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ABSTRACT
A newly-developed platform, the Illumina TruSeq Methyl Capture EPIC library prep (TruSeq EPIC), 
builds on the content of the Infinium MethylationEPIC Beadchip Microarray (EPIC-array) and 
leverages the power of next-generation sequencing for targeted bisulphite sequencing. We 
empirically examined the performance of TruSeq EPIC and EPIC-array in assessing genome-wide 
DNA methylation in breast tissue samples. TruSeq EPIC provided data with a much higher density 
in the regions when compared to EPIC-array (~2.74 million CpGs with at least 10X coverage vs 
~752 K CpGs, respectively). Approximately 398 K CpGs were common and measured across the 
two platforms in every sample. Overall, there was high concordance in methylation levels 
between the two platforms (Pearson correlation r = 0.98, P < 0.0001). However, we observed 
that TruSeq EPIC measurements provided a wider dynamic range and likely a higher quantitative 
sensitivity for CpGs that were either hypo- or hyper-methylated (β close to 0 or 1, respectively). In 
addition, when comparing different breast tissue types TruSeq EPIC identified more differentially 
methylated CpGs than EPIC-array, not only out of additional sites interrogated by TruSeq EPIC 
alone, but also out of common sites interrogated by both platforms. Our results suggest that both 
platforms show high reproducibility and reliability in genome-wide DNA methylation profiling, 
while TruSeq EPIC had a significant improvement over EPIC-array regarding genomic resolution 
and coverage. The wider dynamic range and likely higher precision of the estimates by the TruSeq 
EPIC may lead to the identification of novel differentially methylated markers that are associated 
with disease risk.
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Introduction

DNA methylation is an essential epigenetic 
mechanism involved in gene regulation in the 
human genome. It is a DNA modification whereby 
a methyl group is added to Cytosine-5 at 
C-phosphate-G (CpG) dinucleotides. Methylation 
of CpG islands at the 5ʹ end of the promoter 
region of a gene is generally associated with gene 
repression [1]. DNA methylation reflects both 
environmental and genetic influences and varies 
across individuals [2,3,4]. Aberrant DNA methyla
tion can lead to dysregulation of cellular processes 
and plays a critical role in the pathophysiology of 
various diseases including diabetes, cardiovascular 

diseases, and cancer [5,6,7,8]. Investigation of var
iation in DNA methylation in recent epigenome- 
wide association studies (EWAS) in large numbers 
of human samples have provided remarkable 
insight into the biological mechanisms that under
lie health outcomes [9,10,11].

The success of methylation studies requires the 
development of methods that can measure DNA 
methylation simultaneously across the genome. 
Whole-genome bisulphite sequencing (WGBS) is 
considered the gold standard method to interrogate 
DNA methylation with the highest genomic cover
age and nucleotide resolution for quantification of 
DNA methylation [12]. However, the high cost and 
high data analysis burden of this method make it 
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infeasible for studies with a large number of samples. 
The Illumina Infinium Methylation EPIC Beadchip 
Microarray (EPIC-array) provides a cost-effective 
platform that has been commonly used for high- 
throughput profiling of DNA methylation for over 
850 K CpGs [13,14]. This microarray-based method 
uses a fixed number of probes to survey specific 
genomic loci across the genome; thus, it is unable 
to expand beyond genomic regions dictated by both 
the number and specificity of the probes, thereby 
limiting the comprehensive screening of the genome 
for altered methylation loci. EPIC-array also suffers 
from the limitations inherent to the hybridization 
technology such as errors introduced by probe cross- 
hybridization when measuring methylation level. To 
overcome these limitations of EPIC-array and 
reduce sequencing-associated costs and processing 
time, Illumina, Inc. has recently developed a new 
platform, the TruSeq Methyl Capture EPIC Library 
kit (TruSeq EPIC), which builds on EPIC-array con
tent with additional emerging epigenetic regions of 
interest [15]. It leverages the power of next- 
generation sequencing (NGS) to perform targeted 
bisulphite sequencing and covers approximately 
3.34 million CpG sites. TruSeq EPIC provides 
a balanced, intermediate option between WGBS 
and EPIC-array to survey the human methylome 
with an increased coverage and resolution.

As TruSeq EPIC complements and expands on 
EPIC-array, and the latter has been commonly 
used in recent EWAS of large human samples, 
TruSeq EPIC may become an attractive option 
for future EWAS that aims to enhance genome 
coverage and resolution but maintain research 
continuity. Only one study has been recently 
reported to compare the performance of TruSeq 
EPIC and EPIC-array in cord blood [16]. 
However, no evaluation has been done to compare 
the two platforms in human breast tissue. 
Furthermore, no study has yet examined the per
formance of TruSeq EPIC in investigating inter- 
individual variation from human tissue samples, 
which is the main interest in EWAS. It is also 
unclear whether the higher resolution provided 
by TruSeq EPIC may help detect more genomic 
sites showing inter-individual variation. To 
address these issues, we compared the two plat
forms on DNA methylation profiling in 11 human 
breast tissue samples, including 3 normal breast 

tissue samples from healthy women, 4 breast 
tumour and 4 matched adjacent normal breast 
tissue samples from breast cancer patients. We 
first evaluated the technical performance of 
TruSeq EPIC in these tissue samples and then 
compared the two methods across key functional 
genomic regions in the context of their coverage 
and concordance of methylation calls. Lastly, as 
proof-of-principle, in this small sample, we exam
ined the utility of the two methods in studying 
inter-individual variation and compared their per
formance in detecting genomic sites that are dif
ferentially methylated across breast tissue types. 
The goal of this study is to provide an empirical 
comparison of the two methods to inform 
researchers on considering and choosing an 
appropriate platform for future EWAS.

Results

Overview of TruSeq EPIC and EPIC-array analyses 
of human breast tissue samples

Sample information on the 11 breast tissue samples is 
presented in Table 1. We first evaluated the technical 
performance of the TruSeq EPIC method in these 
samples. Mapping efficiency, sequencing duplication 
rates, and sequencing bait specificities are summar
ized in Table 2. On average, approximately 56 million 
paired-end reads were generated per sample, of which 
48 million aligned uniquely to the bisulphite- 
converted human reference genome (hg19/ 
GRCH37). Thirty-two million reads remained after 
removal of duplicate reads and 96% of the reads were 
found within the target region. TruSeq EPIC is 

Table 1. Sample information for the 11 beast tissue samples in 
this study.

Sample ID Tissue Type Age Race Subtype info

K1 Normal 70 White
K2 Normal 56 White
K3 Normal 63 White
AN1 Adjacent Normal 71 White
AN2 Adjacent Normal 56 White
AN3 Adjacent Normal 63 White
AN4 Adjacent Normal 43 White
T1 Tumour 71 White ER+/PR+/HER2-
T2 Tumour 56 White ER+/PR-/HER2-
T3 Tumour 63 White ER+/PR+/HER2-
T4 Tumour 43 White ER-/PR-/HER2 +

Note: T and AN samples were paired samples from same breast cancer 
patients, K samples from healthy women were matched with T and 
AN samples on age (within one year) and race. 
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designed to have >90% overlap with the EPIC-array 
target regions and capture approximately up to 
3.34 million CpG sites in its bait-targeted region. In 
our breast tissue samples, we detected on average 
3.32 million CpG sites at any read depth. The number 
of CpGs detected at different read depths are shown in 
Figure 1 and Table 3. We detected approximately 
2.74 million CpGs with at least 10X coverage in all 
of our samples. Our samples have an average read 
depth of 40X.

The EPIC-array is designed to capture 862,927 
CpG sites in human genome, of which 587,611 
CpG sites are common to the TruSeq EPIC plat
form by design. After comprehensive quality con
trol [17], we detected an average of 752,483 CpGs 
across our 11 breast tissue samples using EPIC- 
array, of which 507,206 and 398,579 CpGs were 
also captured by TruSeq EPIC with at least 1X and 
10X coverage, respectively.

Comparison of genome coverage by TruSeq EPIC 
and EPIC-array

We evaluated the number and the distributions of 
CpGs that were designed to be captured and were 

empirically captured by TruSeq EPIC and EPIC- 
array with respect to CpG-island context and other 
genomic functional features. Out of approximately 
3.34 million CpGs designed to be captured by 
TruSeq EPIC, 50%, 7%, 6%, and 37% belong to 
CpG islands, shores, shelves and open sea regions, 
respectively (Figure 2a); 13%, 17%, 6%, 19%, 2%, 

Table 2. Summary of sequencing alignment and duplication rates for the 11 breast tissue samples in the study for TruSeq EPIC.
Sample 
ID

Raw Paired 
Reads

Paired Reads 
Analyzed

Unique 
Aligned

Mapping Efficiency 
(%)

Duplication Rate 
(%)

Usable 
Aligned

Reads in Target Region 
(%)

K1 48,362,869 45,836,705 38,908,769 84.9 53.1 18,247,939 95.73
K2 57,267,567 54,819,987 46,870,975 85.5 29.6 32,989,161 94.78
K3 43,425,858 41,897,565 35,948,675 85.8 33.5 23,903,913 96.48
AN1 54,299,349 51,273,091 43,424,920 84.7 41.2 25,535,830 94.43
AN2 59,511,340 56,987,839 48,549,950 85.2 32.1 32,978,423 95.76
AN3 52,000,198 49,803,822 42,539,248 85.4 26.5 31,254,585 95.78
AN4 62,153,856 59,671,655 51,034,628 85.5 28.8 36,331,972 96.01
T1 84,397,277 80,140,512 68,142,382 85.1 43.5 38,532,574 94.96
T2 57,345,325 54,985,466 46,779,470 85.1 32.5 31,583,044 95.88
T3 67,981,266 65,416,988 55,886,719 85.5 27.5 40,510,431 96.23
T4 61,435,469 59,012,172 50,443,336 85.5 29.7 35,447,364 96.06
Average 58,925,489 56,349,618 48,048,097 85.3 34.4 31,574,112 95.63

Figure 1. Genomic coverage of the TruSeq EPIC at different 
sequencing depths for the 11 breast tissue samples. T, breast 
tumour tissue; AN, adjacent normal breast tissue; K, normal 
breast tissue.

Table 3. The number of CpGs detected by Truseq EPIC at different sequencing depths.
Sample ID ≥1X ≥10X ≥20X ≥30X ≥40X ≥50X

K1 3,326,519 2,906,961 1,935,191 1,147,526 649,988 345,863
K2 3,324,716 2,831,944 1,791,353 997,678 521,914 249,524
K3 3,325,728 2,826,205 1,763,117 981,020 520,099 255,283
AN1 3,324,094 2,862,913 1,873,173 1,087,939 602,832 313,637
AN2 3,323,823 2,810,763 1,763,491 990,840 529,811 262,480
AN3 3,318,153 2,564,387 1,404,857 695,249 318,028 129,452
AN4 3,316,749 2,544,485 1,355,798 635,128 265,809 96,014
T1 3,322,051 2,725,132 1,642,768 902,016 475,439 238,078
T2 3,322,979 2,815,293 1,805,303 1,042,472 575,265 300,211
T3 3,319,143 2,592,923 1,468,107 771,884 392,301 193,353
T4 3,320,280 2,702,866 1,664,471 940,301 509,364 263,823
Average 3,322,203 2,743,988 1,678,875 926,550 487,350 240,702
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8%, 10% and 26%, belong to promoter, 5’UTR, 
exon, intron, 3ʹUTR, TSS200, TSS1500, and inter
genic regions, respectively (Figure 2b); and 47%, 
40%, 39%, and 6% belong to DNaseI hypersensi
tive, open chromatin, TFBS, and FANTOM5 
enhancer regions, respectively (Figure 2c). In our 
breast tissue samples, we detected the majority of 
the CpGs (>80%) at these genomic features with at 
least 10X coverage (Figure 2a-c). The observed 
distribution of CpGs with genomic features was 
also similar to the expected by design (Figure 
2a-c).

Compared to EPIC-array, TruSeq EPIC 
detected more CpGs in absolute numbers at 
each functional annotation class with no surprise 
(between 1.5 and 25.8 times more), as this meth
odology is not limited by probes and can there
fore interrogate CpG sites comprehensively 
(Figure 2a-c). The proportion of CpG loci 
assessed by TruSeq EPIC and EPIC-array did 
not differ substantially with respect to genomic 
functional features except for CpG-islands, 
where 51% of CpGs detected by TruSeq EPIC 
were located in CpG-islands, compared to only 
19% detected by EPIC-array (Figure 2a). Our 
data also showed that TruSeq EPIC, compared 
to EPIC-array, had slightly increased proportions 
of CpGs in promoter (13% vs. 7%), 5ʹ-UTR (18% 
vs. 13%), and exon (6% vs. 5%) regions, but 
significantly increased proportions of CpGs in 
open chromatin (40% vs. 6%) and TFBS (39% 
vs. 8%) regions (Figure 2b-c). Even though the 
two platforms are designed to cover the same 
CpG-island and promotor regions, TruSeq EPIC 
covered these regions at a much higher density 
and resolution, i.e. TruSeq EPIC detected more 
CpGs at the same promotor region when com
pared to EPIC-array. Likewise, TruSeq EPIC 
generally assayed other genomic regions at 
a much higher density.

We also evaluated the distribution of CpGs 
detected by TruSeq EPIC and EPIC-array on 
each chromosome (Figure 2d). In our breast 
tissue samples, EPIC-array detected less than 
3.5% of CpGs on each chromosome in the 
human methylome, while TruSeq EPIC signifi
cantly increased the proportion by 4–6 folds, 
ranging between 7% and 19% of CpGs on 

different chromosomes. Because all samples 
were from women, no CpG sites were detected 
on chromosome Y as expected. Compared to the 
autosomal chromosomes, the X-chromosome has 
a relatively lower coverage by TruSeq EPIC (7%) 
and an almost negligible coverage by EPIC-array 
after quality control.

Comparison of methylation signal calling by 
TruSeq EPIC and EPIC-array

The distribution of methylation β values from 
both TruSeq EPIC and EPIC-array platforms 
followed a bimodal distribution as expected. 
The dynamic range, the range between the lar
gest and the smallest values of the measure
ments, for methylation β values derived from 
EPIC-array was more condensed compared to 
those derived from TruSeq EPIC (Figure 3). 
Among the 398,579 common CpGs that were 
detected by both platforms in all samples, the 
sample-based correlation between methylation β 
values from the two platforms was high and 
increased slightly with increasing coverage (aver
age r = 0.962, 0.966, and 0.968 at 10X, 30X and 
50X, respectively). In addition, high correlations 
were generally observed for all three breast tissue 
types, with the highest correlation in normal 
breast tissue, followed by adjacent normal breast 
tissue, and the lowest in tumour breast tissue 
(Figure 4).

Although the overall correlation between 
TruSeq EPIC and EPIC-array methylation β 
values was high (Pearson correlation of 0.98, 
p < 2.2 X10−16), we observed that the most 
discrepant signals between the two methodolo
gies occured at CpGs with extremes of either low 
(close to 0) or high (close to 1) methylation β 
values (Figure 5a-d). For CpGs with low β 
values, the corresponding region showed that 
TruSeq EPIC measurements clustered close to 0 
and corresponding β values from EPIC-array 
tended to be larger; for CpGs with high β values, 
the corresponding region showed that TruSeq 
EPIC measurements clustered close to 1 and 
corresponding β values from EPIC-array tended 
to be smaller. The dynamic range of methylation 
β values from EPIC-array was narrower and 
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more condensed compared to that of TruSeq 
EPIC. This pattern was consistently observed 
regardless of breast tissue type (Figure 5a-c).

To assess the number of CpGs with concordant 
and discordant methylation levels between the two 
methodologies, we grouped the CpGs into three 

a

c

d

b

Figure 2. The distribution of CpGs by different genomic annotations from TruSeq EPIC (≥10X) and EPIC-array platforms. (a) CpG- 
island context; (b) genomic function context; (c) regulatory region context; (d) chromosome.
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categories based on β values: hypomethylated 
(β < 0.3), hemimethylated (0.3 ≤ β ≤ 0.7), and 

hypermethylated (β > 0.7). We observed that 86% of 
the CpGs were concordant between the two platforms 
with 32% hypo- and 35% hyper-methylated (Table 4). 
Approximately 5% of the CpGs were detected as 
hypomethylated by TruSeq EPIC but were detected 
as hemimethylated by EPIC-array, compared to 0.5% 
CpGs that were detected as hypomethylated by EPIC- 
array but were detected as hemimethylated by TruSeq 
EPIC. On the other hand, 6% of the CpGs were 
detected as hypermethylated by TruSeq EPIC but 
were detected as hemimethylated by EPIC-Array, 
compared to 2% of the CpGs that were detected as 
hypermethylated by EPIC-array but were detected as 
hemimethylated by TruSeq EPIC. We did not observe 
any common feature among these discrepant CpG 
sites between the two methods, such as sharing similar 
genomic or functional regions (Supplementary Table 
1). It appeared that TruSeq EPIC tended to have 
measures closer to 0 or 1 at extremes compared to 
EPIC-array. This clustered distribution of CpGs at the 
lower and upper extremities of methylation suggested 

Figure 4. Pearson correlation between methylation β-values of 
the common CpGs across TruSeq EPIC (≥10X) and EPIC-array 
platforms by different sequencing depth for our 11 breast tissue 
samples.

a

c d

b

Figure 3. Distribution of methylation β values from the two platforms for our 11 breast tissue samples. (a) the common CpGs across 
the two platforms in TruSeq EPIC (≥10X); (b) the common CpGs in EPIC-array; (c) all CpGs detected in TruSeq EPIC (≥10X); (d) all CpG 
detected in EPIC-array.
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that the TruSeq EPIC may have a wider dynamic 
range and likely a higher quantitative sensitivity of 
the measurements than EPIC-array.

Comparison of the identification of differentially 
methylated positions (DMPs) by TruSeq EPIC and 
EPIC-array

For the 398,579 common CpGs that were detected in 
all samples across both platforms, we further exam
ined the correlation of the change in methylation β 

values (∆β) from the two methods in any pairwise 
comparison of two tissue types (Figure 6). We found 
that the correlation of ∆β values was high in tumour 
vs. normal and tumour vs. adjacent normal breast 
tissue comparisons (r = 0.88 and 0.90, respectively; 
all p < 2.2x10−16), while the correlation was moderate 
in when comparing adjacent normal to normal breast 
tissue (r = 0.54, p < 2.2x10−16). Similar to the beha
viour we observed with the correlation of β values 
between the two methodologies, we also observed that 
discrepant signals happened at CpGs with extremes of 

Table 4. Concordance of the mean methylation β values of the common CpGs from TruSeq EPIC (≥10X) 
and EPIC-array platforms.

TruSeq EPIC

EPIC-array Hypo (β < 0.3) Hemi (0.3 ≤ β ≤ 0.7) Hyper (β > 0.7)
Hypo (β < 0.3) 116,474 1,465 10

Hemi (0.3 ≤ β ≤ 0.7) 20,982 77,966 25,337
Hyper (β > 0.7) 19 8,632 147,693

a

c d

b

Figure 5. Scatterplots and Pearson correlations of the mean methylation β values for the common CpGs from TruSeq EPIC (≥10X) 
and EPIC-array data. Red dotted lines denote Y = X. (a) T samples; (b) AN samples; (c) K samples; (d) all samples combined.
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∆β values (Figure 6a-c). As the absolute difference in 
β values (|∆β|) between any two tissue types increased, 
the corresponding regions in the two extremes 
showed more CpGs with larger |∆β| values measured 
from TruSeq EPIC than those from EPIC-array. This 
pattern was consistently observed in all pairwise com
parisons between tissue types (Figure 6a-c), but was 
most pronounced in the comparison between adja
cent normal vs. normal breast tissue (Figure 6c).

Using |∆β| ≥0.2 as the cut-off, we assessed the 
number of CpGs with concordant and discordant 
differences in methylation levels between the two 
methodologies (Table 5). In the comparison 
between tumour vs. normal breast tissue, 90% of 
the CpGs had concordant ∆β values between the 
two platforms, with 6% having |∆β| consistently 
greater than 0.2. Compared to 8.7% of the CpGs 
that had |∆β| values greater than 0.2 from TruSeq 
EPIC but less than 0.2 from EPIC-array, only 1.0% 
of the CpGs had |∆β| values greater than 0.2 from EPIC-array but less than 0.2 from TruSeq EPIC. 

Table 5. Concordance of the mean differences of methylation β 
values (∆β) between two tissue types from TruSeq EPIC (≥10X) 
and EPIC-array data.

T vs. K TruSeq EPIC

EPIC-array Δβ Category Δβ < −0.2 −0.2 ≤ Δβ 
≤0.2

Δβ > 0.2

Δβ < −0.2 16,425 1,319 0
−0.2 ≤ Δβ 

≤0.2
19,263 333,883 15,628

Δβ > 0.2 0 2,679 9,382
T vs. AN TruSeq EPIC
EPIC-array Δβ Category Δβ < −0.2 −0.2 ≤ Δβ 

≤0.2
Δβ > 0.2

Δβ < −0.2 20,458 1,524 0
−0.2 ≤ Δβ 

≤0.2
22,002 335,620 11,297

Δβ > 0.2 0 2,026 5,652
AN vs. K TruSeq EPIC
EPIC-array Δβ Category Δβ < −0.2 −0.2 ≤ Δβ 

≤0.2
Δβ > 0.2

Δβ < −0.2 28 22 0
−0.2 ≤ Δβ 

≤0.2
2,539 392,731 3,242

Δβ > 0.2 0 8 9

a

c

b

Figure 6. Scatterplots and Pearson correlations of the mean differences of methylation β values (∆β) for the common CpGs between two 
tissue types from TruSeq EPIC (≥10X) and EPIC-array data. Red dotted lines denote Y = X. (a) T vs. K; (b) T vs. AN; and (c) AN vs. K.
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There were no CpGs with extreme differences in 
∆β values (i.e. |∆β| greater than 0.2 but ∆β in 
opposite direction from TruSeq EPIC and EPIC- 
array, Table 5 upper section). Similar patterns and 
numbers were observed in the comparison 
between tumour vs. adjacent normal breast tissue 
(Table 5 middle section). The most striking dis
crepancies were observed in the comparison 
between adjacent normal vs. normal breast tissue. 
Approximately 98% of CpGs had concordant ∆β 
values between the two platforms, but only 37 
CpGs (less than 0.01%) had |∆β| consistently 
greater than 0.2. While the |∆β| values of 5,781 
CpGs (1.5%) were greater than 0.2 from TruSeq 
EPIC, their corresponding |∆β| values from EPIC- 
array were less than 0.2. On the other hand, only 
30 CpGs (less than 0.008%) had |∆β| values greater 
than 0.2 from EPIC-array but less than 0.2 from 
TruSeq EPIC (Table 5 lower section). This finding 
indicates that TruSeq EPIC might be more sensi
tive to detect subtle difference in DNA methyla
tion between adjacent normal and normal breast 
tissue.

We further assessed the number of DMPs 
detected by TruSeq EPIC and EPIC-array (Figure 
7) in pairwise tissue comparisons. In the compar
ison between tumour vs. normal breast tissue, 
123,118 and 72,171 out of the common 398,579 

CpGs were identified as DMPs by TruSeq EPIC 
and EPIC-array, respectively, with 56,758 overlap
ping DMPs across the two methods. While 54% of 
the DMPs detected by TruSeq EPIC were missed 
by EPIC-array, only 21% of the DMPs detected by 
EPIC-array were missed by TruSeq EPIC (Figure 
7a left panel). Similarly, TruSeq EPIC detected 
approximately twice as many DMPs than EPIC- 
array in the comparison between tumour vs. adja
cent normal breast tissue. The number and pro
portion of detected and missed DMPs by the two 
platforms were also similar (Figure 7a middle 
panel). Most interestingly, we observed the largest 
discrepancy between the two platforms in the 
comparison between adjacent normal vs. normal 
breast tissue. As expected, with the smaller differ
ence between adjacent normal and normal breast 
tissue, we detected 17,007 and 1,345 DMPs using 
TruSeq EPIC and EPIC-array, respectively, with 
447 overlapping DMPs across the two methods. 
TruSeq EPIC detected 13 times more DMPs than 
EPIC-array and >97% of the DMPs detected by the 
TruSeq EPIC were missed by the EPIC-array 
(Figure 7a right panel). This finding indicates 
that TruSeq EPIC might be more robust and sen
sitive to detect subtle differences between similar 
tissue types. As , our data demonstrated that 
TruSeq EPIC may detect more variable CpG sites 

a

b

Figure 7. The number of differentially methylated positions (DMPs) between tissue types identified by TruSeq EPIC (≥10X) and EPIC- 
array platforms. DMPs were defined by FDR < 0.05 and |∆β| ≥ 0.1. (a) the common CpGs across the two platforms; (b) all CpGs 
detected by each platform.
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than EPIC-array out of the common CpGs across 
the two platforms.

When considering all CpGs detected by each 
platform, TruSeq EPIC provided a more dense 
coverage of the epigenome than EPIC-array in 
our samples (2.74 million CpGs with at least 10X 
coverage vs. 752 K CpGs, respectively). We per
formed EWAS and detected approximately 565 K, 
511 K, and 116 K DMPs by TruSeq EPIC in the 
comparisons between tumour vs. normal, tumour 
vs. adjacent normal, and adjacent normal vs. nor
mal breast tissue, respectively, while the number of 
DMPs detected by EPIC-array for the correspond
ing comparisons were, as expected, significantly 
reduced to 127 K, 109 K, and 2.4 K, respectively 
(Figure 7b). TruSeq EPIC clearly provided a much 
higher resolution and allowed for the identifica
tion of more altered methylation sites as well as 
the interrogation of methylation heterogeneity in 
a given region.

Discussion

High-throughput approaches that measure gen
ome-wide DNA methylation in human samples 
have been evolving and refined in the past decade, 
including microarray hybridization and sequen
cing technologies. In this study, we empirically 
examined and compared two platforms of high- 
throughput methylome profiling, TruSeq EPIC 
and EPIC-array, in human breast tissue samples. 
Compared to EPIC-array, TruSeq EPIC surveyed 
a much higher density of CpGs in key functional 
genomic regions and provided improved coverage 
of the human epigenome. For the common CpGs 
across the two platforms, these two technologies 
were comparable in terms of high correlation and 
a high concordance of DNA methylation quantifi
cation. However, TruSeq EPIC showed a wider 
dynamic range and a likely higher quantitative 
sensitivity at the extremes of methylation levels 
(β values close to 0 or 1) compared to EPIC- 
array. Finally, as proof-of-principle, we demon
strated in a small samples that methylation β 
values from TruSeq EPIC could distinguish differ
ent breast tissue types and identify more differen
tially-methylated sites.

Although TruSeq EPIC and EPIC-array are 
designed to cover similar genomic regions, 

TruSeq EPIC has a much higher density of CpGs 
and hence a higher coverage of variable sites. 
Although EPIC-array represents a significant 
improvement in genomic coverage compared to 
the earlier array-based platforms (such as 
HM450), the majority of regions are still targeted 
by just one or a few probes and the methylation 
level of one or a few CpG probes may not always 
reflect or capture the methylation of the neigh
bouring CpGs. Thus, the ability of EPIC-array to 
survey methylation is limited by the fixed number 
and the fixed location of CpG probes in a given 
genomic region. While TruSeq EPIC is based on 
NGS technology that theoretically provides a more 
comprehensive assessment of methylation in tar
geted genomic regions, it is of note that the detec
tion of CpG sites also depends on the sequencing 
depth and usually a minimum of 10X is required 
for reliable measurements [18]. At this sequencing 
depth, TruSeq EPIC measured genome-wide DNA 
methylation in our breast tissue samples at a much 
higher proportion and density in CpG-island, pro
moter, 5�-UTR, open chromatin, and TFBS 
regions, which allowed us a more detailed investi
gation of methylation heterogeneity of these reg
ulatory regions [1,19].

The excellent agreement of β values from 
TruSeq EPIC and EPIC-array suggested that the 
two methodologies were generally comparable and 
consistent in quantifying DNA methylation levels. 
The high cross-platform reproducibility facilitates 
comparative or joint analysis across studies and 
ensures research continuity. However, discrepan
cies of methylation calls were also observed, espe
cially at sites with extreme methylation levels (β 
values closed to 0 or 1). TruSeq EPIC appeared to 
have a wider dynamic range of measured methyla
tion β values compared to a more condensed range 
from the EPIC-array. This observation agrees with 
previous studies that compared microarray- and 
sequencing-derived methylome datasets [16,18,20].

The discrepancies between TruSeq EPIC and 
EPIC-array may be attributable to technical differ
ences in DNA methylation assessments, that is, 
microarray vs. NGS. EPIC-array is a probe-based 
approach that is limited by the specificity, location, 
and hybridization processes of the probes. Array 
signals could be affected by probe cross-reactivity 
or underlying genetic sequence variations that can 
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influence the accuracy of probe hybridization 
[21,22,23,24]. Genetic variations, such as single 
nucleotide polymorphisms (SNPs), can impact 
DNA methylation estimates by altering the primary 
sequence of nucleotides to add or eliminate a CpG 
site or by influencing DNA methylation at nearby 
CpG loci [25,26]. Reliable estimates from microar
rays may also be influenced by the probe signal 
intensity saturation level at extreme values [27,28]. 
On the other hand, the sequencing-based TruSeq 
EPIC approach is not limited by the probes and can 
directly measure SNPs. Thus, this NGS-based plat
form likely provides more accurate estimates of the 
actual methylation degrees compared to the array- 
based platforms [14,16,29]. In our study, we 
observed that the most pronounced differences 
between the two methodologies occurred at CpG 
sites with extreme methylation levels. The more 
condensed dynamic range of the estimates from 
EPIC-array may be explained by imperfect hybridi
zation and possible probe signal intensity saturation 
at these extreme values. More interestingly, we 
observed that the individual-level correlation of esti
mates from the two methods was the highest among 
normal breast tissue samples, followed by adjacent 
normal breast tissue, and the lowest among breast 
tumour tissue samples (Figure 4). These results are 
consistent with the notion that tumours are charac
terized by excessive mutations and genomic instabil
ity [30,31]. Somatic mutations in tumours could 
interfere with probe hybridization and thus decrease 
the accuracy of DNA methylation measurements in 
array-based approaches such as EPIC-array, result
ing in a lower correlation between array- and 
sequencing-based platforms in this tissue type.

Few studies have examined the performance of 
TruSeq EPIC and EPIC-array in measuring genome- 
wide DNA methylation. Only one study has been 
recently published by Heiss et al. that compared the 
performance of the two methods in cord blood [16]. 
There are both similarities and major differences 
between our study and theirs. First, there are differ
ences in reproducibility and precision. Neither study 
included a gold standard such as WGBS, which is 
important to assess the accuracy of the measure
ments and understand the discrepancies across the 
two methods. Their study assessed reproducibility 
with replicates and found EPIC-array had a higher 

correlation coefficient between replicates than 
TruSeq EPIC, while our study did not include repli
cates of study samples and thus was unable to assess 
the reproducibility of the two methods. However, 
reproducibility only reflects the stability, not the 
precision of the assays. Furthermore, the lower cor
relation coefficient in TruSeq EPIC in their study did 
not take into account the analytic pipeline used for 
the sequencing data, such as pooling and imputation, 
which could significantly decrease the correlation 
coefficient of replicates. Next, there are differences 
in tissue samples. Our study compared the two 
methods in three different types of breast tissue 
(tumour, adjacent normal, and normal), while their 
study compared the two methods in cord blood. It is 
possible that different tissue types could affect the 
performance of the two methods differentially. 
Compared to cord blood, breast tissue samples col
lected at much later point in life likely accumulate 
more somatic mutations that could interfere with the 
hybridization-based EPIC-array more than with 
TruSeq EPIC. Thus, it is possible that TruSeq EPIC 
may be the better option for measuring DNA methy
lation in tissue samples such as breast, other solid 
tissue, or tumours. Lastly, there are differences in 
analytic approaches. In our study we directly com
pared different breast tissue types using regression to 
identify differentially methylated DNA methylation 
sites. We found that TruSeq EPIC was able to iden
tify more differentially methylated CpG sites with 
modest differences between tissue types when com
pared to EPIC-array. Meanwhile, the study by Heiss 
et al. performed EWAS using a large pre-existing 
EPIC-array dataset to form a ‘ground truth’ and 
compared the two methods’ ability to discriminate 
between positive and negative markers identified by 
this EWAS using c-statistics. These two studies had 
different analytic approaches and goals that may not 
be directly comparable. Furthermore, as their results 
showed, there were only slightly differences in c-sta
tistics between the two methods. The differences 
may likely be due to correlated errors between the 
‘ground truth’ and EPIC-array measurements, as 
they used the same technology, leading to a ‘bias in 
this benchmark in favor of EPIC,’ as acknowledged 
by the authors in their discussion. Nonetheless, both 
studies observed a similar genomic coverage regard
ing different functional annotations across the two 
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methods as well as the common phenomena that 
EPIC-array had a reduced dynamic range of methy
lation measurements compared to TruSeq EPIC.

As proof-of-principle, we performed EWAS 
between different breast tissue types in a small sam
ples to examine and compare the utility of TruSeq 
EPIC and EPIC-array in identifying differential 
methylation. It came no surprise that, compared to 
EPIC-array, TruSeq EPIC provided an increased 
density and coverage of the epigenome, and as 
a result, the detection of more genomic sites showing 
differential methylation. Certainly, many of these 
sites were only surveyed by TruSeq EPIC through 
sequencing. However, even among the common sites 
across the two platforms, it is worth noting that 
a much larger number and proportion of CpGs 
were found to be differentially methylated only by 
TruSeq EPIC but not by EPIC-array, comparing to 
a much smaller number and proportion of CpGs that 
were found differentially methylated only by EPIC- 
array but not by TruSeq EPIC. This is likely due to 
the wider dynamic range and/or more accurate mea
surement of methylation β values detected by TruSeq 
EPIC as discussed above. These results are consistent 
with previous studies comparing array-based and 
sequencing-based technologies in genome-wide 
DNA methylation profiling [32,33]. Because of the 
small sample size in our study, our differential 
methylation analysis across tissue types only serves 
as a proof-of-principle, which limits our power to 
interpret the biological relevance of our results when 
compared to EWAS with large number of samples.

Although TruSeq EPIC identified a similarly 
larger number of differentially methylated sites 
than that from EPIC-array in both comparisons 
of tumour vs. normal and tumour vs. adjacent 
normal breast tissue, the most intriguing findings 
came from the comparison between adjacent nor
mal and normal breast tissue, where 97% of the 
differentially methylated sites identified by TruSeq 
EPIC were missed by EPIC-array. While the EPIC- 
array suggested negligible differences in methyla
tion profiles between adjacent normal and normal 
breast tissue, TruSeq EPIC suggested somewhat 
otherwise. Commonly, adjacent normal tissue, 
due to its ready availability, was used as 
a baseline in comparison with tumour tissue to 
identify cancer-associated molecular changes. 
Although histologically normal, non-tumourous 

tissue adjacent to the tumour is sub-optimal as 
a baseline control as it is more likely to contain 
molecular changes in global gene expression and 
changes in epigenetic markers influenced by the 
nearby tumour [34,35]. Thus, findings from such 
comparisons should be interpreted with caution 
and must consider aberrant changes in adjacent 
normal tissue. Our results further suggest that the 
ability to detect subtle changes in adjacent normal 
tissue may be related to the technology used for 
epigenetic profiling and that the inherent limita
tions of EPIC-array in detecting moderate changes 
may need to be considered additionally when 
interpreting findings from previous studies that 
used this technology to compare tumour to adja
cent normal tissue.

To the best of our knowledge, our study is the first 
to systematically investigate genome-wide DNA 
methylation differences in breast tumour, adjacent 
normal, and normal tissue using both TruSeqEPIC 
and EPIC-array technologies. We are not aware of 
any other studies that make similar comparisons as 
ours in breast or other tissue types. However, evi
dence from previous research has suggested that 
adjacent normal tissue, though pathologically nor
mal, may not be real ‘normal’ at the molecular level. 
One such study examined gene expression in 
tumour, adjacent normal, and normal tissue of pros
tate samples using microarray technology and found 
distinct gene expression profile for each tissue type, 
with a subset of genes similarly deregulated in adja
cent normal and tumour tissue [36]. Similarly, other 
studies of breast tissue using microarrays suggested 
that adjacent normal tissue is not real ‘normal’ as its 
molecular profile can be altered in response to the 
adjacent tumour and is, to some extent, similar to 
that of tumour tissue [34,35,37]. In our study, we not 
only found that there were methylation differences 
between normal and adjacent normal tissue, which 
was in line with these previous studies, but also 
showed that more methylation differences can be 
identified using TruSeqEPIC than using EPIC- 
array, which is a novel finding and has not been 
assessed in previous studies.

In summary, we performed the first study to 
empirically evaluate and compare the performance 
of TruSeq EPIC and EPIC-array in interrogating 
tissue-specific DNA methylation in breast tissue 
samples. Although the two platforms showed an 
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excellent overall agreement on measured methyla
tion β values and in the ability to detect sites of 
differential methylation between samples, TruSeq 
EPIC provided a much denser coverage of the 
epigenome as well as a wider dynamic range of 
methylation measurements. Based on our results, 
TruSeq EPIC identified a larger number of novel 
trait-associated sites of differential methylation 
between samples that were missed by EPIC-array, 
not only out of the sites interrogated by TruSeq 
EPIC alone, but also from sites interrogated by 
both methods. When validated in larger and inde
pendent studies, the newly identified sites can 
generate new knowledge and hypotheses that sti
mulate further research in understanding the role 
of DNA methylation in disease development and 
progression. Overall, our data suggest that TruSeq 
EPIC may represent a powerful and improved 
approach to interrogate the methylome and dis
cover novel disease-associated methylation in 
human tissue in large cohorts.

Material and methods

Breast tissue samples and DNA extraction

This study included 11 breast tissue samples, including 
3 normal (K), 4 tumour (T), and 4 matched adjacent 
normal (AN) breast tissue samples. Normal breast 
tissue samples were collected from healthy women 
with no history of breast cancer by the Susan 
G. Komen Tissue Bank, while breast tumour and 
matched histologically normal, adjacent tissue sam
ples were collected from patients with primary 
untreated breast cancer at the Indiana University 
Simon Cancer Centre Tissue Bank. In general, adja
cent normal tissue was excised within the same body 
site, but away from the cancer lesion macroscopically, 
and was confirmed to be histologically normal. The 
distance from the cancer margin to the area of the 
breast from which the adjacent normal tissue was 
taken varied case-by-case, but generally had 
a minimal distance of 3 cm. Normal and tumour 
samples were matched on race and age (within 
a year). Basic characteristics of the cohort are provided 
in Table 1. All breast tissue samples were snap-frozen 
in liquid nitrogen within five minutes of removal and 
determined to be of high quality through histological 
and molecular quality control tests. Tumour samples 

were pathologically verified for high tumour content. 
Genomic DNA was extracted from freshly frozen 
normal, tumour and adjacent-normal breast tissue 
samples using the Qiagen DNeasy Blood and Tissue 
Kit (Qiagen Venlo, Netherlands). Extracted DNA was 
first evaluated for its quantity and quality using 
Agilent TapeStation 4200 (Agilent Technologies, 
Santa Clara, CA, USA) electrophoresis and Thermo 
Fisher Qubit 3.0 (Thermo Fisher Scientific, Waltham, 
MA, USA) fluorometry technologies.

Genome-wide DNA methylation profiling 
using TruSeq EPIC

Genome-wide DNA methylation profiling was 
performed using the Illumina TruSeq Methyl 
Capture EPIC library Prep Kit [15] and NGS tech
nology for genomic DNA sequencing. Five hun
dred nanograms of high-quality genomic DNA 
were used for library preparation. Specifically, 
DNA library preparation first included fragmenta
tion to an average size of 150–200bp using 
a Covaris S2 ultrasonicator (Covaris Inc., 
Wobnurn, MA, USA), followed by end-repair, 3� 
A-tailing, and adaptor ligation. Libraries were then 
pooled in groups of four in equal aliquot, on 
which two rounds of hybridization and capture 
using Illumina-optimized EPIC probe sets (cover
ing >3.3 million targeted CpG sites), bisulphite 
conversion, and amplification were performed. 
Five percent PhiX DNA (Illumina Inc.) was 
added to each library pool during cluster amplifi
cation to boost diversity. Construction of DNA 
libraries and subsequent processing and DNA 
sequencing of paired-end reads (2 × 100nt reads) 
were performed according to the standard 
Illumina protocol using the HiSeq4000 sequencing 
systems (Illumina Inc.).

TruSeq EPIC data processing

Raw sequencing reads were trimmed to remove 
both poor quality calls and adapters using Trim 
Galore! v0.4.4 [38]. Trimmed reads were then 
aligned to the Genome Reference Consortium 
human genome build 37 (hg19/GRCH37) [39] 
using Bismark v0.19.0 [40]. Duplicated reads 
were removed and cytosine methylation calls 
were extracted from the deduplicated reads. 
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Methylation calls that overlap with the Illumina 
EPIC-seq targets were used in downstream ana
lyses. Deduplicated reads on each cytosine locus 
were used to determine the DNAm levels (β 
values); a β value is evaluated as the ratio of the 
number of sequenced methylated cytosine reads to 
the total number of reads for each locus. Thus, β 
values range from 0 (completely un-methylated) to 
1 (completely methylated). A CpG site was 
included in downstream analysis if it had a β 
value determined with ≥10X total reads and was 
present in each of our tissue samples. After quality 
control a total of approximately 2.74 million CpG 
probes remained.

Evaluation of technical performance of TruSeq 
EPIC

We first assessed mapping efficiency, sequencing 
duplication rates, and sequencing bait specificities 
of the DNA methylome of 11 samples generated 
using TruSeq EPIC. We further examined the 
number of CpG sites detected at different sequen
cing depth by TruSeq EPIC in each sample.

Genome-wide DNA methylation profiling using 
EPIC-array

Genome-wide DNA methylation profiling was also 
performed using the Illumina Infinium Methylation 
EPIC Beadchip array (Illumina, San Diego, CA, USA) 
following the manufacturer’s instructions. Two hun
dred fifty nanograms of high-quality genomic DNA 
was subsequently bisulphite converted using the EZ 
DNA Methylation Kit (Zymo Research, Irine, CA, 
USA). Bisulphite-treated samples were then ampli
fied, fragmented, purified and hybridized onto the 
EPIC Beadchip according to the manufacturer’s stan
dard protocol. The arrays were washed and scanned 
using the Illumina HiScan System.

EPIC-array data processing

Signal intensities and raw methylation β values were 
extracted from Illumina’s GenomeStudio software. 
Probes with data from two beads or fewer or with 
signal detection p-values above 0.01 were removed. 
Signal intensities were normalized and background 
subtracted using negative control probes to generate 
methylation β values. Methylation β values were 
derived as the ratio of methylation probe intensity to 
overall intensity. An average of 752,483 CpGs 
remained after comprehensive quality control [17].

A summary of the key features of TruSeq EPIC 
and EPIC-array platforms is presented in Table 6.

Comparative analysis of TruSeq EPIC and 
EPIC-array

To compare TruSeq EPIC and EPIC-array, we only 
considered the common CpG sites across the two 
platforms in targeted regions with at least x10 cover
age from TruSeq EPIC data and were measured in 
every sample. We used three metrics: (i) genome 
coverage; (ii) methylation β values; (iii) identification 
of differential methylation sites across tissue types. 
First, we compared the coverage of the human epi
genome by both methods in the context of CpG 
islands, genomic functions, regulatory regions, and 
chromosomal distributions. CpG island coordinates 
were obtained from UCSC genome browser, CpG 
shores were defined as up to 2kb from CpG islands, 
and CpG shelves were defined as up to 2kb from CpG 
shores. Genomic feature regions (promotor, 5�-UTR, 
exon, intron, 3�-UTR, and TSS) for unique genes 
were downloaded from UCSC genome browser to 
determine gene-centric coverage. Regulatory regions 
were defined using ENCODE DNAse hypersensitivity 
sites and FANTOM5 enhancers. Secondly, we com
pared methylation β values from TruSeq EPIC and 
EPIC-array at the same CpG sites using Pearson 

Table 6. Summary of the key features of TruSeq EPIC and the EPIC-array platforms.
Technology Method Resolution DNA Amount #CpGs Analytic Pipeline* Cost **

TruSeq EPIC NGS-based Methylation Sequencing 
Targeted DNA Sequencing

Single base 500ng 3.3 M +++ ++

EPIC-array Microarray-based Methylation Array Single base 250ng 850 K + +

*, The TruSeq EPIC requires an analytic pipeline on sequencing data, including alignment, base call, and QC criteria on sequencing depth; the EPIC- 
array requires QC criteria that removes CpGs that could be affected by poor hybridization, such as CpGs close to known SNPs. 

**, the cost is changing over time and also depends on different service providers and the number of samples being processed. As of early 2020, the 
cost for TruSeq EPIC for a depth of 50 M reads generally ranges between $550-$650/sample, and the cost for EPIC-array generally ranges between 
$350-$450/sample. 
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correlation, scatter plots, distribution plots, and con
cordance of methylation β values. Lastly, we per
formed differential methylation analysis to illustrate 
the utility of both methods for identifying differen
tially methylated CpG sites across breast tissue types. 
For EPIC-array data, we used the ChAMP R package 
[41] and applied a generalized linear model to regress 
the β values on tissue types while controlling for age. 
For TruSeq EPIC data, we used the DSS R package 
[42,43] and applied generalized linear regression 
model using the read counts. A CpG site was consid
ered differentially methylated when false discovery 
rate (FDR) was less than 0.05 and the absolute differ
ence in β values was greater than 0.1. We then cross- 
referenced the differential methylation detected by the 
two methods.
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