors 
control T cell signalling through mechanisms including 
competition with ligands/counter receptors, engage-
ment of protein phosphatases and inhibitory signalling. 
Collectively, they act as checkpoints and fine tune the 
magnitude of the T cell response to antigen [53].

TGF-β is highly expressed by Treg as a result of oral 
antigen delivery [54] and contributes to prevention of 
EAE when disease is initiated via myelin basic protein 
(MBP) or proteolipid protein – indicating strong by-
stander control of multiple antigen specificities in com-
plex disease [55]. Targeting antigens to the liver induces 
Treg in a TGF-β-dependent manner [56] and has also 
been shown to generate multi-antigen tolerance induc-
tion [57].

Antigen-specific immunotherapies based on single 
antigen specificities are unlikely to be effective in com-
plex and dynamic multi-antigen diseases such as type 1 
diabetes and rheumatoid arthritis, unless they can evoke 
bystander suppression [58]. Therefore, understanding 
the mechanism of bystander suppression and how best to 
incorporate it into antigen-specific immunotherapy will 
prove crucial to resolve the dilemma of which antigen(s) 
to target in a specific disease. Providing that tolerance in-
duction towards a dominant antigen is sufficient to con-
trol the pathogenic nature of T cells of multiple antigen 
specificities, disease severity should be ameliorated.
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Mechanism of action and associated risks

Through careful investigation of ASI/AIT using either in-
tact allergen, autoantigen, or antigenic peptides, we now 
have a good understanding of the cellular and molecular 
mechanisms involved in tolerogenic antigen delivery 
and the risks associated with each type of approach 
(summarised in Fig. 2).

Allergen immunotherapy using intact allergen com-
monly results in a decrease of allergen-specific effector T 
cell (Teff) number and/or functionality, often described 
as a Th2→Th1 population shift, although we would 
argue this is often related to a change in ratio between 
these populations as opposed to Th2 converting to Th1 
[8, 59–61]. Regulatory populations are elevated after 

Figure 1  Proposed mechanism of action of bystander suppression. Antigen-specific immunotherapies prevent the generation and 
activation of CD4+ Teff and instead divert Tconv CD4+ cells towards anergy and also promote the expansion of antigen-specific Tr1-
like cells and/or Treg. Both tolerised Tr1-like and Treg can exert cell-contact mediated and cytokine mediated suppression (dashed 
lines) on APC and non-antigen-specific T cells to ultimately prevent T cell activation in a non-antigen-specific manner.
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Figure 2  Summarised mechanisms of action of ASI/AIT and associated risks. Antigen-specific immunotherapies have varying 
mechanisms of action and potential risks depending on whether they utilise (A) intact allergen, (B) intact autoantigen, or (C) pep-
tides representing T cell epitopes of either allergen or autoantigen. Promotion of activity denoted by black arrows, inhibition of 
activity denoted by black dashed lines and mitigation of risks denoted by red crosses.
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treatment; some studies report a dominant FoxP3+ Treg 
effect while others report primarily FoxP3-like [8, 62]. 
This may be disease-specific, related to the nature of 
antigen delivered, treatment protocol used, or simply the 
design of immunological readouts. The consensus, how-
ever, is that peripherally induced regulatory T cells are ex-
panded after treatment and contribute to disease control. 
AIT also moderates basophil and mast cell degranulation, 
increasing the threshold required for their activation, in 
addition to increasing expression of histamine receptor 
2 to act as a histamine ‘sink’ [17, 63]. IL-10+ are pro-
moted by AIT intervention [64–66]. Most importantly, 
allergen-sequestering IgG4 titres are increased. IgG4 com-
petes directly with IgE for antigen-binding sites, reducing 
the likelihood of early phase immune response on sub-
sequent exposure [13, 66–69]. Of the 4 IgG subclasses, 
IgG4 has the lowest abundance, accounting for around 
4% of serum IgG, yet it can reach up to 75% IgG after 
AIT [69]. IgG4 has several ‘anti-inflammatory’ properties, 
due to its low affinity for Fcγ receptors, inability to acti-
vate complement and ability to form bivalent antibodies 
which are not able to cross-link antigen to form immune 
complexes [70, 71]. The production of IgG4 is mediated 
by plasmablasts/plasma cells [72, 73] differentiated from 
IL-10+, where IL-10 promotes the generation of ‘blocking’ 
IgG4 antibodies, while inhibiting IL-4-mediated IgE class-
switching in humans [17, 74, 75]. Although the IgG4-
mediated suppression of IgE is well documented, more 
recently, evidence has emerged suggesting that antibodies 
of different classes, particularly IgG2, can also play a 
role in blocking IgE engagement [73, 76, 77]. Decrease 
in allergen-specific IgE has been observed after long-term 
treatment duration (1–2 years), occurring much later than 
symptomatic relief [17].

Conversely, there are well-documented risks associ-
ated with use of whole allergen: even very low doses of 
pure antigen can cause unpredictable cross-linking of IgE 
and activation of mast cells and basophils via the high-
affinity IgE receptor FcεR1. IgE-antigen complex bound 
by the lower affinity IgE receptor, CD23, on B cells and 
DC promotes antigen uptake and efficient presentation 
to T cells [78, 79], perpetuating allergen-specific IgE pro-
duction, T cell priming, and activation. Furthermore, 
conformational epitopes of antigen can directly bind B 
cell receptors (BCR) for BCR cross-linking [80].

ASI directed towards autoimmune diseases also ini-
tially used whole autoantigen as the tolerising agent. 
Early trials in MS injected intact MBP isolated from 
human, porcine, or bovine sources and did not promote 
immunological or symptomatic improvement [81–83]. 
The delivery of whole antigen proved to be high risk, 

due to the potential generation of pathogenic anti-
bodies [84]. As such, considerable progress was made 
to properly identify relevant T cell epitopes in murine 
models and MS patients [58, 85–87] for use in peptide 
immunotherapy (PIT).

Peptides representing T cell epitopes have also been 
employed in the allergy field, as peptides avoid IgE-
mediated immune responses and unpredictable immuno-
logical effects associated with the use of whole allergen 
[88]. Short soluble peptide epitopes are unable to cross 
link IgE and are unlikely to provide the 3D-conformation 
required to function as B cell epitopes. Peptides are sig-
nificantly less likely to result in mast cell and basophil 
degranulation compared to whole allergen [22, 89]. The 
mechanisms of tolerance induction when utilising whole 
allergen versus peptide-based approaches, are likely to be 
subtly different, although direct mechanistic comparison 
studies between the two parallel approaches are lacking 
at present. Akdis and colleagues showed that peptide im-
munotherapy did not generate B cell tolerance – one of 
the key features reported via use of whole allergen in AIT. 
However, these experiments did generate ‘blocking’ IgG4 
antibodies and a relative reduction in IgE [13, 14].

Where whole antigen requires processing by APC for 
presentation to T cells, peptides representing disease-
relevant T cell epitopes specifically utilise resting DC 
in lymphoid organs for presentation to cognate T cells 
without the need for antigen processing [90]. Steady-
state DC (ssDC) are tolerogenic and well-suited to 
promote the restoration of Teff versus Treg balance. 
A proportion of MHC Class II on ssDCs are ‘empty’ or 
transiently loaded with low-affinity peptides [91]; there-
fore, exogenous peptides delivered can bind directly to 
MHC-II for presentation to CD4+ T cells. ssDC provide 
low levels of costimulation (CD80/CD86) to T cells and 
are less efficient in antigen uptake and presentation [92, 
93]. As such, antigen-specific T cells do not receive suf-
ficient stimulatory signal from T cell receptor (TCR) 
engagement alone to become activated [94] and are in-
stead diverted into a state of functional anergy [95] by re-
peated antigen exposure in which they no longer respond 
to antigen via classical inflammatory signalling pathways 
but instead exert a regulatory phenotype. Antigen-specific 
naive and effector CD4+ T cells become regulatory Tr1-
like cells (FoxP3-) and FoxP3+ Treg throughout PIT [96] 
and express high levels of IL-10 and co-inhibitory recep-
tors (CTLA-4, PD-1, TIGIT, LAG-3) [52]. As a result, T 
cell immunity directed towards the antigen is quenched; 
readouts often include significant reduction in Teff cyto-
kine production (IFN-γ, IL-2 in autoimmunity; IL-4, IL-5 
in allergy) [97].
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Peptide design must reflect naturally processed T cell 
epitopes, with high solubility and minimal aggregate 
potential. Studies in MS using an altered peptide ligand 
warned the field that using non-native peptides could re-
sult in disease exacerbation [98, 99]. These adverse effects 
primarily arose due to administration of an excessively 
high dose of peptide which may not have remained sol-
uble in vivo, hence promoting rather than suppressing im-
munity. This story highlights the need for peptides used 
in antigen-targeting immunotherapies to be highly sol-
uble and to mimic the naturally processed T cell epitope 
to avoid unforeseen immunological consequences. These 
risks were avoided in later clinical trials utilising natural T 
cell epitope peptides with high solubility [37, 100].

Route of administration

Tolerance induction via mucosal surfaces (oral, nasal, 
sublingual) has been popular historically, as these sites 
are exposed continually to environmental antigens and 
yet in healthy individuals do not generate immune re-
sponses to these stimuli.

Seminal experiments pioneered by Weiner and col-
leagues in a number of animal autoimmune diseases 
models, showed overwhelming efficacy of fed antigen 
to prevent disease [53]. Oral tolerance was notably less 
effective in pre-sensitised animals (which better reflect 
ongoing disease in humans) [101]. Unfortunately, in clin-
ical trials, oral tolerance induction in MS using MBP was 
deemed to be safe but ineffective. This is most likely due 
to the relative low doses of antigen used in patients com-
pared to those tested in animals [102] and to generally 
‘weak’ immune responses towards autoantigens.

Even in allergic diseases where the antigen typically 
generates stronger immune responses, oral delivery of 
antigen does not consistently achieve tolerance. An ex-
ception to this is peanut allergy, in which repeated doses 
of pure peanut protein increasing up to 800  mg were 
shown to decrease peanut sensitivity after 30 weeks of 
treatment. Patients were not followed up after treatment 
had ended, therefore the longevity of reduced sensitivity 
and the requirement for maintenance therapy was not 
assessed [103]. Delivery of the offending antigen to the 
site of hypersensitivity may co-opt natural regulatory 
feedback loops in situ for disease modification. Such a 
significant amount of protein would be extremely expen-
sive when requiring recombinant allergens, and highly 
inefficient due to degradation within the stomach prior 
to having any tolerogenic effect in the gut.

Mucosal delivery via sublingual immunotherapy 
(SLIT) and systemic delivery via subcutaneous immuno-
therapy (SCIT) routes offer clinical efficacy using much 

lower doses of antigen and are now common practice 
in allergen immunotherapy [11, 12]. Few studies com-
pare the efficacy of SCIT versus SLIT directly, making an 
over-arching judgement on the validity of each method 
difficult; however, the mechanism of action is likely to be 
subtly different [104, 105].

Intralymphatic antigen delivery is early in devel-
opment, but has shown remarkable efficacy in murine 
models [106] and in clinical trials of allergy [107, 108]. 
Direct delivery of grass pollen allergen intralymphatically 
has generated safe, pain-free, and effective allergen-
specific tolerance much more rapidly than standard SCIT 
therapy (8 weeks with 3 injections vs. 3  years therapy 
with 54 injections). Allergy symptoms and allergen-
specific IgE were significantly reduced after both treat-
ment courses and maintained for 2 years post-treatment. 
It is likely that this approach is transferable across aller-
gies, upcoming trials will be followed with interest.

In the context of autoimmune disease, thorough pre-
clinical investigation in mouse models of disease have 
shown a hierarchy of delivery route efficacy, with sub-
cutaneous > intranasal > oral delivery [109]. As such, 
clinical trials in relapsing remitting MS and Graves’ 
disease were performed by subcutaneous/intradermal 
delivery of tolerogenic peptides. No unexpected safety 
concerns arose during these trials, and both displayed 
significant decreases in disease severity by the end of 
treatment course [37, 110]. Importantly, studies in ex-
perimental animal models have shown that s.c. injection 
of soluble peptides are detected on the surface of ssDC 
within minutes [90]. Naive T cell encounter with the epi-
tope presenting ssDC transiently signal via their TCR, 
as evidenced by ERK phosphorylation followed by tran-
sient IL-2 secretion; however, both ERK phosphorylation 
and inflammatory cytokine secretion are reduced with 
further antigen administration. Repeated delivery of sol-
uble peptide leads to induction of IL-10 expression in the 
anergic T cells [109, 111].

The application of ASI via the intralymphatic route 
(DIAGNODE trial) in autoimmune disease used direct 
injection of glutamic acid decarboxylase antigen into 
lymph nodes of type 1 diabetes patients, with a prom-
ising reduction in insulin requirement after treatment 
[112, 113]. This alteration in delivery route may be a 
more potent means of generating immune tolerance, as 
suggested by murine and allergy studies; however, this 
approach is less practical for tolerance maintenance.

Dosing strategy and longevity of response

Dose escalation has been a cornerstone of allergen im-
munotherapy ever since Freeman and Noon’s very first 
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clinical intervention in hayfever [7]; however, little 
mechanistic data has been collected to validate exactly 
how dose-escalation benefits tolerance induction in al-
lergy. Dosage is scaled up from initially minute amounts, 
which avoids induction of severe immune reactions, 
while enabling a higher maintenance dose to be achieved 
[11]. A higher acceptable maximum dosage is linked to 
improved immunological outcomes with increased IL-10 
production and antibody switch towards IgG4 [17].

Mechanistically speaking, more has been learned 
about dose escalation from the perspective of peptide 
ASI in autoimmunity. Burton and colleagues performed 
detailed immunophenotyping during successful dose-
escalation immunotherapy using MBPAc1-9 [4Y] and 
showed that antigen-specific T cells undergo a progres-
sive alteration in T cell transcriptional programme ren-
dering them resistant to production of inflammatory 
cytokines. Dose escalation is fundamental to reach high 
peptide doses, which could generate adverse effects if de-
livered singularly, and these higher doses are vital to the 
generation of suppressive IL-10-producing Tr1-like cells 
which express high levels of coinhibitory receptors [52]. 
Recent work has identified that antigen-specific T cells 
in this system undergo epigenetic priming as a result of 
dose escalation to inhibit inflammatory transcription fac-
tors and effector cytokines [111]. It is highly likely that 
similar processes are occurring in allergen-specific T cells 
during dose escalation, but this specific data is yet to be 
collected.

Based on current evidence, it appears that antigen-
specific tolerance induction and consequent disease-
modifying benefit will persist alongside continued 
exposure to tolerising antigen. In a study of beekeepers 
naturally exposed to venom, T cell regulation and a switch 
to IL-10 secreting Tr1-like cells was established and main-
tained during exposure to antigen during the bee season, 
after which reactivity returned to baseline 2–3  months 
later [8]. In cat allergy and grass pollen desensitisation, 
a reduction in allergic symptoms was reported to per-
sist 2–3  years post-treatment cessation [22, 114, 115]. 
Particularly with airborne allergens, it may be almost im-
possible to avoid continued natural exposure to intact al-
lergen, and this may play a supporting role in mediating 
long-term T and B cell tolerance skewed towards IgG4 for 
maintenance of allergen-specific tolerance.

Peptide immunotherapy trials in multiple sclerosis 
and Graves’ disease suppressed disease flares during 
treatment course, although in both cases patients did not 
enter a permanent state of immunological tolerance [37, 
110]. Suppression of immune pathology was observed 
for around 1 month after the end of treatment, which re-
flects tolerance duration induced in euthymic mice [116]. 

However, it is worth noting that these treatment periods 
were relatively short, each running for 16–18 weeks of 
peptide dosing. There may be a longer lasting benefit 
with longer treatment.

As such, to maintain immunological tolerance and dis-
ease control, it is likely that ASI would need to be main-
tained over a significant period of time, particularly in 
the case of autoimmune diseases. For patients to undergo 
repeated antigen exposure on a regular basis without sig-
nificantly impacting quality of life, a delivery system in 
which patients can self-administer treatment would be 
highly beneficial. This may involve tablet formulations 
for gut delivery or  microneedle patches already used for 
intradermal insulin delivery [117]. Any successful thera-
peutic approach must avoid induction of anti-drug anti-
bodies or non-specific immune suppression [118].

Direct tolerogenic peptide delivery and 
novel carrier-based approaches

While it is clear that peptides representing CD4+ T 
cell epitopes can promote peripheral tolerance and 
hence suppress autoimmune diseases, various add-
itional approaches have been described. We know 
that ssDC both induce and maintain peripheral tol-
erance [93]. Monocyte-derived DC (moDC) can be 
generated in vitro from peripheral blood monocytes 
and have tolerogenic properties when cultured in 
the presence of NFκB inhibitors [119] or vitamin D3 
[120]. moDC generated from patients with RA have 
been incubated with disease-associated peptides and 
injected back into the patient showing that this ap-
proach is safe with evidence of immune modulation 
[121, 122]. Nanoparticles (NP) have been designed 
to be taken up by DC, monocytes or liver sinus-
oidal endothelial cells (LSEC). Various approaches 
to targeting the immunosuppressive environment in 
the liver have been taken. We know that ageing red 
blood cells are recycled via hepatocytes in the liver 
[123]. Kontos and colleagues developed approaches 
for targeting antigens to red blood cells in vivo [124]. 
In a further development of this technology, Anokion 
are now testing direct modification of antigens by 
glycosylation to target liver receptors. Furthermore, 
Lutterotti and colleagues are building on their pre-
vious work with antigenic peptides coupled to mono-
nuclear cells [125] by coupling peptides to red blood 
cells with ethylene carbodiimide. Carambia and col-
leagues have described the design of  ferromagnetic 
nanoparticles coupled with antigen. These selectively 
target LSECs and induce systemic tolerance in mice in 
a TGF-β-dependent fashion [56, 126].
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NPs are taken up by different APC depending on their 
size. Small NP are endocytosed by DC; Kishimoto and 
colleagues have delivered rapamycin to DC with antigen 
in order to induce regulatory T cells [127]. Larger NP 
containing antigen is phagocytosed by macrophages in 
order to create a suppressive immune response [128]. 
Preclinical work describing encapsulation of gliadin 
[129] has led to a clinical trial of gliadin NP in coeliac 
disease. Santamaria and colleagues have described a so-
phisticated NP delivery approach. Here NP are coupled 
to MHC class  II molecules and incubated with peptide 
epitopes. These MHC-II-NP do not activate naive T cells 
but promote IL-10 production by antigen-specific Th1 
cells [130]. The induction of Tr1-like cells by MHC-II-NP 
was recently shown to mediate bystander suppression of 
autoimmune responses in the liver [57, 131].

How best to deliver antigens for tolerance induction
	a.	 Is it necessary to couple antigens to NP for tolerance 

induction? The use of NP arose from early studies 
in which it was shown that peptide epitopes can in-
duce an allergic response in vivo [132]. In our experi-
ence, however, the balance between a peptide epitope 
being tolerogenic rather than immunogenic is deter-
mined by its solubility. Furthermore, peptides them-
selves directly target tolerogenic DC in vivo when 
designed to mimic naturally processed antigens. Our 
original observations showed that some but not all 
T cell epitopes induce tolerance when administered 
in a soluble form [133]. Peptides must be designed 
to bind MHC II in a conformation that mimics the 
naturally processed epitope in order to induce toler-
ance. This is consistent with our recent observation 
that tolerogenic peptides bind directly to steady state 
DC in vivo. DCs collected from lymphoid tissues fol-
lowing subcutaneous injection of soluble peptide are 
able to induce tolerance following adoptive transfer 
in mice [90]. Furthermore, insoluble peptides fail to 
reach lymphoid DC following subcutaneous injec-
tion and are immunogenic rather than tolerogenic. 
However, these peptides are rendered tolerogenic by 
increasing their solubility. The first rule governing de-
sign of peptides for tolerance induction is, therefore, 
peptides must mimic naturally processed epitopes 
when bound to their MHC restriction element.

	b.	 Peptides must be soluble such that they rapidly dis-
tribute throughout the body and bind to MHC II on 
ssDC in lymphoid organs.

	c.	 Peptides should induce cytokines that promote by-
stander suppression such that an epitope from antigen 

A within a tissue can suppress the response of antigens 
B, C, and D from the same tissue. This is a critical fea-
ture of antigen-specific immunotherapy in those dis-
eases where there are a range of antigens, i.e. multiple 
sclerosis, rheumatoid arthritis, and type I diabetes.

	d.	 Peptides with the properties listed above are de-
fined as antigen processing independent epitopes or 
apitopes.

ASI using tolerogenic peptides: mechanism 
of action and translation to the clinic

Our recent work has defined the detailed mechanism of 
how tolerogenic peptides function in vivo. Our original 
work compared mucosal routes of administration. Oral 
delivery of peptides was ineffective due to proteolytic de-
struction [116] whereas nasal administration induced by-
stander suppression in a dose dependent fashion [9, 45, 
134]. Peptide therapy induced cells with a Tr1-like, IL-10 
secreting phenotype [135] that mediated suppression by 
downregulating the antigen presenting properties of DCs 
[136]. The mechanism by which soluble, tolerogenic pep-
tides convert potentially pathogenic T cells into Tr1-like 
cells was revealed in recent studies. First, Burton et  al. 
showed that repeated encounter with peptides presented 
by ssDC induced antigen-specific CD4 T cell anergy and 
suppressed secretion of inflammatory cytokines [52]. 
Analysis of gene expression in cells showed that peptide 
treatment caused a marked upregulation in expression of 
genes encoding inhibitory receptors PD1, CTLA4, Lag3, 
Tim3, and TIGIT and transcription factors known to pro-
mote expression of IL-10 such as c-Maf. This transcrip-
tional signature was also been seen in other Tr1-like cells 
and in tumour infiltrating lymphocytes [137]. Later, our 
work has revealed the link between antigen-exposure, T 
cell signalling, and the subsequent expression of IL-10 
and the generation of Tr1-like cells. The anergy seen 
among T cells in peptide-induced tolerance results from 
a membrane proximal block in cell signalling causing 
a loss of inflammatory cytokine gene expression [95]. 
Bevington et al. have shown that this reduced level of cell 
signalling is insufficient to drive the epigenetic changes re-
quired for transcription of inflammatory genes; however, 
epigenetic priming of genes associated with tolerance 
renders them sensitive to reduced levels of transcrip-
tion factors [111]. This novel mechanism explains how 
cells including tumour infiltrating lymphocytes and 
cells rendered tolerant with either peptide antigens 
or anti-CD3 antibodies [138] change their transcrip-
tional landscape with selective upregulation of genes 
encoding inhibitory receptors, transcription factors 
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such as c-Maf and the anti-inflammatory cytokine 
IL-10. Furthermore, the detailed understanding of how 
tolerogenic peptides modulate the immune response to 
antigen provides the foundation for their application 
in treatment of hypersensitivity diseases including auto-
immune and allergic diseases.

Antigen-specific immunotherapy with apitopes has 
been tested in four clinical trials in two autoimmune dis-
eases with distinct immune pathologies. Multiple sclerosis 
is a cell-mediated disease with various disease-associated 
antigens. Two phase 1 followed by a phase 2 clinical 
trials have shown that treatment with a cocktail of four 
HLA-DR2 binding peptides from MBPAc1-9 was suffi-
cient to significantly suppress inflammation in the CNS 
as measured by gadolinium enhanced MRI [37, 100] and 
to improve cognition in patients with relapsing MS. In 
Graves’ disease autoimmunity is caused by antibodies 
specific for TSHR. Two dominant HLA-DR3 binding 
peptides suppressed immune responses in HLA-DR trans-
genic mice [139]. Furthermore, intradermal injection of 
these peptides normalised thyroid hormone secretion in 
7/10 patients with mild-to-moderate hyperthyroidism 
in a phase 1 trial. Most importantly, the results of these 
four clinical trials shows that treatment with soluble pep-
tides designed as apitopes is well tolerated with prom-
ising signs of efficacy. It is important to add that these 
clinical trials used a dose-escalation protocol shown to 
promote Tr1-like cell generation in pre-clinical models. 
Recent studies with peptide immunotherapy in coeliac 
disease have proved the importance of dose escalation 
[139]. The dose-escalation protocol shown to induce Tr1-
like cells through epigenetic modification of the genome 
in experimental animal models [111] has proved to be 
the preferred approach for effective tolerance induction 
in the clinic. Further analysis of antigen-specific T cells in 
future clinical trials of antigen-specific immunotherapy is 
required to confirm that this is due to selective epigenetic 
priming at tolerance-associated genes.

Concluding statement

Antigen-specific immunotherapy remains the ‘holy-grail’ 
for selective treatment of allergies and autoimmune 
diseases. Rapid advances in our understanding of the 
mechanisms involved provide options ranging from the 
administration of tolerogenic DC, through design of so-
phisticated NP to simple delivery of apitopes. Critical 
issues including mechanism of action, bystander suppres-
sion, ease of manufacture, and successful translation to 
the clinic will determine success of each approach for 
treatment of hypersensitivity diseases.
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