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With the advance of sequencing technology and microbiology, the microorganisms

have been found to be closely related to various important human diseases. The

increasing identification of human microbe-disease associations offers important insights

into the underlying disease mechanism understanding from the perspective of human

microbes, which are greatly helpful for investigating pathogenesis, promoting early

diagnosis and improving precision medicine. However, the current knowledge in this

domain is still limited and far from complete. Here, we present the computational model

of Path-Based Human Microbe-Disease Association prediction (PBHMDA) based on

the integration of known microbe-disease associations and the Gaussian interaction

profile kernel similarity for microbes and diseases. A special depth-first search algorithm

was implemented to traverse all possible paths between microbes and diseases for

inferring the most possible disease-related microbes. As a result, PBHMDA obtained

a reliable prediction performance with AUCs (The area under ROC curve) of 0.9169

and 0.8767 in the frameworks of both global and local leave-one-out cross validations,

respectively. Based on 5-fold cross validation, average AUCs of 0.9082 ± 0.0061

further demonstrated the efficiency of the proposed model. For the case studies of

liver cirrhosis, type 1 diabetes, and asthma, 9, 7, and 9 out of predicted microbes

in the top 10 have been confirmed by previously published experimental literatures,

respectively. We have publicly released the prioritized microbe-disease associations,

which may help to select the most potential pairs for further guiding the experimental

confirmation. In conclusion, PBHMDAmay have potential to boost the discovery of novel

microbe-disease associations and aid future research efforts towardmicrobe involvement

in human disease mechanism. The code and data of PBHMDA is freely available at

http://www.escience.cn/system/file?fileId=85214.
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INTRODUCTION

It is well known that microorganisms are ubiquitously existing
in the environment and occupying almost all habitats including
animals and humans. The microorganisms in human body
mainly refer to bacteria, fungi, viruses, archea, and protozoa
(Consortium, 2012a; Sommer and Bäckhed, 2013). Accumulating
evidences suggest that these microbes are mostly harmless
to human, and very essential for human physiology (e.g.,
enhancing metabolic capability, strengthening immune system
and offering protection from pathogens; Ventura et al., 2009).
For example, in the adult gut, the large majority of intestinal
microorganisms (1013–1014) inhabiting the gastrointestinal tract
not only synthesize essential amino acids and vitamins but also
improve digestion of the indigestible components to human
diet (e.g., plant polysaccharides). That is why microbes could
be regarded as a microbial organ coexisting within a host
organ (Bäckhed et al., 2005). Therefore, constant change in
the communities of microorganisms might influence human
health and disease. After the first finding that microorganisms
caused disease in humans in the 1800s, researchers were
inspired to study the complex morphology and characteristic
of human-associated microorganisms. These researches led to
saving millions of lives through improved hygiene, antibiotics,
and vaccinations (Dethlefsen et al., 2007). Researchers have
obtained preliminary understanding of structure, composition,
and function from microbiological perspective for revealing the
host-microbe interactions by investigating the human indigenous
microbes.

Understanding the host-microbe interactions is greatly
significant in human microbiome studies. The mutualistic
symbiotic relationship is naturally selected and developed
over millennia by the co-evolution between humans and
their symbiotic microbes. The microbial communities are
greatly affected by both the genetics (Khachatryan et al.,
2008; Turnbaugh et al., 2009; Goodrich et al., 2014) and
the dynamic habitat environments [e.g., antibiotics (Donia
et al., 2014), season (Davenport et al., 2014), diets (Muegge
et al., 2011; Walker et al., 2011; Wu et al., 2011; David
et al., 2014), and smoking (Mason et al., 2015)] of the host.
For example, some studies suggest that high-fat maternal or
postnatal diet has a potential role in shaping the offspring
commensal microbial communities in human (Ma et al., 2014).
Moreover, the human complex immune mechanisms have
homeostatic roles to monitor and control a dynamic balance
of indigenous microbial communities. Therefore, the imbalance
or dysbiosis of microbial communities may directly affect the
well-being of humans and even cause diseases (Neish, 2009).
Advances in sequencing technology and microbiology have
allowed researchers to investigate the microbiome from cohort
by incorporating several complementary analyses including:
alignment of the assembled sequences to the reference microbial
genomes, 16S ribosomal RNA (16S rRNA) gene sequence
and taxonomic profiles, and metagenomic sequencing of
whole microbial community DNA or whole-genome shotgun
sequencing (Consortium, 2010, 2012b). They have facilitated
the identification of the relationships between the human

microbiota and various diseases such as cancer (Schwabe and
Jobin, 2013), autoinflammatory disease (Lukens et al., 2014),
metabolic syndrome (Wen et al., 2008; Ley, 2010; Qin et al.,
2012), cardiovascular disease (Koeth et al., 2013; Tang et al.,
2013), and central nervous system disorder (Wang and Kasper,
2014). For examples, Brown et al. (2011) discovered that, the
autoimmune subjects could be participated in triggering a type 1
diabetes associated autoimmune response. Significant differences
in metabolic potential showed that these autoimmune subjects
tend to have a functionally aberrant microbiome. Data analysis
showed that a consortium of bacteria (i.e., Acetonema) which
produces lactate and butyrate in a healthy gut induces a sufficient
level of synthesis to maintain integrity of gut. Previous evidences
(Turnbaugh et al., 2006; Musso et al., 2010) indicated that
the microbial communities inhabiting in the human intestine
are closely related to the pathogenesis of obesity. Zhang et al.
(2009) examined the microbial 16S rRNA genes by using real-
time PCR for comparing the microbial community structures
of nine individuals, which were categorized into normal weight,
morbidly obese and post-gastric-bypass surgery. They detected
that higher numbers of both H(2)-producing Prevotellaceae and
H(2)-utilizingmethanogenic archaea are significantly enriched in
the obese individuals than in post-gastric-bypass individuals or
normal-weight individuals. This observation strongly supports
the hypothesis that the transformation of interspecies H(2)
between bacterial and archaeal species forms an important
mechanism providing increasing energy uptake by the large
intestine in obese individuals. Furthermore, it is well known
that the human mouth harbors thousands of bacterial types
constructing the complex ecosystem. The proliferation of
pathogenic oral bacteria could lead to an inflammatory disease
(i.e., periodontitis), which is bound to a high risk of the
cardiovascular disease.

Based on the hypothesis proposed by Ma et al. (2017)
that those microbes involved in phenotypically similar disease
tend to be functionally similar and vice versa, developing a
computational model could facilitate the identification of novel
disease-relatedmicrobes by inferring themost potential microbe-
disease associations on a large scale (Chen et al., 2015a,b;
Chen, 2016; Chen et al., 2016a,b,c). The increasing studies
provide valuable insights into the underlying relationships
between dysfunction of human microbes and human diseases,
which are helpful for exploring the pathogenesis of human
diseases. However, traditional cultivation-based approaches
which researchers previously heavily relied on are not only time-
consuming but also laborious. Few deep surveys and available
data result in a narrow knowledge of this domain, which
severely restricts the development of microbiology for pathology.
Considering the current understanding of microbiology, it is
insufficient to advance the applications in diagnosis, treatment
and prevention of human complex diseases. Ma et al. (2017)
has currently implemented a large-scale text mining to establish
the Human Microbe-Disease Association Database (HMDAD)
by collecting the microbe-disease associations from previous
literatures. HMDAD database currently integrates 483 disease-
microbe entries, which could be an information resource for the
Microbe-Disease Association Prediction.
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In this paper, we developed the novel computational model
of Path-Based Human Microbe-Disease Association prediction
(PBHMDA) based on a heterogeneous network composed of the
known microbe-disease associations and Gaussian interaction
profile kernel similarity for microbes and diseases. A special
depth-first search algorithm was further adopted to calculate
the total scores for prioritizing the most likely disease-
related microbes. Three evaluation frameworks, including global
leave-one-out cross validation (global LOOCV), local leave-
one-out cross validation (local LOOCV) and 5-fold cross
validation (5-fold CV), were implemented to evaluate the
prediction performance of PBHMDA. Despite of depending on
the sole information source (i.e., the known microbe-disease
associations in HMDAD database), PBHMDA achieved the
reliable performance in the frameworks of both global and local
LOOCV (AUCs of 0.9169 and 0.8767, respectively) and 5-fold CV
(average AUC value of 0.9082 ± 0.0061). We also implemented
case studies of liver cirrhosis, type 1 diabetes and asthma for the
further evaluation. 9, 7, and 9 out of disease-related microbes
predicted in the top 10 obtained experimental confirmations
based on previous literature evidences, respectively. These
prediction results totally demonstrated the reliable prediction
accuracy of PBHMDA, which could be considered as a promising
data-mining tool to boost the identification of underlying
microbe-disease associations. In human health, this prediction
tool will provide insights from microbiology and disease
understanding to identify biologically relevant biomarkers and
ultimately inform targeted therapeutic intervention.

MATERIALS AND METHODS

Human Microbe-Disease Associations
Human Microbe-Disease Association Database (HMDAD)
database (http://www.cuilab.cn/hmdad) has collected 450
verified human microbe-disease associations including 292
microbes and 39 diseases (Ma et al., 2017). The names of
Microorganism were mostly curated at the genus level because
lots of microbiome studies using 16s RNA sequencing only
provided the genus-level information. We defined the adjacency
matrix of microbe-disease association network as variable Y, i.e.,
if microbe m(i) was identified to be associated with disease d(j),
the entity Y(i,j) was equal to 1, otherwise 0. Two variables nm
and nd denoted the numbers of microbe and disease investigated
in this study, respectively.

Gaussian Interaction Profile Kernel
Similarity for Diseases
Under the assumption that similar diseases tend to be associated
with the functionally similar microbes and therefore share the
similar interaction and non-interaction patterns with microbes,
we utilized the Gaussian kernel for the interaction profiles of
diseases to calculate disease similarity from the known microbe-
disease associations. This process could be described into the
following two steps. First, the interaction profile of disease d(i)
is denoted by a binary vector IP(d(i)) for representing whether
disease d(i) is associated with each microbe or not, i.e., the ith

column of the binary adjacency matrix Y. Second, the kernel for

two diseases d(i) and d(j) is defined to calculate Gaussian kernel
similarity based on their interaction profiles, defined as follows
(Chen and Yan, 2013):

KD(d(i), d(j)) = exp
(
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where the parameter γd controls the kernel bandwidth, which
could be obtained through normalizing a new bandwidth
parameter γd by the average number of associations with
microbes per disease. Although this new bandwidth parameter γd
could be better replaced by other value according to the further
cross validation, here we set γd = 1 for simplicity according
to previous relevant research (Chen and Yan, 2013). KD is a
symmetric matrix whose entity KD(i,j) denotes the Gaussian
interaction profile kernel similarity between disease d(i) and
disease d(j). In the framework of cross validation, Gaussian
interaction profile kernel similarity for diseases and microbes
needed to be recalculated when we removed the left-out known
microbe-disease associations.

Gaussian Interaction Profile Kernel
Similarity for Microbes
Similarly, based on the assumption that the microbes which share
the similar diseases tend to be functionally similar, the Gaussian
interaction profile kernel similarity for microbe also could be
calculated in the similar way as diseases (Chen and Yan, 2013):

KM(m(i),m(j)) = exp
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where KM is the Gaussian interaction profile kernel similarity
for all investigated microbes and the parameter γm regulates
the kernel bandwidth, which should be obtained through
normalizing a new bandwidth parameter γ ′

m (γ ′
m = 1) by the

average number of associations with diseases per microbe.

Heterogeneous Interlinked Network
Construction
Based on the known microbe-disease associations and
Gaussian interaction profile kernel similarity for both
microbes and diseases, we constructed a heterogeneous
interlinked network with these three relations, i.e.,
microbe to disease, microbe to microbe, and disease to
disease relations. Two node sets of microbes and diseases
are defined as M =

{

m (1) , m (2) , . . . , m(nm)
}

and
D =

{

d (1) , d (2) , . . . , d(nd)
}

, respectively. The weight of
an edge between a microbe and a disease represents the
interaction or non-interaction pattern between them, i.e., if a
microbe has known association with a disease, the weight of
edge between them is equal to 1, otherwise 0. The weight of an
edge between two microbes or two diseases represents microbe
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similarity or disease similarity inferred from the Gaussian
interaction profile kernel similarity. To select the valuable
associations and significantly reduce runtime, we set a threshold
T to eliminate weak correlations in the network. Namely, those
edges with assigned weights smaller than T are not shown in the
network. In this way, a heterogeneous interlinked network can
be constructed.

PBHMDA
As showed in Figure 1, PBHMDA is a novel path-based
prediction model for inferring potential microbe-disease
associations. In our method, all paths between a microbe and a
disease are traversed to calculate their association scores. These
paths are not allowed to have a cycle, which means there are no
repeated nodes along each path. Based on the assumption that a
microbe and a disease are more possibly associated when more
paths are found to connect them, we therefore devised a special
depth-first search algorithm to calculate the association scores
for each microbe-disease pair. This algorithm keeps track of the
visited nodes and ensures that no repeated nodes are visited
along a specific path. So it is easily implemented as a recursive
function which marks the visited nodes and then deletes the
mark before returning from the recursive call. For saving time,
this algorithm should be predefined a limited maximum length
L, i.e., the edge number of each path does not exceed L. In
general, a shorter path between a microbe and a disease should
indicate a more confident association. Therefore, for a single
path pi between a microbe m(i) and a disease d(j), we devised
equation (5) with an exponential decay function to obtain its
prediction score S

(

pi
)

:

S
(

pi
)

=





len(pi)
∏

e= 1

we

(

pi
)





α∗len(pi)

(5)

where we

(

pi
)

is the weight of the eth edge along pi, len
(

pi
)

is the
length of path pi, and the parameter α is a decay coefficient.

In this way, all paths between a microbe m(i) and a disease
d(j) are correspondingly assigned with prediction scores, which
represent their association probabilities, i.e., the higher scores
they get, the more likely associated they would be. By aggregating
these prediction scores, the total association score between m(i)
and d(j) can be obtained as follows:

TS
(

m(i), d(j)
)

0<i≤nm,0<j≤nd

=

nij
∑

i= 1

S
(

pi
)

(6)

where nij indicates the number of paths between microbe
m(i) and disease d(j). Finally, the potential microbe-disease
associations are ranked for prioritization. Those microbe-disease
pairs in the top rank could be regarded as the most potential
microbe-disease associations for further biological experimental
confirmation.

RESULTS

Model Design
Based on the assumption that the abnormal microbes of the
similar function tend to be implicated in similar diseases and vice
versa, we are inspired to devise a novel computational model of
PBHMDA (See Figure 1). For fully exploring potential microbe-
disease associations, microbe-microbe similarity and disease-
disease similarity are respectively inferred based on the Gaussian
interaction profile kernel similarity. In this way, a heterogeneous
interlinked network can be integrated by these three sub-
networks (i.e., known microbe-disease interaction network,
microbe similarity network, and disease similarity network). A
special depth-first search algorithm was developed to calculate
the prediction scores for each candidate disease-microbe pair
based on all possible paths connecting the microbe nodes and
the disease nodes. Finally, the most potential microbe-disease
associations could be prioritized by ranking their aggregated
scores.

Performance Evaluation
In order to effectively evaluate the prediction performance of
PBHMDA, both LOOCV and 5-fold CV were implemented on
PBHMDA based on the known disease-microbe associations
from HMDAD database, which collected and provided the
experimentally verified human microbe-disease association
dataset. In this paper, LOOCV can be divided into the following
two ways: (1) For the given jth disease d(j), each known microbe
associated with d(j) was left out in turns as a test sample
and other microbe-disease associations were used for training
model. Based on their prediction score reflecting the association
probability between microbe m(i) and disease d(j), the test
sample was merely ranked in the scope of disease d(j) with all
microbes, which had not been confirmed to have associations
with disease d(j) in the known dataset from HMDAD database.
This model was considered to make a correct prediction for
microbe-disease association when the rank of the test sample
exceeds the given threshold. We called this validation method
of LOOCV as local LOOCV. (2) Instead of being limited
in one disease, we take all investigated diseases into account
simultaneously. Each known microbe-disease association was
left out in turns as a test association and others for training
as well. The single test association was ranked in all unverified
microbe-disease associations in HMDAD database based on their
prediction scores. Likewise, the test associationwith a higher rank
than the given threshold would be considered as a successful
prediction. We called this way of LOOCV as global LOOCV.
Therefore, the difference between global and local LOOCV is
whether all investigated diseases are considered simultaneously.
Receiver-operating characteristics (ROC) curve is widely used in
binary classification problems. By varying the thresholds, the true
positive rate (TPR, sensitivity) versus false positive rate (FPR,
1-specificity) can be calculated to plot the ROC curves. In our
approach, sensitivity refers to the percentage of the positive test
samples with higher ranks than the specific threshold; specificity
refers to the percentage of negative test samples with lower ranks
than the specific threshold. AUC was further calculated for a
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FIGURE 1 | Flowchart of PBHMDA. Based on the heterogeneous network constructed by the integration of three different networks, we implemented a special

depth-first search algorithm to identify the potential microbe-disease associations. (nm and nd: the numbers of microbes and diseases, α: the decay coefficient)

numerical evaluation of prediction performance, e.g., AUC= 0.5
means a purely random result and AUC = 1 means a perfect
performance. As a result, our model obtained the high AUCs of
0.9169 and 0.8767 in the frameworks of both global and local
LOOCV respectively (see Figure 2).

Furthermore, 5-fold CV randomly divided all known
microbe-disease associations into five disjoint groups (one group
for testing in turns and other four groups for training model).
For reducing bias brought by sample divisions, we implemented
random divisions 100 times to evaluate the robustness of
PBHMDA. We obtained the ROC curves and AUCs in the
similar way as LOOCVmentioned above. As a result, the average
AUC value was 0.9082 with the standard deviation of 0.0061.
These prediction results fully demonstrate the strong prediction
performance of PBHMDA which can provide reliable microbe
candidates for future studies in the pathogenesis of human
diseases.

Prioritize Novel Microbe-Disease
Associations
After demonstrating the accurate predictive capacity in the
cross validation, we further utilized PBHMDA to prioritize
the most potential microbes associated with all investigated
diseases. These predicted results are publicly released (see
Supplementary Table 1). Because of the limited current
knowledge, almost all these disease-microbe associations are
totally new prediction without any experimental confirmation.
Therefore, it is anticipated that these prediction results could
offer insights to facilitate the identification of underlying

microbe-disease associations and explore the pathology from
microbiological perspective.

Case Study
For further evaluating the newly proposed model, we
implemented the case studies of liver cirrhosis, type 1 diabetes,
and asthma on PBHMDA by observing how many predicted
microbes in the top 10 were verified by experimental literatures.

Identification of more potential related microbes is helpful
to understand the pathology of liver cirrhosis. In the prediction
list, 9 of predicted microbes in the top 10 have been
verified from experimental evidence (See Table 1). For example,
researchers revealed that Firmicutes (1st in the prediction list)
is highly enriched in the cirrhosis people (Chen et al., 2011).
Bacteroidesvulgatus (2nd in the prediction list) was discovered
to have overgrowth in non-alcoholic steatohepatitis (NASH)
cirrhosis samples (Kakiyama et al., 2013). The population
of Porphyromonadaceae (3rd in the prediction list) and
Eubacteriaceae (4th in the prediction list) declines in a patient
with worsening liver cirrhosis (Bajaj et al., 2014; van Best et al.,
2015). Furthermore, an increase of Actinobacteria (5th in the
prediction list) was found to be associated with live cirrhosis
(Fouts et al., 2012). In addition, Yersinia (6th in the prediction
list) is considered as an aggressive bacteria to selectively colonize
the cirrhosis samples (Vadillo et al., 1994). Vibrio vulnificus (7th
in the prediction list) infection has been recognized as a major
cause of fatal septicemia in chronically ill patients, especially
those with liver cirrhosis (Vollberg and Herrera, 1997). By
sequencing of 16S rRNA genes, an abundance ofVerrucomicrobia

Frontiers in Microbiology | www.frontiersin.org 5 February 2017 | Volume 8 | Article 233

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Huang et al. Microbe-Disease Association Prediction

FIGURE 2 | Prediction performances of PBHMDA in the frameworks of both global and local LOOCV.

TABLE 1 | For further evaluating the prediction performance of newly

developed computational model, PBHMDA was applied to liver cirrhosis.

Rank Microbe Evidence

1 Firmicutes PMID: 21574172

2 Bacteroides vulgatus PMID: 23333527

3 Porphyromonadaceae PMID: 24374295

4 Eubacteriaceae PMID: 26067771

5 Actinobacteria PMID: 22326468

6 Yersinia PMID: 8086556

7 Vibrio PMID: 9120332,15842598

8 Verrucomicrobia bacterium MS-F-88 PMID: 21254165

9 Verrucomicrobia PMID: 22124143

10 Unidentified bacterium ZF3 Unconfirmed

As a result, 9 out of predicted microbes in the top 10 have been verified by previous

experimental literatures. (PMID: PubMed Unique Identifier)

(8th and 9th in the prediction list) bacteria was found in the
mouse with alcoholic liver disease (Yan et al., 2011; Seki and
Schnabl, 2012).

In the prediction list of type 1 diabetes, 7 of predicted
microbes in the top 10 have been validated by experimental
literatures (see Table 2). Among them, a significant increase of
Enterobacteriaceae, Ruminococcus, Coprococcus, Clostridium and
Faecalibacterium prausnitzii (1st, 3rd, 7th, 8th, and 9th in the
prediction list, respectively) may result in a disturbance in the
ecological balance, which could cause type 1 diabetes (Murri
et al., 2013; Soyucen et al., 2014; Tejesvi et al., 2016). The level

TABLE 2 | PBHMDA was applied to type 1 diabetes.

Rank Microbe Evidence

1 Enterobacteriaceae PMID: 24475780

2 Streptococcaceae Unconfirmed

3 Ruminococcus PMID: 23433344

4 Pasteurellaceae PMID: 27231166

5 Haemophilus parainfluenzae Unconfirmed

6 Dorea Unconfirmed

7 Coprococcus PMID: 26718942

8 Clostridium PMID: 23433344

9 Faecalibacterium prausnitzii PMID: 20613793

10 Megasphaera PMID: 26718942

As a result, 7 out of predicted microbes in the top 10 have been verified by previous

experimental literatures.

of Pasteurellaceae (4th in the prediction list) in disease group is
remarkably lower than those in healthy group (Qi et al., 2016).
Megasphaera (10th in the prediction list) was found to only occur
in patients with type 1 diabetes (Tejesvi et al., 2016).

In the prediction list of asthma, 9 of microbes predicted in
the top 10 have been confirmed by experimental literatures (see
Table 3). For example, Firmicutes, Lachnospiraceae, Veillonella
and Actinobacteria (1st, 3rd, 4th, and 9th in the prediction
list) present lower proportions in asthmatic patients (Marri
et al., 2013; Lee et al., 2014; Park et al., 2014). The decrease
of Lactobacillus (2nd in the prediction list) in the asthmatic
samples is anticipated to be used for the prevention of
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TABLE 3 | PBHMDA was applied to asthma.

Rank Microbe Evidence

1 Firmicutes PMID: 23265859

2 Lactobacillus PMID: 20592920

3 Lachnospiraceae Lee et al., 2014

4 Veillonella PMID: 25329665

5 Bacteroides PMID: 18822123

6 Bacteroidaceae Qiu et al., 2016

7 Streptococcus PMID: 17950502

8 Fusobacterium Dang et al., 2013

9 Actinobacteria PMID: 23265859

10 Eubacterium Unconfirmed

As a result, 9 out of predicted microbes in the top 10 have been verified by previous

experimental literatures.

asthma (Yu et al., 2010). Bacteroides (5th in the prediction list)
colonization could be considered as an early indicator to judge
whether children at the age 3 weeks potentially have asthma
later in life (Vael et al., 2008). Bacteroidaceae and Fusobacterium
(6th and 8th in the prediction list) is much more abundant
in asthmatic patients relative to healthy people (Dang et al.,
2013; Qiu et al., 2016). Based on the effect of Streptococcus
pneumonia (7th in the prediction list) on the development of
asthma, effective immunomodulatory therapies are hoped to be
presented (Preston et al., 2007).

DISCUSSION

In the past few years, with the advance of sequencing
technology and microbiology, the microbes inhabiting in human
body have been confirmed to play a significantly important
role in the development and progression of human diseases.
Increasing disease-related microbes which have been identified
help researchers further understand the mechanisms of the
pathogenesis from the perspective of microbe.We here presented
a novel computational model of Path-Based Human Microbe-
Disease Association prediction (PBHMDA) based on the known
associations derived from the HMDAD database. The known
microbe-disease associations and Gaussian interaction profile
kernel similarity for both microbes and diseases are combined
to construct a heterogeneous interlinked network, which can
be utilized to obtain the prediction scores for each candidate
microbe-disease pair by a special depth-first search algorithm.
PBHMDA achieved the reliable AUCs of 0.9169 and 0.8767 in the
evaluation frameworks of global and local LOOCV, respectively.
Moreover, the proposed model was also evaluated with 5-fold CV
for 100 times and the average AUC value of 0.9082 ± 0.0061
was obtained. The evaluation performance fully demonstrated
that PBHMDA had satisfactory prediction capability in spite
of using the single information source (i.e., known microbe-
disease associations). Furthermore, as a global measure model,
PBHMDA can simultaneously predict novel microbes associated
with all investigated diseases.

Many potential microbes in the top rank were predicted to
have associations with digestive system and respiratory diseases,

so we implemented the case studies of liver cirrhosis, type 1
diabetes, and asthma for further evaluation of the proposed
model. These three important diseases have been reported to
not only have a strong link with microbes, but also severely
threaten human health for these years. In 2010, liver cirrhosis
was ranked as the fifth leading cause of death for people
aged between 45 and 64 in the United States, killing about
20,000 people (Miniño, 2011). Previous research (Liu et al.,
2012) showed that human liver is closely related to the gut in
biological function and pathogenic process. The disruption of
the ecological balance of the gut microbiota may lead to severe
liver damage, including cirrhosis. For example, the inadequacy
of Bifidobacterium in gut could trigger cirrhosis. A significant
difference of both population and bacterial community structure
of Enterobacteriaceae was detected between cirrhosis group
and healthy group. Identification of more potential related
microbes is helpful to understand the pathology of liver cirrhosis.
Moreover, Type 1 diabetes is a form of diabetes mellitus
typically beginning in child and young adults. It results from
the lack of insulin. The prevalence of type 1 diabetes has
risen dramatically over the last 50 years. In 2009, 166,984
youths have been diagnosed with type 1 diabetes in America
(Chiang et al., 2014). However, the cause of type 1 diabetes still
remains unknown. The prevention methods of type 1 diabetes
have not been found so far. Recently, several studies (Wen
et al., 2008; Giongo et al., 2011) have shown that a significant
change in human microbial environment is involved in the
development of autoimmune disorders, which often lead to type
1 diabetes. The hundred trillion bacteria residing in human gut
establish a symbiotic relation with the host and influence many
aspects of metabolism, physiology, and immunity. Through the
metagenome analysis, Actinobacillus, Erwinia and Coprobacillus
in disease samples are much more abundant than healthy
samples’, which reveals that these three types of microbes may
be involved in triggering type 1 diabetes (Brown et al., 2011).
Furthermore, Asthma is a common long term inflammatory
disease of the airways of the lungs characterized by recurrent
attacks of wheezing and breathlessness. Asthma often begins
in childhood. Disease prevalence is higher amongst women,
families below the poverty line, and people of multiple races
compared to other groups (Akinbami et al., 2009). Asthma is
difficult to be diagnosed because of inherent heterogeneity across
asthmatic patient populations and the multiple contributory
factors such as environmental exposures and lung function.
Up to now, researchers have not found a treatment to cure
asthma. In 2013, it caused about 489,000 deaths and 242 million
diagnosis cases all over the world, which significantly increases
since 1960s (Anandan et al., 2010; GBD 2013 Mortality and
Causes of Death Collaborators, 2015). Although the causes
of asthma are clearly multifactorial, the increasing evidences
support that host-microbe interactions may be involved in the
pathogenesis of asthma. Multiple studies of asthmatic patient
cohorts using distinct microbiome platforms have reported the
presence of a diverse microbial community in the airways of
these patients (Goleva et al., 2013). Thus, the imbalance or
dysbiosis of these microbial communities may directly cause
human diseases or disorders. Based on the previous literatures, 9,
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7, and 9 of predicted microbes in the top 10 were experimentally
verified to be associated with liver cirrhosis, type 1 diabetes and
asthma in the case studies, respectively. The prediction accuracy
of PBHMDA could be demonstrated through these three case
studies. Meanwhile, this prediction is well adapted to microbial
community diversity and reflects the characteristics of different
kinds of diseases. In conclusion, these results demonstrate
the promising performance of PBHMDA, which could be
used to predict more potential disease-related microbes in the
future.

Some critical factors for the reliable performance of PBHMDA
could be summarized as follows. First, the HMDAD database
provides known microbe-disease associations, which are reliable
as a basic information resource. Second, we utilized the Gaussian
interaction profile kernel similarity to accurately measure
microbe similarity and disease similarity, which contribute to
constructing the heterogeneous interlinked network for further
introducing the novel algorithm. Last but not least, path-based
algorithm can fully explore the implied topologic information
in the network for predicting the underlying microbe-disease
associations.

Certainly, this model is still restricted by some limitations.
The prediction performance is limited by the sparse microbe-
disease association network obtained from the HMDAD
database. As the increasing microbe-disease associations are
identified and collected, this problem could be solved in the
future. Furthermore, it is unavoidable to cause bias to heavily
investigated diseases and microbes considering the fact that
microbe-microbe similarity and disease-disease similarity are
inferred from known microbe-disease associations based on
Gaussian kernel for interaction profiles of microbes and diseases.
Adopting other beneficial biological datasets (e.g., microbe
functional similarity and disease semantic similarity), could help
us improve the quality of both microbe and disease similarity
network and the prediction performance of computational
models (Chen and Yan, 2014; Chen et al., 2016d). Finally,
PBHMDA cannot work well for the newmicrobes without known
associated diseases and new diseases without known associated
microbes.
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