
ORIGINAL RESEARCH ARTICLE
published: 25 February 2015

doi: 10.3389/fninf.2015.00003

Semantic framework for mapping object-oriented model to
semantic web languages
Petr Ježek1,2* and Roman Mouček1,2

1 New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic
2 Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic

Edited by:

Markus Diesmann, Jülich Research
Centre, Germany

Reviewed by:

Ján Antolík, Centre National de la
Recherche Scientifique, France
Michael Denker, Forschungszentrum
Jülich, Germany

*Correspondence:

Petr Ježek, New Technologies for
the Information Society, Department
of Computer Science and
Engineering, Faculty of Applied
Sciences, University of West
Bohemia, Univerzitní 8,
306 14 Plzeň, Czech Republic
e-mail: jezekp@ntis.zcu.cz

The article deals with and discusses two main approaches in building semantic
structures for electrophysiological metadata. It is the use of conventional data
structures, repositories, and programming languages on one hand and the use of
formal representations of ontologies, known from knowledge representation, such as
description logics or semantic web languages on the other hand. Although knowledge
engineering offers languages supporting richer semantic means of expression and
technological advanced approaches, conventional data structures and repositories are still
popular among developers, administrators and users because of their simplicity, overall
intelligibility, and lower demands on technical equipment. The choice of conventional
data resources and repositories, however, raises the question of how and where to
add semantics that cannot be naturally expressed using them. As one of the possible
solutions, this semantics can be added into the structures of the programming language
that accesses and processes the underlying data. To support this idea we introduced
a software prototype that enables its users to add semantically richer expressions
into a Java object-oriented code. This approach does not burden users with additional
demands on programming environment since reflective Java annotations were used as
an entry for these expressions. Moreover, additional semantics need not to be written
by the programmer directly to the code, but it can be collected from non-programmers
using a graphic user interface. The mapping that allows the transformation of the
semantically enriched Java code into the Semantic Web language OWL was proposed and
implemented in a library named the Semantic Framework. This approach was validated by
the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent
registration of the EEG/ERP Portal in the Neuroscience Information Framework.

Keywords: EEG/ERP portal, electrophysiology, object-oriented code, ontology, semantic framework, semantic web

1. INTRODUCTION
Our research group specializes in research of brain electrical
activity and operates a laboratory in which the techniques and
methods of electroencephalography (EEG) and event related
potentials (ERP) are widely used. In addition to the experimen-
tal work, which is mostly focused on recording and analysis
of cognitive ERP, we are working on the development of the
software and hardware infrastructure for research in electro-
physiology (Moucek et al., 2014). Our experimental work is
typically very time consuming and vast amounts of experimen-
tal data are produced at various stages of processing from data
recording to their final interpretation. Based on this experience,
we know that the means supporting the semantic description
of electrophysiological data and the software systems improv-
ing the storage, management and sharing of these data (at
least within a research group) contribute to long-term under-
standing of these data and significantly increase research effi-
ciency. This became even more important when we decided to
share our data, processing steps and workflows within a wider
community.

The subjects of long-term preservation of data, quality and
range of their semantic description, and data sharing itself are
broadly discussed in the community. A variety of experimental
approaches, techniques and methods, targeted subjects, hardware
and software infrastructures, etc. used during electrophysiologi-
cal experiments lead to the accumulation of heterogeneous data
in the domain. The semantics of these data means that they are
accompanied by metadata that specify their meaning. Metadata
can be seen as the links to a specific dictionary, in which the
described data are explained and defined, for example, by using
a plain text, sets of values or even formal logic. The richness and
accuracy of the semantic content of these dictionaries determines
the level of semantic description of data. Then the absence of
well-defined metadata structures in addition to the absence of
standardized and generally used data formats for raw data, are
the most pressing difficulties in the domain [as described e.g.,
in Teeters et al. (2008)].

In the real world electrophysiological data are stored in numer-
ous, often proprietary, data formats and annotated by metadata
differently in both range and quality sense. Moreover, a number of

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2015.00003/abstract
http://community.frontiersin.org/people/u/75389
http://community.frontiersin.org/people/u/91719
mailto:jezekp@ntis.zcu.cz
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

sophisticated implementations of data repositories including file
systems and databases of different types are available. Then the
domain data are also annotated respecting limitations of the used
implementations. If we take into account these conceptual and
technological heterogeneities and not give up efforts to increase
research efficiency in the field by sharing various computational
resources such as raw data, metadata, processing methods and
workflows among laboratories, then to use a generally readable
data format, create a suitable semantic description of data, and
develop a tool for the long-term management and sharing of
data and metadata in the domain are the first important steps to
achieve this complex goal.

However, a higher level of data sharing requires compliance
with the minimum standards for domain data and metadata and
their structures. The content of these standards and an abstract
level of such descriptions are currently broadly discussed in the
community (e.g., within INCF Bjaalie and Grillner, 2007 data
sharing activities) because a well-specified content and appropri-
ately chosen level of abstraction could bring real sharing opportu-
nities to the domain. On the other hand, one must be careful not
to discourage community researchers to provide data and meta-
data in some standardized formats and structures by introducing
too abstract semantic descriptions to them. Although this topic
and standardization efforts themselves are very important for the
future of data sharing in the domain, their more extensive dis-
cussion is out of scope of this article. However, it is important to
introduce them since they are closely related to a more specific
task (Section 2.3), the description of which forms the core of this
article.

Any proposed abstract level of the semantic description of
domain metadata and their relationships has to be accompa-
nied by selecting expressive means and subsequently by selecting
technologies that promote data sharing. Currently there are two
main approaches for building semantic structures for metadata.
The first approach is to use conventional data models and struc-
tures and conventional programming languages providing access
to data. The second approach assumes the use of formal represen-
tations of ontologies, known from the knowledge representation
field, such as description logic or Semantic Web languages and
(eventually) reasoning provided by software agents. Discussions
of these approaches and their practical applications have been
held for decades. They related mainly to expert systems in the
past; currently difficulties and perspectives of the Semantic Web
languages and technologies are mostly discussed.

The initial concept of the Semantic Web, as was introduced
in Berners-Lee et al. (2001), was based on artificial intelligence
techniques; knowledge bases accessed via web interfaces served
for automatic reasoning provided by software agents. However,
this approach has been continuously changing since the years
2004–2005 and the Semantic Web started to be more viewed as
a large distributed database. This perspective has two following
fundamental aspects. The first one is known as the knowledge
acquisition bottleneck; acquisition of knowledge is a time con-
suming process that is made usually by domain experts. As a
result, knowledge bases are rather small comparing to conven-
tional data repositories. This bottleneck is currently even more
visible in the context of big data collected from the increasing

number and due to technical capabilities of hardware acquisi-
tion devices. The second aspect is related to the processing of
conventional data that in most cases does not mean producing
entirely new data by automated reasoning. Data are supposed to
be just queried and linked to other data. This view of data is one
of the key concepts of linked data (Berners-Lee, 2006).

The Semantic Web expresses data by a triple-oriented lan-
guage, Resource Description Framework (RDF) (Manola and
Miller, 2004). When communities working in knowledge repre-
sentation and web engineering started to interact more, there was
a question if XML as a hierarchically oriented language or RDF
as a language supporting graph structures is more suitable for
the representation of meaning. Finally, XML is used as a means
for the serialization of RDF graphs. RDF/XML syntax as the first
standardized RDF syntax is still widely used. Because expressiv-
ity of RDF is limited, W3C1 defined a more powerful language
with more capabilities for expressing meaning, Web Ontology
Language (OWL) (Dean and Schreiber, 2004). While RDF was
accepted by a larger community, the OWL language was a large
burden for the practical application of the Semantic Web. This
language, based on description logic, is usually unintelligible to
non-experts. Moreover, not many OWL constructions have been
really used in real applications yet. To cope with these difficulties,
specific OWL dialects supporting different aspect of the resulting
semantic model, are currently available. The aims of the subse-
quent OWL2 specification are to improve datatype expressivity,
provide better organization of imports, and remove difficulties
with different versions of OWL syntaxes.

The concept of linked data is currently one of four ways to
expose RDF data on the web. Another way is based on provid-
ing SPARQL endpoints to explore data using SPARQL queries
(an example is the RDF platform at The European Bioinformatics
Institute, 2014). SPARQL (Prud’hommeaux and Seaborne, 2008)
supported by W3C is the most spread standardized language
for queering RDF graphs. Other alternatives include publish-
ing data directly to the web as dump files by using one of the
serialization formats for RDF graphs and using RDFa (Adida
et al., 2013) for expressing structured data in a markup language
(e.g., HTML). The first two approaches (linked data, SPARQL
endpoints) are technologically advanced, give users more oppor-
tunities to work with data, but they require specific knowledge of
developers and administrators and place higher requirements on
hardware equipment. There is also a difficulty with overall avail-
ability of SPARQL endpoints; the statistics is provided by Open
Knowledge Foundation (2014). As a result, these advanced mod-
els serve mainly for initial exploring the contents of the data,
while in normal use the data are downloaded (as dump files) and
processed locally.

Domain ontologies have been playing a significant role in
information systems for a long time (Chandrasekaran et al., 1999)
and they are well-designed for heterogeneous data description.
In the past ontologies were mainly created independently, they
did not cope with vast amounts of data and focused on logical
reasoning. This approach has been changing together with the
changing view of the Semantic Web. Currently, ontologies are

1http://www.w3.org/

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 2

http://www.w3.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

created using a bottom-up strategy to take advantage of already
existing data. These ontologies are then covered by upper-level
ontologies or ontological background models. Since for a newly
created dataset we hardly find a comprehensive ontology, there
are two basic options (which can be used in parallel), to create an
ontology for it. In the first approach, it is supposed to find rele-
vant types of objects and relations in already existing ontologies,
compare them, find the most suitable types and reuse them. In the
second approach, new types are defined, collected and organized
in a newly designed ontology. The mixed strategy, when the com-
mon types are reused from other ontologies and specific types are
newly defined, is for example used during the development of the
Ontology for Experimental Neurophysiology (OEN) (Le Franc
et al., 2014).

In the electrophysiology domain at least the following ini-
tiatives are worth briefly describing. Ontology for Biomedical
Investigations (OBI) (Brinkman et al., 2010) is an ontology for
biological and clinical investigation description. Its terminology
contains domain-specific terms and universal terms for general
biological and technical usage. It uses OWL as a formal language.
NEMO (Dou et al., 2007) is an ontology describing EEG, averaged
EEG (ERPs), and ERP data analysis results; it lacks possibilities to
describe experimental protocols and restrictions. odML (Grewe
et al., 2011) is an open, flexible, easy-to-use and unrestricted
transporting format for annotation and sharing of electrophys-
iology data that can be implemented into any recording or
management tool. The odML model for metadata defines four
entities (Property, Section, Value, RootSection). EEG/ERP Portal
(EEGBase) (Jezek and Moucek, 2012) uses a classic relational
database and object-oriented structures to create the domain
model.

Looking at the semantic expressivity of ontologies from the
point of view of automated processing, the higher the level of
formalization is, the easier it is to use the ontology for shar-
ing and reasoning, since it is more machine-processable. On the
other hand, it is difficult to develop such an ontology. Moreover,
the use of formalisms with high expressivity leads to difficulties
with decidability and computational complexity when reasoning.
Then these formalisms have to be limited in their expressivity
to ensure that the resulting ontologies are usable in practice for
automated reasoning. Looking at the present state, then despite
the increasing popularity of storing data in semantic reposito-
ries (which are based on flexible physical data models such as
graphs) and retrieving them by using languages providing higher
sematic expressivity, most data are still stored in conventional
repositories such as files and relational databases [a list of DBMS
ranked by their current popularity is available in Solid IT (2014)].
Taken into account big conventional data collected from a num-
ber of hardware sensors, familiarity of large groups of developers,
administrators and users with conventional data repositories, and
simplicity of publishing RDF data (transformed from conven-
tional data) as dump files, we can hardly anticipate a substantial
change in the use of current types of repositories in the near
future.

Shared conventional data have often read-only access to third
party subjects. It means that only data owners are entitled to
add semantics to them. Moreover, conventional relational data

repositories due to their limitations in semantic expressivity natu-
rally exclude to add more complex semantic information to data.
Nevertheless, richer semantic descriptions can be still added later.
This can be done by transforming a conventional repository to
a semantic repository (e.g., to RDF triple stores) or by seman-
tic enrichment of the conventional programming language that
provides access to the data stored in conventional repositories.
However, the first approach requires using the SPARQL lan-
guage for later data access and retrieval. Then to avoid using the
Semantic Web languages and technologies to the last moment and
still to cope with opportunities to add richer semantic descrip-
tions to data, it is necessary to semantically enrich a conventional
programming language.

The rest of the article is organized in the following way. The
Section Materials and Methods contains the brief description of
commonly used data models and languages both in software engi-
neering and knowledge representation fields, the state of the art
in the mapping between these two approaches, and the core of
the article - the Semantic Framework for the mapping an object-
oriented model to semantic web languages. The Section Results
provides information about the performance and experimental
evaluation of the Semantic Framework. The Section Discussion
mainly deals with the future development of the Semantic Web
and related methods and technologies for data sharing.

2. MATERIALS AND METHODS
2.1. DATA MODELS AND LANGUAGES
Analyzing the use of conventional semantic data models (Biller
and Neuhold, 1977; Simsion and Witt, 2004), essentially the two
following data modeling formalisms are widely used: the entity-
relation (ERA) model and object-oriented (OO) model. Newer
formalisms, e.g., the Enhanced-entity–relationship (EER) model,
only combine these two basic formalisms. The Unified Modeling
Language (UML) is the most used language for modeling an
application structure, behavior, architecture, business processes,
and data structures in classic software engineering. A UML model
consists of three major categories (classifiers, events, behaviors) of
model elements, each of which may be used to make statements
about different kinds of individual things within the system being
modeled (Bock et al., 2013).

The models defining object types and relations in knowledge
engineering are connected with the development of ontologies.
Within the Semantic Web languages, RDF is a standard model for
data interchange, RDFS is a language for representing simple RDF
vocabularies on the Web, and OWL as a computational logic-
based language represents rich and complex knowledge about
things, groups of things, and relations between things (Dean
and Schreiber, 2004). However, the Semantic Web languages and
technologies have not been popular for developing application
programs (Antoniou and van Harmelen, 2004). Within the classic
software engineering discipline the popularity of script-based lan-
guages in neuroinformatics has been continuously rising (Garcia
and Fourcaud-Trocm, 2009), but these languages have not been
considered to be suitable for the development of large sys-
tems (Scott, 2004). Thus, an object-oriented system is still the first
choice when we want to design and implement a large, robust and
reliable software system.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

There is a question how we can use advantages of both
the models used in software engineering and knowledge rep-
resentation disciplines and how we can construct a mapping
between them if this is possible. In general, Semantic Web lan-
guages associate three types of features used in the object-oriented
world. They describe reality on the conceptual level indepen-
dent of technological restrictions, i.e., they are similar to UML
representations. They also constitute a database schema for the
base of facts (RDF). Eventually they are processed by software
tools in the implemented application, i.e., they are part of the
implementation.

It is very difficult to compare UML and OWL. Although both
are languages for modeling and have several structural similar-
ities, they have different capabilities and different approach to
semantics. They both have classes, instances, inheritance, enable
defining cardinality restrictions, etc. On the other hand, OWL
classes are viewed like labels for concepts, while UML classes are
viewed like templates for instances. The most substantial differ-
ences deal with the meaning of instances (individuals in OWL)
and properties. In UML any class is an object that can be instan-
tiated. This process has its semantics like assigning values to
attributes. Moreover, instances have a run time semantics. In
OWL a class is a category, no instantiation process is defined.
OWL individuals, identifiers for domain things, are defined inde-
pendently of classes. If an OWL individual meets the criteria for
the class membership, then it is a member of the class. It has
no state, storage or runtime semantics. UML properties always
belong to a class, while OWL properties are stand-alone entities.
OWL properties are double types; object and datatype proper-
ties. The first one links an individual to an individual and the
second one links individuals to data values. Understanding of a
class extent is also different. While UML classes work inside a
program where they are defined, OWL classes provide features to
share classes among domains. OWL classes may be linked to a list
of class descriptions (Intersection, Union, Complement). A prop-
erty restriction, a special kind of class description, describes an
anonymous class, namely a class of all individuals that satisfy
the restriction. OWL distinguishes two kinds of property restric-
tions: value constraints (e.g., allValuesFrom, someValuesFrom)
and cardinality constraints Dean and Schreiber (2004). OWL
can discipline names using AllDifferent, SameAs or DifferentFrom
constructs.

ODM (Ontology Definition Metamodel) (Object
Management Group, 2009) describes the relationships between
the relevant features of UML and OWL in detail. Described
differences are summarized in Table 1 and shown together with
a relevant Java code in Figure 1.

2.2. RELATED WORK
Focusing on conventional data resources and programming
tools, specifically a relational database and an object-oriented
code, we briefly describe several approaches and tools that
map a relational schema or an object-oriented code to the
Semantic Web languages. Some of these approaches exist only
as initial proposals or prototypes published in scientific papers,
while some of them have been really implemented as available
frameworks.

An RDF triple might be represented as a row in a table of
relational database. This table has two columns, corresponding
to the subject and the object of the RDF triple. The name of
the table corresponds to the predicate of the RDF triple. The
D2RQ (Bizer and Seaborne, 2004) platform is a system for access-
ing relational databases as virtual, read-only RDF graph. It uses
a declarative language to describe a mapping between a relational
database schema and RDF; the content of relational database is
not replicated into an RDF store. The D2RQ platform provides,
for example, possibilities to query a non-RDF database using the
SparQL (Prud’hommeaux and Seaborne, 2008) query language,
to create custom dumps of the database in RDF formats, and to
access information in a non-RDF database using the Apache Jena
API. METAMorphoses (Švihla, 2007) is a data transformation
processor from a relational database into RDF. An XML template
document defines a set of mapping rules and queries for obtaining
data stored in a relational database.

There are approaches and tools that provide limited possibil-
ities to map common syntaxes of an object-oriented code to an
OWL representation. These tools map fundamental OWL fea-
tures, it means that only the basic semantic expressivity of OWL
is used.

A mapping of OWL classes to Java Interfaces is described
in Kalyanpur et al. (2004). The mapping to a Java Interface instead
of a common Java class enables the expression of multiple inheri-
tance of OWL properties. The back transformation is described
in Koide et al. (2005), where the OWL processor SWCLOS3,
which is at the top of the Common Lisp Object System (CLOS),
is described. Whereas CLOS allows lisp programmers to develop
object-oriented systems, SWCLOSS allows programmers to con-
struct domain and task ontologies in software application fields.
Java2OWL-S (Ohlbach, 2012) is a tool which is able to gener-
ate OWL directly from JavaBeans. It uses two transformations.
The first transformation is from JavaBeans into WSDL (Web
Service Description Language). The input of this transforma-
tion is formed by a Java class and the output is a temporary
WSDL file. The second transformation generates OWL from the
WSDL file. Concerning one-side transformations (from conven-
tional languages to Semantic Web languages), these tools with
common semantic expressivity work quite satisfactorily because
the semantic expressivity of the object-oriented code is lower
than the semantic expressivity of the OWL language. However, in
these tools, no possibility to enrich the object-oriented code with
additional semantic constructs exists.

The Semantic Object Framework (SOF) (Po-Huan et al., 2009)
utilizes embedded comments in source codes to describe semantic
relationships between classes and attributes. The eClass (Liu et al.,
2007) is a solution that changes Java syntax to embed semantic
descriptions into an object-oriented source code. These frame-
works thus enrich the input object-oriented code with additional
semantics using but their use is difficult because they require
a modified compiler and Java interpreter.

2.3. SEMANTIC FRAMEWORK
Drawbacks and limits of the tested frameworks motivated us to
introduce a software prototype that allows its users to add addi-
tional semantics directly into the Java object-oriented code. The

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

Table 1 | UML, OWL and Java Features Comparision.

UML OWL Java Comment

Class, atomic type, property
ownedAttribute

owl:Class Class

Instance Individual Class instance OWL owl:individual class
independent

Owned attribute, association owl:DataTypeProperty, owl:ObjectProperty Class attributes: primitive data
types/objects

OWL has only global attributes

Subclass, generalization owl:subclass, owl:subproperty Extends, inherited classes and
properties

Java does not support multiple
inheritance

Enumeration owl:oneOf Enum

Disjoint owl:disjointWith, owl:unionOf One object always an instance of
exactly one class, but we should pay
attention to class inheritance

Multiplicity owl:MinCardinality, owl:MaxCardinality –

Package Ontology Package

Dependency RDF:property Methods parameters or return value

– owl:intersectionOf, owl:unionOf,
owl:complementOf, owl:DifferentFrom,
owl:AllDifferentFrom, owl:allValuesFrom,
owl:someValuesFrom, owl:SameAs

–

Java code works with conventional data repositories. A mapping
that allows transformation of this code into the Semantic Web
language OWL was proposed and implemented as a library, the
Semantic Framework. This solution is usable by software engi-
neers and not only by experts in the Semantic Web. It serves
a community of developers/researchers that develop/use object-
oriented systems and need to provide an output in OWL. This
approach also does not burden users with additional demands
on programming environment since we use reflective Java anno-
tations (metadata added to the Java source code and retrieved
at run-time) as standard syntactic structures in Java. Moreover,
additional semantics even need not to be written by the pro-
grammer directly to the code, but it can be collected from
non-programmers using a graphic user interface. The presented
approach is further discussed from performance (Section 3.1)
and usability (Section 3.2) perspectives. It was validated by the
integration of the Semantic Framework in the EEG/ERP Portal,
together with its registration in the Neuroscience Information
Framework (NIF).

2.4. JAVABEAN TO OWL MAPPING
Java stores data in JavaBeans2, often called Plain Old Java Objects
(POJOs). The transformation of JavaBean representation into an
OWL ontology is described in Definition 1.

2JavaBeans, as reusable components, are named Java classes with class
attributes which are accessed only by get/set methods.

Definition 1. (Extraction process from a JavaBean structure)
The process is the transformation of a set of JavaBeans J to an

ontology O that satisfies:
∀ Ji ∃ OCi ∈ O; OCi is an OWL class; i ∈ {1..n}; n is the number

of JavaBeans.
∀ Ji that is a superclass of J j ∃ OCi that is a superclass of OCj ∈

O; OC is an OWL class; i ∈ {1..n}; n is the number of JavaBeans; j
∈ {1..m}; m is the number of Ji subclasses .

∀ Jf j ∃ OCi ∈ O; its OCi extent is a DataType property ∈ O ⇔
Jf j is an atomic type field of JavaBean; OCi is an OWL class; Jf j is
a field of JavaBean; i ∈ {1..n}; n is the number of OWL classes; j ∈
{1..m}; m is the number of Ji fields.

∀ Jf j ∃ OCi ∈ O; its OCi extent is an Object property ⇔ Jf j

is an object type field of JavaBean; i ∈ {1..n}; n is the number of
OWL classes; j ∈ {1..m}; m is the number of JavaBean fields.

∀ Jinst of Ji
∧ ∀ Jf ij ∃ OLij ∈ O so that OLij � Jf ij; Jinst is an

instance of Ji; Jf ij is a field of Ji; i ∈ {1..n}; n is the number of
JavaBeans; j ∈ {1..m}; m is the number of Ji fields; OLij is an OWL
literal.

An example of a mapping of a JavaBean to an OWL con-
struct is shown in Listing 1.1. The JavaBean Person has two
attributes, researchGroups and firstname. The first one is an asso-
ciation relation to the ResearchGroup class, while the second one
is an atomic type. Get/set methods are omitted to keep read-
ability. Listing 1.2 shows a fundamental serialization of this class
into an OWL structure. The attribute firstname is serialized to a

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

FIGURE 1 | Practical examples of Java code, OWL, and UML Features. (A) Definitions of classes with primitive and object properties. (B) Definitions of
inheritance and enumeration. (C) Definitions of union classes.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

DataTypeProperty while the attribute researchGroups is serialized
to an ObjectProperty.

Listing 1 | JavaBean Person.

p a c k a g e c z . zcu . k i v ;

p u b l i c c l a s s P e r s o n {
@Id
p r i v a t e i n t i d ;
p r i v a t e S t r i n g f i r s t n a m e ;
p r i v a t e L i s t <ResearchGroup > r e s e a r c h G r o u p s ;

}

Listing 2 | OWL Individual.

<owl : C l a s s r d f : ID =" P e r s o n " >
< s e m a n t i c : j a v a c l a s s >c z . zcu . k i v . P e r s o n

</ s e m a n t i c : j a v a c l a s s >
</ owl : C l a s s >

<owl : C l a s s r d f : ID =" ResearchGroup ">
< s e m a n t i c : j a v a c l a s s >c z . zcu . k i v .

ResearchGroup </ s e m a n t i c : j a v a c l a s s >
</ owl : C l a s s >

<owl : O b j e c t P r o p e r t y r d f : ID =" r e s e a r c h G r o u p s " >
< r d f s : domain r d f : r e s o u r c e ="& t h i s ; P e r s o n "/ >
< r d f s : r a n g e r d f : r e s o u r c e ="& t h i s ;

ResearchGroup "/ >
</ owl : O b j e c t P r o p e r t y >

<owl : D a t a t y p e P r o p e r t y r d f : ID =" f i r s t n a m e " >
< r d f s : domain r d f : r e s o u r c e ="& t h i s ; P e r s o n "/ >
< r d f s : r a n g e r d f : r e s o u r c e ="& xsd ; s t r i n g "/ >

</ owl : D a t a t y p e P r o p e r t y >

<owl : D a t a t y p e P r o p e r t y r d f : ID =" i d " >
< r d f s : domain r d f : r e s o u r c e ="& t h i s ; P e r s o n "/ >
< r d f s : r a n g e r d f : r e s o u r c e ="& xsd ; i n t e g e r "/ >

</ owl : D a t a t y p e P r o p e r t y >

Although the described mapping works quite satisfactorily,
OWL concepts described in Section 2.1 are not covered. When
we want to use more capabilities of OWL, we have to enrich
the object-oriented code with additional semantic expressions.
Looking for a suitable way to extend a current object-oriented
code, we decided to pursue a preliminary idea (Jezek and Moucek,
2011b) based on using Java Annotations (MicroSystems, 2008).

Java Annotations have several benefits. Firstly, they can be
added, as a special form of syntactic metadata, to a Java source
code. Secondly, they are reflective, i.e., they can be embedded
within the compiled code and retrieved at runtime. Moreover,
Java Annotations are a part of the Standard Java Development
Kit; they can be processed immediately using Java 5.0 or higher.
Finally, Java Annotations are used in current software develop-
ment (by several common frameworks, e.g., Spring, Hibernate,

Java Persistent API); hence, software developers can work with
this extension without difficulties.

The theoretical extraction of JavaBeans annotations and their
transformations to OWL documents is formally described in
Definition 2.

Definition 2. (Java annotation extraction process)
The process is the transformation of a set of Java annotations

JA to a resources R in the ontology O that satisfies:
∀ JAi ∈ class annotations ∃ OWL class Ri ∈ O; i ∈ {1..n}; n is

number of Java class annotations.
∀ JAi ∈ property annotations ∃ OWL property Ri ∈ O; i ∈

{1..n}; n is number of Java property annotations.

An example of using annotations is given in Listing 1.3. The
class Person has attributes firstname and researchGroups as defined
in Listing 1.1. Moreover, the attribute dateofBirth is added. The
firstname attribute is defined with a value that is get from the
value constraint GivenNames by using the @SomeValuesFrom
annotation. The attribute dateofBirth is defined with cardinal-
ity equal to 1 and the attribute researchGroups is defined with
minimum cardinality equal to 1. In addition, the class Person is
defined as equivalent to the class TestedSubject using the annota-
tion EquivalentClass. The serialization of this JavaBean is shown
in Listing 1.4. The class Person is a subclass of owl:cardinality,
owl:someValuesFrom and owl:minCardinality OWL restrictions.

Listing 3 | Annotated Java Bean.

p a c k a g e c z . zcu . k i v ;

@ E q u i v a l e n t C l a s s
(" h t t p : / / c z . zcu . k i v / T e s t e d S u b j e c t ")

p u b l i c c l a s s P e r s o n {
@Id
p r i v a t e i n t i d ;

@SomeValuesFrom (s t r i n g V a l u e s =
" h t t p : / / c z . zcu . k i v / GivenNames ")

p r i v a t e S t r i n g f i r s t n a m e ;

@ C a r d i n a l i t y (1)
p r i v a t e Date d a t e o f B i r t h ;

@ M i n C a r d i n a l i t y (1)
p r i v a t e L i s t <ResearchGroup >

r e s e a r c h G r o u p s ;
}

Listing 4 | OWL Serialization of Annotated Java Bean.

<owl : C l a s s r d f : ID =" P e r s o n " >
<owl : e q u i v a l e n t C l a s s >

<owl : C l a s s r d f :
about =" h t t p : / / c z . zcu . k i v /

T e s t e d S u b j e c t " / >
</ owl : e q u i v a l e n t C l a s s >

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://cz.zcu.kiv/Tested Subject
http://cz.zcu.kiv/GivenNames
http://cz.zcu.kiv/Tested Subject
http://cz.zcu.kiv/Tested Subject

Ježek and Mouček Mapping object-oriented structures to semantic web

< r d f s : s u b C l a s s O f >
<owl : R e s t r i c t i o n >

<owl : c a r d i n a l i t y r d f : d a t a t y p e =
"& xsd ; i n t " >1 </ owl : c a r d i n a l i t y >

<owl : o n P r o p e r t y >
<owl : D a t a t y p e P r o p e r t y r d f :

ID =" d a t e o f B i r t h "/ >
</ owl : o n P r o p e r t y >

</ owl : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

< r d f s : s u b C l a s s O f >
<owl : R e s t r i c t i o n >

<owl : someValuesFrom >
<owl : DataRange >

<owl : oneOf r d f : p a r s e T y p e =" R e s o u r c e " >
< r d f : r e s t r d f : r e s o u r c e ="& r d f ; n i l " / >

< r d f : f i r s t r d f : d a t a t y p e ="& xsd ;
s t r i n g " >

h t t p : / / c z . zcu . k i v / GivenNames
</ r d f : f i r s t >

</ owl : oneOf >
</ owl : DataRange >
</ owl : someValuesFrom >
<owl : o n P r o p e r t y >

<owl : D a t a t y p e P r o p e r t y r d f :
ID =" f i r s t n a m e "/ >

</ owl : o n P r o p e r t y >
</ owl : R e s t r i c t i o n >

</ r d f s : s u b C l a s s O f >

< r d f s : s u b C l a s s O f >
<owl : R e s t r i c t i o n >

<owl : m i n C a r d i n a l i t y r d f :
d a t a t y p e ="& xsd ; i n t " >1
</ owl : m i n C a r d i n a l i t y >

<owl : o n P r o p e r t y >
<owl : O b j e c t P r o p e r t y r d f :

ID =" r e s e a r c h G r o u p s "/ >
</ owl : o n P r o p e r t y >

</ owl : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >
< s e m a n t i c : j a v a c l a s s >

c z . zcu . k i v . P e r s o n
</ s e m a n t i c : j a v a c l a s s >

</ owl : C l a s s >

We chose the concepts that have a class and/or prop-
erty extent (Jezek and Moucek, 2011a) and defined a set of
annotations with their mapping to corresponding OWL con-
structs (Table 2). Most of the proposed annotations are param-
eterizable. Parameter values shown in Table 2 are examples;
they can be changed according to the needs of a specific
domain.

The described mapping was implemented as a library named
the Semantic Framework3 . It processes a set of JavaBeans as

3The project repository is available at: https://github.com/
NEUROINFORMATICS-GROUP-FAV-KIV-ZCU/Semantic-Framework

Table 2 | OWL Mapping of Java Annotations.

Java Annotation OWL construct

@EquivalentClass <owl:equivalentClass rdf:resource=

("http://www.kiv.zcu.cz/Person") "http://www.kiv.zcu.cz/Person"/>

@EquivalentProperty <owl:equivalentProperty rdf:resource=

("http://www.kiv.zcu.cz/first_name") "http://www.kiv.zcu.cz/first_name"/>

@Symmetric <rdf:type rdf:resource="http:/www.w3.org

/2002/07/owl#SymmetricProperty"/>

@Inverse <owl:inverseOf rdf:resource=

("http://www.kiv.zcu.cz/givenname") "http://www.kiv.zcu.cz/givenname"/>

@AllValuesFrom <owl:allValuesFrom rdf:resource=

("http://www.kiv.zcu.cz/#Persons") "http://www.kiv.zcu.cz/#Persons"/>

@Transitive <rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl

#TransitiveProperty"/>

@AllDifferent <rdf:type rdf:resource=

("http://www.kiv.zcu/Experiment") "http://www.kiv.zcu.cz/#AllDifferent"/>

@DifferentFrom <owl:differentFrom rdf:resource=

("http://www.kiv.zcu.cz/Experiment") "http://www.kiv.zcu/Experiment"/>

@SameAs <owl:sameAs rdf:resource=

("http://www.kiv.zcu.cz/Experiment") "http://www.kiv.zcu/Experiment"/>

@Cardinality(1) <owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema

#int">1</owl:cardinality>

@MaxCardinality(1) <owl:maxCardinality rdf:datatype

="http://www.w3.org/2001/XMLSchema

#int">1</owl:maxCardinality>

@MinCardinality(1) <owl:minCardinality rdf:datatype

="http://www.w3.org/2001/XMLSchema

#int">1</owl:minCardinality>

@SomeValuesFrom <owl:someValuesFrom rdf:resource=

("http://www.kiv.zcu/Person") "http://www.kiv.zcu/Person"/>

an input and produces an ontology document as an output.
We did not implement the Semantic Framework from scratch,
but extended and integrated already existing tools. The core of
the system is extended JenaBean (JenaBean Team, 2010) that
enables binding of common JavaBeans to RDF/OWL classes
and properties. It internally uses the Jena Framework (Apache
Jena Project Team, 2011) with Jena RDF/OWL API to per-
sist JavaBeans. Figure 2 shows the component diagram of the
Semantic Framework. The first subcomponent is the extended
JenaBean that reads and parses JavaBeans and related Java anno-
tations. The output of the Extended JenaBean component is
an internal JenaBean model that is transferred to the second,
Ontology Model Creator, subcomponent. This subcomponent
creates an ontology model using an Ontology Model Factory and
Jena API methods. This ontology model extends access to the
statements in a RDF data collection by adding support for con-
structs that are expected to be in an ontology. However, all of
the state information is still encoded as RDF triples and stored in

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 8

https://github.com/NEUROINFORMATICS-GROUP-FAV-KIV-ZCU/Semantic-Framework
https://github.com/NEUROINFORMATICS-GROUP-FAV-KIV-ZCU/Semantic-Framework
http://www.kiv.zcu.cz/Person
http://www.kiv.zcu.cz/Person
http://www.kiv.zcu.cz/first_name
http://www.kiv.zcu.cz/first_name
http:/www.w3.org//2002/07/owl#SymmetricProperty
http://www.kiv.zcu.cz/givenname
http://www.kiv.zcu.cz/givenname
http://www.kiv.zcu.cz/#Persons
http://www.kiv.zcu.cz/#Persons
http://www.w3.org/2002/07/owl/#TransitiveProperty
http://www.kiv.zcu/Experiment
http://www.kiv.zcu.cz/#AllDifferent
http://www.kiv.zcu.cz/Experiment
http://www.kiv.zcu/Experiment
http://www.kiv.zcu.cz/Experiment
http://www.kiv.zcu/Experiment
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#int
http://www.kiv.zcu/Person
http://www.kiv.zcu/Person
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://cz.zcu.kiv/GivenNames
http:/www.w3.org//2002/07/owl#SymmetricProperty
http://www.w3.org/2002/07/owl/#TransitiveProperty
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#int

Ježek and Mouček Mapping object-oriented structures to semantic web

FIGURE 2 | Component Diagram of the Semantic Framework. The
Semantic Framework reads a list of input JavaBeans using an implemented
reader based on Java Reflection API (SUN, 2006). This list passes through two
parsers. The first one reads a JavaBean structure; the second one reads

supplemented annotations. The parsers create an internal JenaBean
representation. This representation is read by Jena API, which provides an
ontology model processed by an OWL API. The OWL API implements existing
OWL syntaxes and provides methods for serializing the ontology model.

the RDF model. The resulting ontology model (in the form of an
ontology document) is further processed by the last subcompo-
nent, OWL API (Horridge and Bechhofer, 2011), which provides
the ontology model in a required serialization format. The UML
diagram describing the usage of the Semantic Framework is
available in Figure 3.

3. RESULTS
3.1. PERFORMANCE EVALUATION
The time complexity of the Semantic Framework library was
tested in the following way. Firstly, we prepared a set of instances
of the class Experiment. Then, we assigned instances of the
classes Person, Scenario, Hardware, and Data to each instance of
the class Experiment. The class Person was extended by the set
of supported annotations from Table 2. The performance tests
were run 10 times and the result was calculated as an average
of all program runs. The time complexity of the transforma-
tional process was linear with respect to the number of instances.
All the tested syntaxes are functionally equivalent; they differ
only in the format of the serialized output document (Beckett,
2004).

3.2. EXPERIMENTAL EVALUATION
We defined a simple ontology describing the experimental work
in our laboratory. Semantically, it is a modified subset of the
NEMO ontology with added terms describing an experimen-
tal protocol and restrictions during an experimental session.
The ontology structure corresponds to metadata collected during
experiments. These metadata are divided into several semantic
groups:

• Activity - describes a predefined experimental pro-
tocol. It includes information about audio and/or
video stimulation, instructions given to tested subjects,
detailed descriptions of stimuli (target vs. non-target,
timing), etc.

• Environment - describes surrounding conditions such as
weather, daytime or room temperature.

• Tested subject - includes information about the tested sub-
ject such as laterality, education, age, gender, diseases, and
disability.

• Hardware equipment - describes e.g., the type, producer, and
serial number of the hardware used.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

FIGURE 3 | Class Diagram of the Semantic Framework Interface. Actor1
represents a client program. The client uses the interface JenaBeanExtension
having the method getOntologyDocument that returns an ontology

document in a stream. The returned stream can be serialized into supported
formats by an OwlApi interface calling the convertToSemanticStandard
method.

• Software equipment - describes software used during the
experiment. It includes e.g., the name of the software, version,
manufacturer, and configuration files if they are used.

• Used electrodes - describes the type, impedance, location, used
system, and fixation of the electrodes.

• Data digitalization - describes a set of parameters that influence
conversion of data using a specific analog-digital converter. It
includes filtration, sampling frequency, and band-pass.

• Signal analysis - describes basic analytic steps during the
EEG/ERP signal processing. It includes the determination of
the length of the pre- and post-stimulus part of the signal,
number of epochs, and text description of the signal-processing
procedure.

• Data presentation - describes experimental results or assump-
tions needed to reproduce an experiment. It includes averaged
ERP waves (images of averaged waves), grand averages (images
of grand averages), evolution of the ERP signal in time and
space (images showing the ERP signal propagation over the
scalp), waves description (description of well-known or new
waves formed during the study), and link to raw experimental
data.

• Signal artifact - contains information describing a compen-
sation method that prevents formation of artifacts. When a
method for removing artifacts is used, its description is also
placed there. When some artifact totally degrades the signal,

the experimenter can define conditions when it is possible to
assume that the signal is totally useless.

This simple ontology was built within the development of the
EEG/ERP Portal (EEGBase) (Jezek and Moucek, 2012), which is
a web application (Neuroinformatics group, University of West
Bohemia) for the storage, long-term management, and shar-
ing of electrophysiology data. The data layer of the EEG/ERP
Portal is implemented using a relational database (Oracle 11 g)
and POJOs. An object-relational mapping (ORM) is ensured by
the Hibernate framework (Bauer and King, 2006). The inter-
nal structure (classes and their relationships, annotations) of the
data layer is implemented according to the defined ontology. The
application layer was developed using the Spring Framework;
the presentation layer uses Apache Wicket. Upload of data and
metadata is ensured via a set of predefined web forms.

The Semantic Framework was integrated into the EEG/ERP
Portal (Figure 4). The internal logic4 calls a Semantic Framework
API (the UML diagram describing the Semantic module API
in the EEG/ERP Portal is shown in Figure 5) using a built-in
timer at regular intervals. The created ontology document is
stored in a temporary file that is further serialized into a required

4Spring MVC is used. It practically implements a Model-View-Controller
design pattern.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

syntax. Syntaxes RDF/XML, OWL/XML, RDF/XML-ABBREV, N-
TRIPLE, TURTLE, N3, N3-PP, N3-PLAIN, and N3-TRIPLE are
currently supported. The SemanticMultiController is listening on
a specific URL with the GET parameter. For instance, when
a reasoner visits the URL http://eegdatabase.kiv.zcu.cz/semantic/
getOntology.html?type=turtle, it obtains the OWL document in

FIGURE 4 | Integration of the Semantic Framework in the EEG/ERP

Portal. The EEG/ERP Portal is a layered architecture designed according to
a Model-View-Controller design pattern. The data layer obtains Javabeans
from a relational database. The application layer is controlled by the set of
Controllers which process user requests originated from a web browser.
The specific controller (Semantic Controller) processes ontology document
requests. This controller calls the integrated Semantic Framework through
Semantic Factory and returns a serialized ontology document to the user’s
web browser.

the turtle syntax. The output ontology document is valid accord-
ing to W3C specification. It is formally proved by its visualization
in Protége (shown in Figure 6).

The generated OWL documents are typically used when
registering the EEG/ERP Portal with other providers of neu-
roinformatics services. We successfully used the Neuroscience
Informational Framework (NIF) (Gardner et al., 2008). The
NIF framework provides a unified interface for accessing neuro-
physiological data through resources described by ontology web
languages (Gupta et al., 2008). NIF uses a proprietary framework
DISCO (Marenco et al., 2010). It is an XML-based script contain-
ing a static description of the registered resource. The dynamic
content is accessed through a generated ontology. The structure
of metadata instances is stored in an Interoperability XML file
that is a part of the DISCO protocol. The interoperability file is
stored in the root directory of the EEG/ERP Portal together with
generated DISCO files. The NIF framework reloads it at regular
intervals. It enables dynamic access to the content of the EEG/ERP
Portal. Figure 7 shows experiments listed through the NIF reg-
istry. Currently more then 100 experiments are available in the
NIF registry and new ones are being gradually added.

4. DISCUSSION
This article described the possible approaches to the semantic
enrichment of structured electrophysiology data. Different views
of software engineering and knowledge representation communi-
ties on data modeling, reasonable range of semantic descriptions,
and used languages and technologies were briefly introduced.
The Semantic Web has become (after 13 years of its existence)
a kind of connection between these communities. Currently, the
real benefits of the Semantic Web can be found in the concept
of linked data that is technologically well-supported. However,
in general the Semantic Web technologies are not mature, they
are often computationally demanding and the community of
developers and administrators who develop/maintain/adminis-
trate them is significantly smaller then communities interested in

FIGURE 5 | Semantic Framework Integration. A user (e.g., OWL reasoner)
works with the SemanticMulticontroller interface. This controller has two
methods, getOntology and getOntologyOwlApi. A required output syntax is

passed to the methods as a part of the HttpServletRequest parameter. The
Semantic Framework is called within the methods of the implemented
SemanticFactory Interface.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 11

http://eegdatabase.kiv.zcu.cz/seman tic/getOntology.html?type=turtle
http://eegdatabase.kiv.zcu.cz/seman tic/getOntology.html?type=turtle
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

FIGURE 6 | Protége Visualization. The left column shows ontology classes.
All classes are subclasses of a superclass Thing. The right window shows the
class Person. The class descriptions (EquivalentClass) and properties (e.g.,

researchGroups - each person is a member of at least one research group)
are transformed from the enriched JavaBean (see Listing 1.3). The class
instances (e.g., Person_0) are originally obtained from the relational database.

“conventional” programming languages and tools. On the other
hand, it is worthwhile to use and promote the Semantic Web
languages, standards and technologies that can bring to neuroin-
formatics applications the opportunity to use higher semantic
expressivity.

Based on these assumptions we developed a software pro-
totype, the Semantic Framework library, that connect conven-
tional technologies and programming tools (relational database,
domain-independent Java-based systems) with the languages and

technologies of the Semantic Web (RDF, OWL, JenaBean, Jena,
OWL API). The most important contribution is a transforma-
tional mechanism that maps common JavaBeans accessing data
stored in a relational database into OWL individuals. In addition,
the semantic diversity that exists due to the different semantic
expressivity of the object-oriented model and the Semantic Web
languages was partly addressed using a custom annotation-based
approach. Java annotations are enriched by additional semantic
constructions that are also transformed to the resulting OWL

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

F
IG

U
R

E
7

|
E

E
G

/E
R

P
P

o
rt

a
l

in
th

e
N

IF
R

e
g

is
tr

y
.

Th
e

lis
t

of
ex

pe
rim

en
ts

st
or

ed
in

th
e

E
E

G
/E

R
P

Po
rt

al
is

sh
ow

n
in

th
e

N
IF

re
gi

st
ry

at
lin

k
ht

tp
s:

//w
w

w
.n

eu
in

fo
.o

rg
/m

yn
if/

se
ar

ch
.p

hp
?

q=
ee

gb
as

e&
t=

in
de

xa
bl

e&
lis

t=
co

ve
r&

ni
f=

ni
f-

00
00

-0
81

90
-1

.T
he

lis
t

co
nt

ai
ns

di
re

ct
hy

pe
rli

nk
s

to
th

e
ex

pe
rim

en
ts

st
or

ed
in

th
e

E
E

G
/E

R
P

Po
rt

al
.W

he
n

a
us

er
cl

ic
ks

on
a

hy
pe

rli
nk

,h
e/

sh
e

is
re

di
re

ct
ed

to
th

e
E

E
G

/E
R

P
Po

rt
al

.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 13

https://www.neuinfo.org/mynif/search.php?q=eegbase&t=indexable&list=cover&nif=nif-0000-08190-1
https://www.neuinfo.org/mynif/search.php?q=eegbase&t=indexable&list=cover&nif=nif-0000-08190-1
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

ontology document. This approach using annotations replaces
the traditional modeling of ontologies in an ontological language.
The Semantic Framework was integrated in the EEG/ERP Portal
and enabled dynamic generation of the output ontology docu-
ment. This document is used by the NIF to provide a content of
the EEG/ERP Portal through its interface.

Although it is difficult to predict the future development of the
Semantic Web, at least it can be expected that new proposals for
standards will appear and the software tools that will be developed
become more mature and stable. These predictions concerning
the future development of the Semantic Web (and standards and
tools for semantic descriptions in general) are important for our
decisions regarding the development of the EEG/ERP Portal and
the Semantic Framework itself.

One of the possible challenges is replacement of the relational
database with a NoSQL database for storing experimental meta-
data. Relational-databases are inflexible when structure modi-
fications are required, while NoSQL databases provide higher
scalability and availability because of their free schema. NoSQL
databases having key-value organization can easily store RDF
triples (Papailiou et al., 2012). There are initiatives, e.g., (Ebel
and Hulin, 2012), that investigate the transformation of a com-
mon relational database to a NoSQL database. Currently we
replaced a part of the relational database for the NoSQL database
ElasticSearch.

Another challenge is to integrate a standardized data format
and metadata structures into the EEG/ERP Portal. We participate
in these standardization activities within INCF Electrophysiology
Task Force and within the group developing an experimen-
tal ontology for neurophysiology (Ontology for Experimental
Neurophysiology Working Group, 2013). Even the partial out-
comes of these groups are continuously integrated into the
EEG/ERP Portal.

The presented approach was used and tested in the electro-
physiology domain, but the mapping mechanism implemented in
the Semantic Framework can be easily applied to other domains.

ACKNOWLEDGMENTS
This work was supported by the European Regional
Development Fund (ERDF), Project “NTIS—New Technologies
for Information Society,” European Centre of Excellence,
CZ.1.05/1.1.00/02.0090.

REFERENCES
Adida, B., Birbeck, M., McCarron, S., and Herman, I. (2013). RDFa

Core 1.1. Syntax and processing rules for embedding RDF through
attributes, W3C Recommendation, 2nd Edn. Available online at:
http://www.w3.org/TR/rdfa-core/

Antoniou, G., and van Harmelen, F. (2004). A Semantic Web Primer (Cooperative
Information Systems Series). Cambridge, MA: The MIT Press.

Apache Jena Project Team (2011). Apache Jena - A Free and Open Source Java
Framework for Building Semantic Web and Linked Data Applications. Available
online at: http://jena.sourceforge.net/index.html

Bauer, C., and King, G. (2006). Java Persistence with Hibernate. Greenwich, CT:
Manning Publications Co.

Beckett, D. (2004). RDF/Xml Syntax Specification (Revised). W3C recommenda-
tion, W3C. Available online at: http://www.w3.org/TR/REC-rdf-syntax/

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Sci. Am. 284,
34–43. doi: 10.1038/scientificamerican0501-34

Berners-Lee, T. (2006). Designed Issues: Linked Data. Available online at:
http://www.w3.org/DesignIssues/LinkedData.html

Biller, H., and Neuhold, E. (1977). Architecture and Models in Data Base
Management Systems: Proceedings of the IFIP Working Conference on Modelling
in Data Base Management Systems. Holland: Distributors for the U.S.A. and
Canada, Elsevier/North Holland.

Bizer, C., and Seaborne, A. (2004). “D2RQ-treating non-RDF databases as virtual
RDF graphs,” in Proceedings of the 3rd International Semantic Web Conference
(ISWC2004) (Hiroshima: Citeseer).

Bjaalie, J. G., and Grillner, S. (2007). Global neuroinformatics: the interna-
tional neuroinformatics coordinating facility. J. Neurosci. 27, 3613–3615. doi:
10.1523/JNEUROSCI.0558-07.2007

Bock, C., Cook, S., Rivett, P., Rutt, T., Seidewitz, E., Selic, B., et al. (2013). OMG
Unified Modeling Language (OMG UML), Version 2.5. Available online at:
http://www.omg.org/spec/ UML/2.5/Beta2/PDF/

Brinkman, R., Courtot, M., Derom, D., Fostel, J., He, Y., Lord, P., et al. (2010).
Modeling biomedical experimental processes with OBI. J. Biomed. Semant.
1(Suppl. 1):S7. doi: 10.1186/2041-1480-1-S1-S7

Chandrasekaran, B., Josephson, J., and Benjamins, V. (1999). What are ontolo-
gies, and why do we need them? IEEE Intell. Syst. Appl. 14, 20–26. doi:
10.1109/5254.747902

Dean, M., and Schreiber, G. (2004). OWL Web Ontology Language Reference. W3C
recommendation, W3C. Available online at: http://www.w3.org/TR/owl-ref/

Dou, D., Frishkoff, G. A., Rong, J., Frank, R., Malony, A. D., and Tucker, D. M.
(2007). “Development of neuroelectromagnetic ontologies(nemo): a frame-
work for mining brainwave ontologies,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
eds P. Berkhin, R. Caruana, and X. Wu (San Jose, CA: ACM), 270–279. doi:
10.1145/1281192.1281224

Ebel, M., and Hulin, M. (2012). “Combining relational and semi-structured
databases for an inquiry application,” in Multidisciplinary Research and Practice
for Information Systems, Vol. 7465 of Lecture Notes in Computer Science, eds G.
Quirchmayr, J. Basl, I. You, L. Xu, and E. Weippl (Berlin; Heidelberg: Springer),
73–84.

Garcia, S., and Fourcaud-Trocm, N. (2009). Openelectrophy: an electrophysio-
logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:
10.3389/neuro.11.014.2009

Gardner, D., Akil, H., Ascoli, G., Bowden, D., Bug, W., Donohue, D., et al. (2008).
The neuroscience information framework: a data and knowledge environment
for neuroscience. Neuroinformatics 6, 149–160. doi: 10.1007/s12021-008-9024-z

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach to data
annotation in neurophysiology. Front. Neuroinform. 5:16. doi: 10.3389/fn-
inf.2011.00016

Gupta, A., Bug, W., Marenco, L., Qian, X., Condit, C., Rangarajan, A., et al.
(2008). Federated access to heterogeneous information resources in the neu-
roscience information framework (nif). Neuroinformatics 6, 205–217. doi:
10.1007/s12021-008-9033-y

Horridge, M., and Bechhofer, S. (2011). The owl api: a java api for owl ontologies.
Semant. Web 2, 11–21. doi: 10.3233/SW-2011-0025

JenaBean Team (2010). Jenabean - Project Hosting on Google Code. Available online
at: http://code.google.com/p/jenabean/

Jezek, P., and Moucek, R. (2011a). “Semantic web in eeg/erp portal: ontol-
ogy development and nif registration,” in 2011 4th International Conference
on Biomedical Engineering and Informatics (BMEI), Vol. 4, (Shanghai),
2058–2062.

Jezek, P., and Moucek, R. (2011b). “Transformation of object-oriented code into
semantic web using java annotations,” in 13th International Conference on
Enterprise Information Systems (ICEIS) (4), eds R. Zhang, J. Cordeiro, X. Li, Z.
Zhang, and J. Zhang (Beijing: SciTePress), 207–210.

Jezek, P., and Moucek, R. (2012). System for EEG/ERP data and meta-
data storage and management. Neural Netw. World 22, 277–290. doi:
10.14311/NNW.2012.22.016

Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J. A. (2004). “Automatic mapping
of OWL ontologies into Java,” in Proceedings of the 16th International Conference
on Software Engineering & Knowledge Engineering (SEKE’2004), eds F. Maurer
and G. Ruhe (Banff, AB), 98–103.

Koide, S., Aasman, J., and Haflich, S. (2005). “Owl vs. object orientated program-
ming,” in International Semantic Web Conference, Workshop1: Semantic Web
Enabled Software Engineering (Galway).

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 14

http://www.w3.org/TR/rdfa-core/
http://jena.sourceforge.net/index.html
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.omg.org/spec/UML/2.5/Beta2/PDF/
http://www.omg.org/spec/UML/2.5/Beta2/PDF/
http://www.w3.org/TR/owl-ref/
http://code.google.com/p/jenabean/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ježek and Mouček Mapping object-oriented structures to semantic web

Le Franc, Y., Bandrowski, A., Bruha, P., Papež, V., Grewe, J., Moucek, R.,
et al. (2014). Describing neurophysiology data and metadata with oen, the
ontology for experimental neurophysiology. Front. Neuroinform. 8:44. doi:
10.3389/conf.fninf.2014.18.00044

Liu, F., Wang, J., and Dillon, S. T. (2007). “Web information representation,
extraction and reasoning based on existing programming technology,” in
Computational Inteligence 37, eds L. Jie, Z. Guangquan, and R. Da (Berlin),
147–168.

Manola, F., and Miller, E., (eds.). (2004). RDF Primer. W3C
Recommendation. World Wide Web Consortium. Available online at:
http://www.w3.org/TR/rdf-primer/

Marenco, L., Wang, R., Shepherd, G., and Miller, P. (2010). The nif disco
framework: facilitating automated integration of neuroscience content
on the web. Neuroinformatics 8, 101–112. doi: 10.1007/s12021-010-
9068-8

MicroSystems, S. (2008). Annotations (The Java Tutorials, Learning the Java
Language, Classes and Objects). Available online at: http://docs.oracle.com/
javase/tutorial/java/annotations/

Moucek, R., Bruha, P., Jezek, P., Mautner, P., Novotny, J., Papez, V., et al. (2014).
Software and hardware infrastructure for research in electrophysiology. Front.
Neuroinform. 8:20. doi: 10.3389/fninf.2014.00020

Neuroinformatics group, University of West Bohemia, (2014). EEG/ERP Portal
(EEGBase). Available online at: http://eegdatabase.kiv.zcu.cz

Object Management Group, (2009). Ontology definition metamodel (omg) version
1.0. Technical Report formal/2009-05-01, Object Management Group.

Ohlbach, H. J. (2012). “Java2owl: a system for synchronising java and owl,”
in 4th International Conference on Knowledge Engineering and Ontology
Development (KEOD), eds J. Filipe and J. L. G. Dietz (Barcelona: SciTePress),
15–24.

Ontology for Experimental Neurophysiology Working Group. (2013). Ontology
for Experimental Neurophysiology. Available online at: https://github.com/
G-Node/OEN

Open Knowledge Foundation. (2014). Availability of SPARQL Endpoint. Available
online at: http://sparqles.okfn.org/availability

Papailiou, N., Konstantinou, I., Tsoumakos, D., and Koziris, N. (2012). “H2rdf:
adaptive query processing on rdf data in the cloud,” in Proceedings of the
21st International Conference Companion on World Wide Web, WWW ’12
Companion, (New York, NY: ACM), 397–400.

Po-Huan, C., Chi-Chuan, L., and Kuo-Ming, C. (2009). Integrationg semanic web
and object-oriented programming for cooperative design. J. Univ. Comput. Sci.
15, 1970–1990. doi: 10.3217/jucs-015-09-1970

Prud’hommeaux, E., and Seaborne, A. (2008). Sparql Query Language for
Rdf. W3c recommendation, W3C. Available online at: http://www.w3.org/
TR/rdf-sparql-query/

Scott, T. (2004). Python: the good, the bad, and the not ugly: conference workshop.
J. Comput. Sci. Coll. 20, 288–290.

Simsion, G., and Witt, G. (2004). Data Modeling Essentials, 3rd Edn. Burlington,
MA: Morgan Kaufmann.

Solid IT, (2014). DB Engines - Knowledge Base of Relational and NoSQL Database
Management Systems.

SUN. (2006). Java Tutorial Trail: The Reflection API. SUN Microsystems. Available
online at: http://java.sun.com/docs/books/tutorial/reflect/index.html

Švihla, M. (2007). Transforming Relational Data into Ontology Based RDF. thesis.
CTU Prague.

Teeters, J., Harris, K., Millman, K., Olshausen, B., and Sommer, F. (2008).
Data sharing for computational neuroscience. Neuroinformatics 6, 47–55. doi:
10.1007/s12021-008-9009-y

The European Bioinformatics Institute. (2014). RDF Platform. Available online at:
http://www.ebi.ac.uk/rdf/

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 26 February 2014; accepted: 08 February 2015; published online: 25
February 2015.
Citation: Ježek P and Mouček R (2015) Semantic framework for mapping object-
oriented model to semantic web languages. Front. Neuroinform. 9:3. doi: 10.3389/
fninf.2015.00003
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2015 Ježek and Mouček. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org February 2015 | Volume 9 | Article 3 | 15

http://www.w3.org/TR/rdf-primer/
http://docs.oracle.com/javase/tutorial/java/annotations/
http://docs.oracle.com/javase/tutorial/java/annotations/
http://eegdatabase.kiv.zcu.cz
https://github.com/G-Node/OEN
https://github.com/G-Node/OEN
http://sparqles.okfn.org/availability
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://www.ebi.ac.uk/rdf/
http://dx.doi.org/10.3389/fninf.2015.00003
http://dx.doi.org/10.3389/fninf.2015.00003
http://dx.doi.org/10.3389/fninf.2015.00003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Semantic framework for mapping object-oriented model to semantic web languages
	Introduction
	Materials and Methods
	Data Models and Languages
	Related Work
	Semantic Framework
	JavaBean to OWL Mapping

	Results
	Performance Evaluation
	Experimental Evaluation

	Discussion
	Acknowledgments
	References

