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Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbid-
ity, especially in older adults. Transcriptomic analysis in populations across multiple flu 
seasons has provided insights into the molecular determinants of vaccine response. 
Still, the metabolic changes that underlie the immune response to influenza vaccina-
tion	remain	poorly	characterized.	We	performed	untargeted	metabolomics	to	analyze	
plasma metabolites in a cohort of younger and older subjects before and after influ-
enza vaccination to identify vaccine- induced molecular signatures. Metabolomic and 
transcriptomic data were combined to define networks of gene and metabolic signa-
tures	indicative	of	high	and	low	antibody	response	in	these	individuals.	We	observed	
age- related differences in metabolic baselines and signatures of antibody response to 
influenza vaccination and the abundance of α- linolenic and linoleic acids, sterol esters, 
fatty-	acylcarnitines,	and	triacylglycerol	metabolism.	We	identified	a	metabolomic	sig-
nature associated with age- dependent vaccine response, finding increased trypto-
phan	and	decreased	polyunsaturated	fatty	acids	 (PUFAs)	 in	young	high	responders	
(HRs),	while	 fatty	 acid	 synthesis	 and	 cholesteryl	 esters	 accumulated	 in	 older	HRs.	
Integrated	metabolomic	and	transcriptomic	analysis	shows	that	depletion	of	PUFAs,	
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1  |  BACKGROUND

Seasonal epidemics caused by influenza viruses, such as H1N1, 
H3N2	influenza	A	viruses,	and	influenza	B	viruses,	are	a	major	pub-
lic health concern that cause mild to severe respiratory infections 
in	humans.	A	recent	study	estimated	that	up	to	5	million	cases	and	
290,000	to	650,000	influenza-	associated	respiratory	deaths	annu-
ally occur worldwide, particularly among adults aged 65 or older 
(Iuliano	&	Roguski,	2018).	Avian	influenza	viruses	(H5N1,	H7N9,	and	
others)	may	cross	the	species	barrier	through	a	re-	assortment	step	
to cause pandemics in the human population that have increased 
morbidity and mortality relative to seasonal influenza epidemics 
(Krammer, 2019; Palese, 2004; Smith et al., 2009).	 To	 decrease	
the public burden caused by seasonal or pandemic influenza, three 
types of effective vaccines (inactivated, live attenuated, and recom-
binant	hemagglutinin	antigen	[HA]	vaccines)	have	been	developed.	
However, response to the vaccine remains poor in many popula-
tions. Older populations, for example, have a diminished capacity to 
mount a sufficient protective response to flu vaccination due to age- 
related	changes	in	immune	system	function	(Grubeck-	Loebenstein	&	
Della Bella, 2009; McElhaney, 2011; Poland et al., 2014).

Improvement	 of	 vaccine	 efficacy	 requires	 an	 understanding	
of the mechanisms by which vaccination bolsters the immune re-
sponse. In response to challenges such as infection and vaccina-
tion, immune cells undergo metabolic reprogramming to address 
increased energy demands and need for rapid effector cell prolifer-
ation	(Jung	et	al.,	2019).	In	recent	years,	studies	from	the	emerging	
field of immunometabolism have indicated that cellular metabolism 
plays a critical role in immune cell differentiation, development, and 
maintenance	(Haschemi	&	Kosma,	2012; O'Neill et al., 2016).	Several	
key metabolic pathways have been linked to control of immunity, 
including glycolysis (Shi et al., 2011),	 TCA	 cycle	 (Liu	 et	 al.,	 2017; 
Tannahill et al., 2013),	 pentose	 phosphate	 pathway	 (Haschemi	 &	
Kosma, 2012),	fatty	acid	metabolism	(Berod	&	Friedrich,	2014),	and	
metabolism of amino acids such as glutamine (Nakaya et al., 2014)	
and tryptophan (Uyttenhove et al., 2003).	 The	 development	 of	
highly	 sensitive	 metabolic	 profiling	 techniques	 has	 facilitated	 the	
identification of metabolite signatures associated with immuno-
logical responses, providing valuable tools for dissecting complex 

immunometabolic	 signaling	 networks	 (Haschemi	 &	 Kosma,	 2012; 
O'Neill et al., 2016).

Studies of systems vaccinology in influenza have used cellular 
and transcriptomic profiles of peripheral blood mononuclear cells 
(PBMC)	and	serology	to	predict	the	immune	response	to	 influenza	
vaccination	 in	 healthy	 adults	 (Bucasas	 &	 Franco,	 2011; Furman 
&	 Jojic,	2013; Nakaya et al., 2011; Obermoser et al., 2013; Tsang 
et al., 2014).	A	common	finding	among	these	studies	is	that	immune	
response to influenza vaccine can be predicted by early response 
(Days	1–	3)	post-	vaccination	and	is	associated	with	a	transcriptomic	
signature enriched for gene ontologies for innate immune responses, 
antigen presentation, and induction of interferon type I response 
genes. Longitudinal studies showed consistent transcriptomic and 
microRNA	 signatures	 of	 influenza	 vaccination	 across	 seasons	 in	
the same cohort (Nakaya et al., 2015).	One	of	the	most	consistent	
findings is that age is an important contributor to influenza vaccine 
response	(Furman	&	Jojic,	2013;	Haschemi	&	Kosma,	2012; Nakaya 
et al., 2011; Rogers et al., 2019; Tsang et al., 2014).	We	previously	
investigated the transcriptomic signature of immune response to 
influenza vaccination and found that a mitochondrial biogenesis 
signature was associated with vaccine antibody response (Thakar 
et al., 2015).	A	5-	year	longitudinal	study	led	to	the	identification	of	
age- related transcriptional signatures that are predictive of flu vac-
cination	 responses	 (Avey	&	Mohanty,	2020; HIPC- CHI Signatures 
Project Team and HIPC- I Consortium, 2017).	The	first	multi-	omics	
integrated analysis of metabolomics, transcriptomics, and gut mi-
crobiome composition uncovered associations between bacterial 
species and metabolic phenotypes in healthy and antibiotic- treated 
adults receiving influenza vaccine, demonstrating that antibiotic- 
induced microbiome changes affect the human immune response to 
influenza	vaccine	 (Hagan	&	Cortese,	2019).	These	 studies	demon-
strate the importance of identifying molecular markers associated 
with vaccine response to help identify potential avenues for im-
provement of vaccine efficacy.

In this study, we use a combination of transcriptomics and un-
targeted metabolomics to define signatures of high and low an-
tibody response after vaccination against influenza in a cohort of 
young and older adults. Consistent with previous studies, we also 
identify age as one of the main factors that determines response 

which are building blocks for prostaglandins and other lipid immunomodulators, in 
young HR subjects at Day 28 is related to a robust immune response to influenza vac-
cination. Increased glycerophospholipid levels were associated with an inflammatory 
response in older HRs to flu vaccination. This multi- omics approach uncovered age- 
related molecular markers associated with influenza vaccine response and provides 
insight into vaccine- induced metabolic responses that may help guide development of 
more effective influenza vaccines.
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to influenza vaccination. The difference in response between age 
groups was associated with signatures derived from metabolic path-
ways involved in fatty acid and sterol lipid metabolism. Young high 
responders showed increased tryptophan pathway metabolites and 
reduced levels of polyunsaturated fatty acids. In contrast, older high 
responders show increased fatty acid synthesis and accumulation 
of cholesteryl esters. Through this multi- omics approach, we iden-
tify age- related molecular markers associated with influenza vaccine 
response. Uncovering these molecular profiles will help to identify 
populations at risk of influenza vaccine failure, as well as to inform 
design of vaccine development trials to improve vaccine efficacy.

2  |  RESULTS

2.1  |  Age has the strongest effect on the metabolic 
response to influenza vaccination

To assess metabolic changes after flu vaccination, we performed 
untargeted metabolomics on blood plasma samples of 33 individu-
als	of	a	well-	studied	cohort	of	young	(age	21–	30)	and	community-	
dwelling	older	(age	≥65)	adults	(Thakar	et	al.,	2015; Figure 1a)	who	
received the seasonal trivalent inactivated influenza vaccine (TIV, 
A/California/7/09	 (H1N1)-	like	 virus;	 A/Perth/16/2009	 (H3N2);	
and	B/Brisbane/60/2008)	during	the	2011–	2012	season.	These	33	
subjects were selected for this study based on their classification 
as either strong or weak responders to influenza vaccine and avail-
ability of transcriptomic data. The subjects' blood plasma samples 
were	collected	pre-	vaccination	(Day	0),	and	at	Days	2,	7,	and	28	post-	
vaccination. Subjects were classified by response rate based on flu 
vaccine-	specific	hemagglutination	inhibition	(HAI)	titers,	which	were	
measured	at	Day	0	and	at	28 days	post-	vaccination.	To	account	for	
the	effect	of	pre-	vaccine	HAI	titer,	we	calculated	the	maximum	re-
sidual	after	baseline	adjustment	(maxRBA)	(Avey	&	Mohanty,	2020).	
The	maxRBA	calculation	 corrects	 for	 the	dependence	on	baseline	
titers	by	modeling	post-	vaccine	fold	increase	in	HAI	titer	as	an	ex-
ponential function of pre- vaccine titer and taking the maximum 
residual across vaccine strains (Figure S1).	Using	this	method,	we	de-
fined	high	(HR)	and	low	responders	(LR)	as	the	top	and	bottom	40th	
percentiles of the residuals, respectively. The 40th percentile was 
chosen because at this cutoff there is <10% indeterminate response 
to	flu	vaccine	(Avey	&	Mohanty,	2020).	This	allows	for	an	increase	
in sample size compared with lower percentiles without increasing 
substantially the number of false positives in the analysis. For this 
study, a subset of plasma samples from the previously described 
cohort was selected to adjust for differing proportions of HR/LR 
among young and older groups. In total, we selected samples from 
16 young and 17 older subjects, with a total of 13 HR and 16 LR (6 
HR	and	8	LR	in	young	subjects	and	7	HR	and	8	LR	in	older	subjects)	
and 4 with an indeterminate response.

The untargeted metabolomic profile of plasma samples suggests 
that age was the largest contributor to variation in metabolite pro-
files, whereas gender, response to vaccine, or time point had less 

pronounced effects (Figure 1b).	Principal	component	analysis	(PCA)	
showed a clear separation of the young and older groups, consistent 
with the variation analysis (Figure 1c).	Because	of	statistically	signif-
icant BMI differences in the young vs. older populations (p = 0.006, 
Table 1),	we	included	BMI	as	a	variable	in	our	linear	regression	mod-
els to account for its effect on differential metabolite abundance 
across	 age	 groups.	 At	 baseline	 (Day	 0),	 distinct	 subclasses	 of	me-
tabolites were differentially abundant between younger and older 
individuals. These include fatty acids, linoleic acids, and glycero-
phospholipids, which were higher in the young group, while amino 
acids and triacylglycerols were higher in the older group (Figure S2).	
Based on the strong age- dependent influence on metabolite pro-
files,	we	chose	to	perform	subsequent	analyses	on	young	and	older	
groups independently.

2.2  |  Differential molecular signatures after flu 
vaccination in young and elderly

We	 next	 compared	 pre-	vaccination	 metabolite	 abundances	 with	
those at Days 2, 7, and 28 after vaccination to determine differen-
tially	abundant	metabolites	(DAMs).	We	annotated	534	metabolites	
using	 the	 Human	 Metabolome	 Database	 (HMDB),	 which	 classi-
fies	metabolites	 by	 their	 chemical	 structure	 (Wishart	 et	 al.,	2007; 
Figure S3a,b).	Among	the	five	groups	of	metabolites	that	contained	
the	highest	number	of	DAMs	were	amino	acids,	peptides,	and	ana-
logues, fatty acids and conjugates, fatty acid esters, steroid esters, 
and triradylglycerols (a sub- class of lipids that includes triacylglyc-
erols)	 (Figure 2a).	 Purine	 metabolism	 (Figure 2b)	 and	 glycine	 and	
serine metabolism (Figure 2c)	 are	 the	 major	 metabolic	 pathways	
related	 to	 amino	 acids,	 nucleotides,	 peptides,	 and	 analogues.	We	
observed similar post- vaccination trends across age groups for 
several metabolite subclasses. For example, purine metabolism 
pathway metabolites significantly increased after vaccination; this 
increase was particularly strong among older subjects. Notably, gene 
expression analysis using a previously published dataset from this 
same cohort (Thakar et al., 2015)	 revealed	 upregulation	 of	 genes	
involved in the purine- containing compound metabolic process 
(GO:0072521).	Most	of	the	genes	upregulated	at	Day	7	and	Day	28	
were in the young group, whereas most upregulated genes at Day 
2 were in the older group (Figure S4a).	 Inosine	 increased	 in	 both	
age groups at Day 2, and this increase persisted at Day 7 and Day 
28 in the older cohort. Inosine is an intermediate in the degrada-
tion of purines and purine nucleosides that helps innate immunity 
distinguish	cellular	from	viral	RNA	(Mannion	et	al.,	2014)	and	plays	
a role in CD8+ effector T- cell function under glucose- restricted con-
ditions	(Wang	et	al.,	2020).	Metabolites	from	the	glycine	and	serine	
metabolic pathway also increased after vaccination, although the 
majority of metabolites that changed in the young were not sig-
nificant (Figure 2c).	 Sarcosine	was	 significantly	 increased	 in	 older	
subjects at Days 2, 7, and 28 but only increased in young subjects 
by Day 28 (Figure 2c, Table S1).	Production	of	 cytosolic	 sarcosine	
can	 be	 catalyzed	 by	 glycine	 N-	methyltransferase	 (GNMT),	 which	



4 of 18  |     CHOU et al.

F I G U R E  1 Study	design	and	global	characterization	of	plasma	metabolome	profiles.	(a)	Blood	plasma	samples	from	a	total	of	33	subjects	
(16	young	(age	21–	30 years)	and	17	older	(age	≥65))	were	collected	prior	to	vaccination	(Day	0)	and	at	2,	7,	and	28 days	post-	vaccination.	
Subjects	were	classified	as	high	responders	(HR)	or	low	responders	(LR)	by	HAI	titers	(see	Section	4)	at	28 days	post-	vaccination	using	
maxRBA	(Avey	&	Mohanty,	2020).	Metabolite	abundance	in	plasma	was	assessed	using	high-	throughput	profiling	by	LC–	MS-	based	
metabolomics, and gene expression levels in PBMCs were assessed using high- throughput profiling by Illumina beadChips microarray as 
previously reported (Thakar et al., 2015).	Finally,	computational	and	integrative	analyses	of	the	metabolomics	and	transcriptomics	datasets	
were	performed.	(b)	The	effect	of	factors	such	as	age,	gender,	response,	and	timepoint	and	their	interactions	on	the	variation	of	plasma	
metabolite abundance in the study cohort. F	value	determined	by	one-	way	ANOVA.	(c)	Sampleto-	sample	variation	in	plasma	metabolomics	
revealed	by	principal	component	analysis	(PCA).	Each	dot	represents	a	sample,	colored	by	age,	gender,	response,	and	time	point,	
respectively.
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mediates	 sarcosine	 synthesis	 using	 S-	adenosylmethionine	 (SAM)	
(Luka et al., 2009).	 This	 conversion	 has	 been	 associated	with	 de-
creases in energetic metabolism (Obata et al., 2014),	enhancement	
of dendritic cell migration, and response to dendritic- based cancer 
cell	 vaccines	 (Dastmalchi	&	Karachi,	 2019).	However,	 the	 possible	
effect of elevated levels of sarcosine in older subjects is not clear; 
sarcosine is elevated in older subjects but it is not a strong indicator 
of high versus low response to flu vaccine in this cohort (Figure 3b).	
3-	phosphoglyceric	acid	(3-	PG),	a	glycolysis	intermediate	that	is	also	
an intermediate in serine synthesis (Figure S4b),	was	significantly	in-
creased in young adults after vaccination at Day 7 and Day 28 and 
in older adults at Day 7, and serine was significantly increased in 
older individuals (Figure 2c, Table S1).	This	correlated	well	with	the	
patterns	on	T	cell-	related	blood	transcription	module	(BTM)	profiles,	
which were systematically constructed and integrated from publicly 
available human blood transcriptomes by (Li et al., 2014),	 in	young	
and older adults (Figure S4c),	as	previous	studies	reported	that	ser-
ine	was	required	for	T-	cell	proliferation	to	regulate	adaptive	immu-
nity (Ma et al., 2017).

Among	metabolites	in	the	bile	acid	synthesis	pathway,	our	data	
show that the secondary bile acids hyodeoxycholate and ursodeoxy-
cholate increase after vaccination in young and older adults at Day 
7. Deoxycholate increases in young subjects after vaccination at Day 
7, while glycolithocholate increases in older adults at Days 2 and 7 
(Figure 2d, Table S1).	 A	 previous	 study	 suggested	 that	 the	 loss	 of	
secondary bile acids is associated with NLRP3 inflammasome and 
AP-	1-	associated	 gene	 JUN and FOS activation, which may imply a 

negative	correlation	between	secondary	bile	acids	and	NLRP3/JUN/
FOS	 (Hagan	&	 Cortese,	 2019).	 Consistent	with	 this,	 we	 observed	
downregulated gene expression for NLRP3 post- vaccine in young 
and old subjects. However, JUN and FOS expression were upregu-
lated in older subjects (Figure S4d),	an	observation	consistent	with	
studies	suggesting	that	secondary	bile	acids	(Fu	&	Coulter,	2019)	and	
AP-	1	transcription	factors	(Qiao	et	al.,	2016)	are	associated	with	pro-	
inflammatory signaling.

Other metabolites exhibited differences in abundance between 
the two age groups after vaccination. For example, metabolism of 
α- linolenic and linoleic acids, as well as fatty acyl carnitines and cho-
lesteryl esters, is significantly decreased in younger subjects on Day 
7 (Figure 2e– g).	 In	 contrast,	 in	 older	 adults	 these	metabolites	 are	
either unaffected (α-	linolenic	and	linoleic	acid	metabolism)	or	largely	
increased	 (fatty	acyl	 carnitines	and	cholesteryl	esters)	 (Figure 2e– 
g).	Other	metabolites	such	as	triacylglycerol	(TAGs)	metabolites	that	
changed significantly after vaccination in the older cohort, show the 
opposite trend in young adults (Figure 2h).	 This	may	 reflect	 a	 dif-
ferential balance in fatty acid synthesis/fatty acid oxidation in older 
versus younger adults.

To identify enriched gene functions from our differentially ex-
pressed	 genes,	we	 analyzed	BTMs.	Among	 the	most	 notable	 age-	
dependent	changes	were	the	modules	enriched	in	T	cells	(I)	(M7.0),	
enriched	in	T	cells	(II)	(M223),	and	signaling	in	T	cells	(I)	(M35.0),	as	
well	as	enriched	in	NK	cells	(I)	(M7.2)	and	(II)	(M157)	and	NK	cell	sur-
face	signature	(S1),	all	of	which	were	upregulated	in	the	older	group	
after vaccination (Figure S4c).

2.3  |  Molecular signatures associated with 
response to vaccination in young subjects

To examine changes in metabolite profiles in the context of vaccine 
response	among	young	 subjects,	we	 identified	DAMs	 in	young	HRs	
and LRs at Days 2, 7, and 28 after flu vaccination compared with base-
line	values.	We	identified	a	total	of	103	DAMs	across	all	time	points	
(Figure 3a).	The	highest	number	of	differentially	abundant	metabolites	
in HR belong to amino acid and tryptophan metabolism, alpha- linolenic 
and linoleic acid metabolism, and metabolism of medium- chain and 
long- chain fatty acids. The differences we observed among young HR/
LRs	were	mostly	nominally	significant	with	an	FDR > 0.1,	with	the	ex-
ception of L- glutamic acid and serotonin. In young HRs L- tryptophan, 
5- Hydroxy- L- tryptophan, and indoleacetic acid were increased after 
vaccination at Day 28 (Figure 3b, Table S2);	this	upward	trend	was	only	
observed in younger and not older subjects. Since tryptophan catabo-
lism through the kynurenine pathway suppresses T- cell responses, the 
higher levels of these tryptophan metabolites could be consistent with 
a stronger T- cell response in HR (Platten et al., 2019).	We	observed	op-
posing trends at Day 28 in α- linolenic acid and linoleic acid metabolism 
and medium- chain and long- chain fatty acids, with a decrease after 
vaccination occurring at Day 28 in young HRs (Figure 3c).	This	group	
of	 metabolites	 includes	 seven	 polyunsaturated	 fatty	 acids	 (PUFAs:	
arachidonic acid, linoleic acid, gamma- linolenic acid, eicosapentaenoic 

TA B L E  1 Clinical	characteristics	of	older	and	young	subjects

Group
Older 
(N = 17)

Young 
(N = 16) p- Value

Age

Median	[MAD] 72	[5.9] 27	[3] 1.4e- 07

Gender

Female 59%	(10) 56%	(9) ns

Male 41%	(7) 44%	(7)

Response

HR 41%	(7) 38%	(6) ns

LR 47%	(8) 50%	(8)

ND 12%	(2) 12%	(2)

BMI

Median	[MAD] 27.4	[3.3] 22	[1.5] 0.006

Mean	[SD] 28.5	[5.7] 23.5	[3.3]

Race

White 82%	(14) 75%	(12) ns

Asian 5.9%	(1) 12%	(2)

Black	or	African	
American

12%	(2) 0%	(0)

Other/Unknown 0%	(0) 12%	(2)

Note:	Continuous	measures	(Age	and	BMI):	Kolmogorov–	Smirnov	test.	
Categorical	measures	(Gender,	Response,	and	Race):	Chi-	square	test.
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F I G U R E  2 Differential	molecular	signatures	induced	by	flu	vaccination	in	young	and	old	groups.	(a)	Differentially	abundant	metabolite	
levels	(absolute	value	of	fold	change	≥1.2,	p < 0.05,	and	FDR < 0.2)	at	Day	2,	Day	7,	and	Day	28	post-	vaccination	relative	to	Day	0	in	young	
and old groups. Selected metabolite classes are shown. Molecular signatures in the following pathways show similar trends in young and 
older	groups:	(b)	purine	metabolism,	(c)	glycine	and	serine	metabolism,	(d)	bile	acid	biosynthesis.	Molecular	signatures	in	the	following	
pathways	show	differing	trends	in	young	and	older	groups:	(e)	alpha-	linolenic	acid	and	linoleic	acid	metabolism,	(f)	steroid	esters,	(g)	
carnitine	metabolites	and	(h)	triacylglycerol.	Results	for	AMP,	ADP,	and	ATP	appear	in	both	(b)	and	(c)	as	they	are	members	of	both	pathways.	
Color labels correspond to indicated log2FC. Gold color labels in the right of panel d represent the primary bile acids and gray color labels 
represent	the	secondary	bile	acids.	*FDR < 0.1,	**FDR < 0.05.

F I G U R E  3 Molecular	signatures	associated	with	response	to	vaccination	in	young	subjects.	(a)	Differentially	abundant	metabolite	levels	
(absolute	value	of	fold	change	≥1.2,	p < 0.05,	and	FDR < 0.2)	at	Day	2,	Day	7,	and	Day	28	post-	vaccination	relative	to	Day	0	for	HR	and	LR	
groups.	(b,	c)	Molecular	signatures	for	the	top	differential	metabolic	pathways	in	young	HR	and	LR	(b)	Amino	acids	&	tryptophan	Metabolism.	
(c)	Alpha	linolenic	acid	and	linoleic	acid	metabolism	&	medium-	chain	and	long-	chain	fatty	acids.	The	metabolites	that	belong	to	PUFA	
metabolites are gamma- linolenic acid, linoleic acid, alpha- linolenic acid, docosahexaenoic acid, arachidonic acid, 8,11,14- Eicosatrienoic acid, 
and	Eicosapentaenoic	acid.	Gold	color	labels	in	the	right	of	panel	c	represent	the	PUFA	metabolites.	Color	labels	correspond	to	indicated	
log2FC. +FDR < 0.2,	*FDR < 0.1,	**FDR < 0.05.
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acid, alpha- linolenic acid, 8,11,14- eicosatrienoic acid, and docosahex-
aenoic	acid),	most	of	which	decrease	after	vaccination	at	Day	28	in	the	
young	HR	group	(except	eicosapentaenoic	acid)	(Figure 3c, Table S2).	
BTM profiles of young HR and LR showed an upregulation of genes 
involved	 in	dendritic	 cell	 activation	 (II)	 (M165),	 type	 I	 interferon	 re-
sponse	(M127),	and	viral	sensing	and	immunity;	IRF2	targets	network	
(I)	 (M111.0	 and	M111.1)	 in	 HR	 patients	 at	 Day	 2	 post-	vaccination	
(Figure S5a).	A	previous	study	indicated	that	dendritic	cells	(DCs)	are	
important in initiating long- term adaptive immunity during flu vacci-
nation	 (Athale	&	Banchereau,	2017)	with	 induction	of	plasmacytoid	
DCs	 (pDCs)	 that	 secreted	 type	 I	 interferons	 (IFNs).	 Young	 HR	 also	
showed upregulation of genes involved in B cell memory B at Day 7 
(Figure S5a),	which	coincides	with	the	typical	appearance	of	antibody-	
secreting cells following influenza vaccination.

2.4  |  Molecular signatures associated with 
response to vaccination in older subjects

Differentially abundant metabolites in older HRs and LRs were also iden-
tified at Days 2, 7, and 28 after flu vaccination by comparison with Day 
0.	A	total	of	255	DAMs	were	identified	across	all	time	points	(Figure 4a, 
Table S2).	Medium	chain	fatty	acid	biosynthesis	(Figure 4b)	and	steroid-	
related metabolites (Figure 4c)	 show	similar	 trends	 in	older	HR	vs	LR	
groups, although changes only reached significance in HRs. Caprylic 
acid and capric acid are medium- chain fatty acids that decreased after 
vaccination in the older HR cohort. Medium chain fatty acids are ben-
eficial to human health as a source of energy for cells and their anti-
bacterial	 and	 antiviral	 activity	 (Fletcher	 &	Meredith,	2020;	 Huang	 &	
Tsai, 2014);	however,	 their	 function	 in	the	response	to	 influenza	vac-
cine is unclear. Most sterol metabolites also showed similarities with an 
upward trend in both older HRs and LRs, but most significant changes 
again occur in HRs. The sterol- related metabolites belong to the cho-
lesteryl esters and are involved in reverse cholesterol transport. The 
increase in these metabolites after vaccination in the older HR group 
suggests that vaccination increased storage of cholesterol as cholesteryl 
esters. Glycerophospholipids (Figure 4d)	show	differing	trends	among	
responder groups, significantly increasing across post- vaccination time 
points in HRs while they trend downward in LRs. The BTM profiles of 
old adults suggested a picture that is very different from that observed 
in the young cohort. Older HR had overall less induction of BTMs com-
pared to young HR (Figure S5b);	in	contrast,	older	LR	seem	to	promote	
a late NK and T cell- based response (Figure S5b).	In	common	with	young	
LR, older LR individuals share a BTM signature for protein folding and 
phosphatidylinositol metabolism (Figure S5b),	which	was	implicated	in	
response to the live attenuated varicella- zoster vaccine (Li et al., 2017).

2.5  |  Integrated metabolomic and transcriptomic 
signature identifies high responder signatures

We	 have	 identified	 metabolites	 that	 are	 quantitatively	 differen-
tial in the older and young cohorts with high and low responder 

profiles to flu vaccination (Figure 3a and Figure 4a).	 Next,	 we	
performed	sparse	partial	 least	squared	 (sPLS)	correlation	analysis	
of the differentially abundant metabolites in the high responder 
group to identify possible correlations of these metabolites with 
gene	expression	profiles	found	in	young	and	older	HR.	We	selected	
the results of sPLS dimension 1 with strong correlations (R ≥ 0.4).	
Figure 5a shows two different clusters of genes and metabolites in 
young HR, including those with inverse correlations. The metabo-
lites identified in our analysis could be classified into four major 
groups:	 polyunsaturated	 fatty	 acids	 (PUFAs),	 monounsaturated	
fatty	acids	(MUFAs),	saturated	fatty	acids	(SFA),	and	others.	Genes	
could also be classified into four major groups: immunity, protein 
binding,	 metabolic	 process,	 and	 others.	We	 analyzed	 how	 these	
metabolites and genes correlate during the response to influenza 
vaccination and found that metabolites shown in the upper left 
part of Figure 5a increased significantly at Day 28 post- vaccination 
while the metabolites shown in the lower right part of Figure 5a 
decreased on Day 28 post- vaccination (Figure 5b).	 These	 differ-
ences in metabolite- transcript correlates were also observed at 
Days 2 and 7 post- vaccination, but they did not reach statistical 
significance. Our previous results in Figure 2e	indicated	that	PUFAs	
significantly decreased in the young but not in the older cohort. In 
young	adults,	we	found	that	PUFAs	are	significantly	reduced	at	Day	
28 in the high responder group, while in the low responder group, 
this decrease is reached early at Day 7 (Figure 3c).	 Furthermore,	
we found several genes with immune response function: CD1D, 
MAP3K8,	EP300,	LYN,	MERTK,	and	METTL3,	involved	in	the	regu-
lation of T- cell activation that had a positive correlation with the 
abundance	of	PUFAs.	 In	 contrast,	 several	 genes	 involved	 in	neu-
trophil	degranulation	(R-	HSA-	6798695),	like	BST2,	CAPN1,	STOM,	
and	TMEM30A	showed	negative	correlation	with	the	abundance	of	
PUFAs	(Figure 5a, Figure S6a, Table S3).	This	suggests	that	broad	
depletion	of	PUFAs	in	HR	subjects	at	Day	28	could	be	related	to	the	
immune response to influenza vaccination.

For sPLS correlation analysis in the old HR cohort (Figure 5c,d),	
metabolites were classified into six major groups: glycerophospho-
lipids,	steroids,	TAGs,	amino	acids,	diacylglycerols	(DAGs),	and	oth-
ers. Genes were classified into five major groups: immunity, protein 
binding, metabolic process, endocytosis, and others. The results 
show metabolites with significantly decreased abundance at Days 
7 and 28 post- vaccination in the upper left and metabolites that 
were significantly increased at these timepoints in the lower right 
panel.	 Six	 Immunity	 2	 group	 genes	 (MX1,	OAS3,	 IFITM3,	 RSAD2,	
LDLR,	 and	 IFI44)	were	 involved	 in	 interferon	 alpha/beta	 signaling	
(R-	HSA-	909733),	 response	 to	 virus	 (GO:0016032),	 and	 viral	 pro-
cesses	 (GO:0009615),	 and	 one	 (KCTD12)	 was	 involved	 in	 mitotic	
cell	cycle	 in	stimulated	CD4	T	cells	 (M4.11)	(Figure 5c, Figure S6b, 
Table S3).	 These	 genes	 showed	 positive	 correlation	 with	 TAGs/
DAGs	but	negative	correlation	with	glycerophospholipids	and	ste-
rols. Glycerophospholipid abundance has been associated with an 
inflammatory	phenotype	(Köberlin	&	Snijder,	2015),	and	a	previous	
study found that glycerophospholipids are increased in response to 
fungal	infection	(Wu	et	al.,	2021).	These	findings	may	imply	that	the	
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F I G U R E  4 Molecular	signatures	associated	with	response	to	vaccination	in	older	subjects.	(a)	Differentially	abundant	metabolite	levels	
(absolute	value	of	fold	change	≥1.2,	p < 0.05,	and	FDR < 0.2)	at	Day	2,	Day	7,	and	Day	28	post-	vaccination	relative	to	Day	0	in	HR	and	LR	
groups.	(b–	d)	Molecular	signatures	for	the	top	differential	metabolic	pathways	in	old	HR	and	LR:	fatty	acid	biosynthesis,	cholesteryl	esters,	
and glycerophospholipids. Color labels correspond to indicated log2FC. +FDR < 0.2,	*FDR < 0.1,	**FDR < 0.05.
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F I G U R E  5 Integrated	metabolomic	and	transcriptomic	correlation	and	network	in	young	and	older	high	responders.	Sparse	Partial	Least	
Squares	Regression	(sPLS)	was	used	for	simultaneous	variable	selection	in	the	transcriptomics	and	metabolomics	data	sets	in	young	(a,	b)	and	
older	(c,	d)	HR.	(a,	c)	Correlation	networks	of	genes	categorized	by	function	and	metabolites	categorized	by	class.	(b)	Differentially	abundant	
metabolites	from	(a).	(d)	Differentially	abundant	metabolites	from	(c).	+FDR < 0.2,	*FDR < 0.1,	**FDR < 0.05.
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increased levels of glycerophospholipids in older HRs were associ-
ated with a strong response to flu vaccination.

3  |  DISCUSSION

We	used	a	systems	vaccinology	approach	to	study	the	response	to	
influenza vaccination and found that both young and older subjects 
develop an antibody response to immunization using different im-
munometabolic paths. Our study suggests that the main variable in 
response to influenza vaccination is age (Figure 1c),	a	finding	that	is	in	
agreement	with	previous	studies	(Furman	&	Jojic,	2013;	Haschemi	&	
Kosma, 2012;	Kennedy	&	Ovsyannikova,	2016; Nakaya et al., 2011; 
Rogers et al., 2019; Thakar et al., 2015; Tsang et al., 2014; Voigt 
et al., 2019).	The	differences	we	observed	reflect	a	differential	met-
abolic baseline of young versus older adults. Conversely, humans, 
like	most	animals	 in	nature,	are	not	 immunologically	naive.	At	Day	
0, younger individuals had higher levels of fatty acids and fatty acid 
conjugates, as well as glycerophospholipids and steroid esters, when 
compared to older adults (Figure S2).	The	difference	in	abundance	
of	 fatty	 acids	 and	 PUFAs	 could	 be	 a	 common	 feature	 of	 aging	 in	
mammals, since a similar signature with a decrease in serum fatty 
acids was also observed in aging mice (Tomás- Loba et al., 2013).	In	
contrast, older adults had an increase in triacylglycerols and prod-
ucts of amino acid metabolism (Figure S2).	This	included	C-	glycosyl-	
tryptophan, a metabolite of tryptophan that strongly correlates with 
age (Menni et al., 2013).

Our younger and older cohorts had no significant baseline dif-
ferences for serine or glycine metabolites; these amino acids are 
obtained	 from	 extracellular	 sources	 such	 as	 diet	 and	 are	 required	
for effector T- cell proliferation (Ma et al., 2017).	 Serine	metabolic	
genes are associated with a strong response to influenza vaccination 
(Tsang et al., 2014).	However,	older	individuals	showed	significantly	
elevated levels of these amino acids after vaccination, suggesting 
that serine is not being consumed or is being synthesized de novo. 
In support of the latter view, the transcriptome signature in older 
individuals showed an increase in expression of serine biosynthetic 
enzymes (Figure S3b).	Thus,	the	mechanisms	to	generate	an	immune	
response to the influenza vaccine in older cohorts may not be related 
to increased T- cell proliferation as serine is accumulating instead of 
being consumed. Conversely, serine and glycine are limiting factors 
in the synthesis of glutathione, an antioxidant which is essential for 
regulatory T- cell function (Kurniawan et al., 2020).

Purines have pleiotropic effects in immune cells, particularly in 
the	activation	of	naive	and	effector	T	cells	 (Cekic	&	Linden,	2016)	
and modulation of purine metabolic genes has been correlated with 
response to influenza vaccine (Tsang et al., 2014).	While	 baseline	
levels of purine metabolites were similar in our young and older 
cohorts, purine metabolism exhibited age- specific changes after 
influenza immunization. Young adults had increased levels of ade-
nosine and guanosine derivatives on Day 7, while older individuals 
had increased levels of hypoxanthine and xanthine, catabolic sal-
vage pathway products of adenine and guanine. This suggests that 

older individuals are consuming adenine and guanine and converting 
them into xanthine and hypoxanthine which could be recycled to 
adenine and guanine through the salvage pathway. Indeed, others 
have found that levels of hypoxanthine and xanthine increase with 
age	in	humans	(Zieliński	et	al.,	2019).	In	aging	athletes,	there	is	also	
increased activity of the enzyme HGPRT that recycles hypoxanthine 
and	 xanthine	 to	 adenine	 (Zieliński	 et	 al.,	 2019).	 Conversely,	 older	
individuals may be deficient in the synthesis of purines from the 
de novo pathway and therefore need to use the salvage pathway 
to obtain sufficient adenine and guanine. Indeed, while young sub-
jects	express	 increased	 levels	of	PPAT	and	GART,	the	rate-	limiting	
enzymes for the purine biosynthetic pathway, older cohorts do not 
upregulate the expression of these enzymes (Figure S4a).	 These	
patterns	 may	 reflect	 metabolic	 adaptations	 required	 by	 older	 in-
dividuals to mount an effective immune response upon influenza 
vaccination. Furthermore, these purine intermediates may have 
immunologic functions of their own that shape the differentiated 
immune responses of old and young individuals. For example, ino-
sine may have a pro- inflammatory function in innate immunity as a 
known activator of the TLR7 and TLR8 pathway in mice (Sarvestani 
et al., 2014).	Further	research	will	be	necessary	to	define	the	impact	
of purine metabolites in the response to influenza vaccines in older 
individuals.

We	 found	 a	 higher	 level	 of	 fatty	 acyl	 carnitines	 at	 baseline	 in	
older adults prior to influenza vaccination when compared to their 
younger counterparts (Table S4),	 which	 may	 reflect	 an	 elevated	
basal level of fatty acid oxidation. Notably, fatty acid oxidation is 
important for the generation of memory CD8+ T cells in mice (Pearce 
et al., 2009),	 and	 increased	 basal	 fatty	 acid	 oxidation	 is	 observed	
in CD4+ T cells of older individuals (>65 years)	(Yanes	et	al.,	2019).	
Upon immunization, the levels of fatty acyl carnitines dropped in 
young cohorts while increasing further in older cohorts (Figure 2f).	It	
is possible that fatty acid oxidation is increased in younger individu-
als after vaccination, leading to a depletion of fatty acyl carnitines in 
this population. In contrast, accumulation of fatty acyl carnitines in 
older subjects suggests that, while the conversion of fatty acids into 
fatty acyl carnitines is enhanced in older individuals, their down-
stream catabolism is not increased at the same rate after influenza 
vaccination. The functional significance of these findings in older 
individuals is not clear.

Many	triacylglycerols	(TAGs)	were	higher	at	baseline	(Figure	S2)	
but reduced in older individuals after vaccination (Figure 2h),	 sug-
gesting that these lipids are being depleted at a rate that is higher 
than	 their	 de	 novo	 synthesis.	 TAG	 synthesis	 is	 essential	 for	 T-	cell	
memory	 responses	 in	mice	 (Cui	&	Staron,	2015)	 and	has	been	as-
sociated	 with	 regulatory	 T-	cell	 function	 in	 humans	 (Howie	 &	 ten	
Bokum, 2019).	In	addition	to	potentially	contributing	to	T-	cell	mem-
ory responses, these metabolites may play a role in dampening the 
inflammatory response in older individuals, perhaps working in con-
cert with the glutathione biosynthetic pathway promoting regula-
tory T- cell function.

We	 found	 a	 modest	 increase	 of	 the	 primary	 bile	 acids	 cho-
late and taurocholate at Day 2 and Day 7 post- vaccine in older 
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and young individuals, respectively (Figure 2d).	 Young	 individuals	
showed an increase in the secondary bile acid deoxycholate at Day 
7 (Figure 2d).	 Bile	 acids	 are	 catabolic	 products	 of	 cholesterol	 and	
can be divided between primary bile acids generated by the liver, 
and secondary bile acids that result from modification of primary 
bile acids by gut microbiota. Different types of bile acids bind to 
the	nuclear	hormone	 receptor	FXR,	 either	 as	 agonists	 (Makishima	
et al., 1999; Parks et al., 1999)	or	as	antagonists	(Sayin	et	al.,	2013).	
The	presence	of	secondary	and	FXR	antagonist	bile	acids	was	pre-
viously	associated	with	systemic	inflammation	(Fu	&	Coulter,	2019).	
We	also	observed	reduction	 in	the	 levels	of	polyunsaturated	fatty	
acids	 (PUFAs)	 in	 young	 compared	 to	 older	 individuals	 (Figure 2e).	
These fatty acids are precursors for many immunomodulatory mole-
cules with both pro-  and anti- inflammatory activities like prostaglan-
dins, leukotrienes, resolvins, and maresins (Serhan, 2014;	Serhan	&	
Petasis, 2011).	In	this	sense,	it	is	interesting	that	in	HRs	there	is	an	
enrichment of sterol esters, conjugates of mainly cholesterol and 
fatty	 acids,	 that	 are	 composed	of	PUFAs	compared	 to	more	 satu-
rated fatty acids (Figure 4c).	These	sterol	esters	may	be	used	as	stor-
age	for	PUFAs	that	can	be	used	to	mount	a	robust	immune	response	
to influenza vaccine.

Transcriptomic analyses suggest that myeloid signatures are 
largely suppressed in young and older subjects after vaccination 
(Figure S4c).	 Older	 subjects	 tend	 to	 have	 higher	 signatures	 for	
NK cells (Nakaya et al., 2015),	 accumulate	mature	 active	CD56dim 
CD16+ NK cells (Solana et al., 2014),	and	show	a	reduced	signature	
for type I interferon responses (Figure S4c).	 The	proinflammatory	
gene expression profile starts to be downregulated at Days 7 to 28 
post- vaccination (Figure S4c).	 In	 contrast,	 the	phosphatidylinositol	
signature increases in young subjects, reaching a peak at Day 28, 
while older cohorts start from a higher level at Day 2 but this is de-
creased at later time points (Figure S4c).	In	BTM	analysis,	enriched	in	
T	cells	(I)	(M7.0)	is	upregulated	at	Day	7	in	older	subjects.	The	T-	cell	
activation	 (II)	 (M7.3)	module	 is	only	upregulated	 in	young	subjects	
at Day 28 post- vaccination, while in older subjects it is upregulated 
early	on	 (Day	2)	 (Figure	S4c).	Previous	 studies	 showed	 that	an	 in-
crease in phosphatidylinositol metabolism after vaccination cor-
relates with high T- cell response to the shingles Zostavax vaccine (Li 
et al., 2017).	Our	findings	suggest	that	the	phosphatidylinositol	me-
tabolism module is upregulated early on after flu vaccination in older 
adults and more specifically on those in the high responder group 
(Figure S5b).	This	correlates	well	with	the	early	upregulation	in	older	
adults of the T- cell activation module at Day 2 and the signaling in T 
cells and enriched in T- cell modules at Day 7 (Figure S4c).

Comparison of HR and LR in the young and older adults sug-
gests that older HRs have a subtle and early response to vaccina-
tion that is at the transcriptomic level nearly undetectable in our 
sample (Figure S5b).	This	contrasts	with	both	young	HR	that	show	
an immune response driven by strong antigen presentation and IFN 
response (Figure S5a).	Glycerophospholipids	are	widely	distributed	
in biological membranes and may play a role in immune responses 
(O'Donnell et al., 2018).	Our	study	found	changes	in	levels	of	phos-
phatidylethanolamines	(PEs)	and	phosphatidylcholines	(PCs)	in	early	

timepoints of the immune response to flu vaccine in older HRs 
(Figure 4d).	PE	is	important	in	signaling	and	metabolic	pathways	that	
stimulate T- cell activation (Ma et al., 2021),	and	alterations	in	PE	and	
PC levels have been observed in autoimmune diseases (Mendes- 
Frias et al., 2020; Zeng et al., 2017).	Increase	in	both	PC	and	PE	was	
associated with differentiation of naive T cells into TFH	cells	 (Fu	&	
Guy, 2021)	and	may	impact	robustness	of	vaccine	response	(Deng	&	
Chen, 2021;	Koutsakos	&	Wheatley,	2018).

In contrast to the young cohort, in older patients the decline in 
immune response with age results in impaired effector T- cell devel-
opment, functionality, and long- term memory generation (Gustafson 
&	Kim,	2020).	Notably,	we	 found	 that	 older	 LRs	 tend	 to	 promote	
late NK and T cell- based responses, while young LRs seem to have 
a problem in building a response to the vaccine. Thus, our study 
suggests that older subjects may rely more on memory or cross- 
memory responses than younger adults, who seem to rely more on 
immune responses driven by antigen presentation and IFN signaling. 
This is consistent with previous studies describing elevated memory 
T	cells	(Furman	&	Jojic,	2013)	and	expansion	of	atypical	memory	B	
cells (CD10−CD20+CD21−CD27−)	 and	 age-	associated	B	 cells	 (ABC,	
CD21−T- bet+CD11c+)	in	older	populations	(Nipper	et	al.,	2018).	It	is	
possible that most older adults in the LR group may still develop a 
strong memory component but this may occur at a later time point 
than Day 28 post- vaccine. Future studies are needed to clarify 
whether older LRs form a delayed memory response and whether 
they would benefit from vaccine boosters or higher dosages. 
Furthermore, there is a need to identify the underlying causes of LR 
in young adults. These differences could be explored to increase the 
potency of vaccines for young and old subjects.

Young	HRs	show	high	correlation	of	immunomodulatory	PUFAs	
(Serhan, 2014;	 Serhan	&	Petasis,	2011)	 and	 genes	 involved	 in	 the	
regulation of T- cell responses. Unsaturated fatty acids are pre-
cursors of prostaglandins and eicosanoids and have known immu-
nomodulatory properties (Serhan, 2014;	 Serhan	 &	 Petasis,	 2011),	
including stimulation of IL- 1α	 (Freigang	&	Ampenberger,	2013)	and	
involvement in T- cell immunity (Nicolaou et al., 2014);	therefore,	it	is	
possible	that	the	broad	depletion	of	PUFAs	observed	in	HR	subjects	
is caused by and contributes to a robust immune response to vacci-
nation.	Furthermore,	in	young	LR,	PUFAs	are	quickly	consumed	and	
most likely are not available in enough concentrations to generate 
such	a	 strong	 response.	 Indeed,	high	dietary	 intake	of	PUFAs	can	
affect	the	immune	response	to	vaccines	in	mice	(Hogenkamp	&	van	
Vlies, 2011)	and	arachidonic	acid,	a	PUFA,	can	increase	response	to	
flu	 vaccine	 in	 humans	 (Kelley	&	Taylor,	 1997).	 Further	 studies	 are	
needed	to	determine	whether	increasing	PUFAs	in	the	diet	of	young	
individuals can contribute to higher response rates to flu vaccine. 
In contrast, older HRs showed a strong correlation with genes that 
are involved in rapid virus clearance, repression of the IFN response 
and positive regulation of the CD4 T- cell response with the presence 
of	TAG/DAGs;	in	this	regard,	TAGs	are	associated	with	CD8+ T- cell 
memory	in	mice	(Cui	&	Staron,	2015).

Taken together, the metabolomic and transcriptomic signature 
after vaccination with influenza shows that young subjects rely on 
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strong T-  and B- cell activation, which is supported by our previous 
transcriptomic analysis of influenza vaccine response (HIPC- CHI 
Signatures Project Team and HIPC- I Consortium, 2017).	Accordingly,	
young groups show increased levels of adenosine and guanine, 
phosphatidylinositol metabolism and reduced levels of fatty acyl 
carnitines, suggesting increased fatty acid oxidation. Younger co-
horts	show	higher	plasma	levels	of	secondary	and	FXR	antagonistic	
bile acids, an indication of possible systemic inflammatory response. 
In contrast, older cohorts accumulate amino acids serine and glycine 
which are involved in glutathione metabolism essential for regula-
tory T- cell function. Older subjects had lower increases over time in 
phosphatidylinositol	metabolism	and	elevated	consumption	of	TAGs,	
which in humans has been associated with regulatory T- cell function 
(Howie	&	ten	Bokum,	2019).	Thus,	older	individuals	may	rely	more	
on T- cell memory and regulatory T cells for effective responses to in-
fluenza vaccinations. Future trials will benefit from targeting young 
and older cohorts differently in influenza vaccine studies.

3.1  |  Limitations of this study

Although	the	cohort	used	in	this	study	is	well	characterized	and	was	
used to successfully establish associations between gene signatures 
and flu vaccine response, our study has several limitations. One limi-
tation is the limited subject sample size, which may reduce our ability 
to establish strong correlations between molecular signatures and 
response to flu vaccination. Furthermore, sample size also limited 
our ability to detect several metabolites that have small, but signifi-
cant, contributions to the response to flu vaccine. Future studies 
with larger sample size would increase our chances to identify less 
robust, but potentially biologically relevant, gene and metabolite 
signatures	 using	more	 strict	 statistical	 tests.	 Another	 limitation	 is	
that a considerable number of features identified in our untargeted 
metabolomics approach are chemically unidentified, and therefore, 
our analysis is limited to known, well- annotated metabolites. Future 
studies	 will	 be	 required	 to	 identify	 molecular	 signatures	 originat-
ing from these unknown metabolites, to define their structures and 
identify biologically meaningful metabolite- gene associations. These 
studies can only be achieved using well- characterized cohorts of 
vaccinated patients, such as the one we describe in this study.

4  |  METHODS

4.1  |  Sample collection and preparation

4.1.1  |  Plasma	sample	isolation

A	cohort	comprised	of	33	individuals	(16	young	individuals,	age	21–	
30)	and	17	older	adults	(age	≥65 years)	was	studied.	These	individuals	
were recruited and studied at the gene expression level in consecu-
tive	influenza	vaccine	seasons	(2010–	2011	and	2011–	2012)	in	which	
the composition of the influenza vaccine was identical (Thakar 

et al., 2015).	Participants	were	consented	under	a	 research	proto-
col approved by the Human Subjects Research Protection Program 
of the Yale School of Medicine. Participants with an acute illness 
2 weeks	prior	to	recruitment	were	excluded	from	the	study,	as	were	
individuals	with	primary	or	acquired	immune-	deficiency,	use	of	im-
munomodulating medications including steroids or chemotherapy, a 
history of malignancy other than localized skin or prostate cancer, or 
a	history	of	cirrhosis	or	renal	failure	requiring	hemodialysis.	Whole	
blood was collected on pre- vaccination Day 0 and post- vaccination 
Day	2,	Day	7,	and	Day	28	into	EDTA	lavender	top	tubes	and	plasma	
supernatant	without	cell	debris	were	stored	at	−80°C	until	further	
use.

4.1.2  |  HAI	titer	measurement	and	response	end	
point definition

Hemagglutination inhibition assays were performed as previously 
described (Thakar et al., 2015).	maxRBA	an	automated	metric	that	
adjusts	 for	 inverse	 correlations	 between	 HAI	 titer	 fold	 changes	
and	 baseline	 titers	was	 used	 to	 classify	 high	 responders	 (HR)	 and	
low	responders	(LR)	to	vaccination	as	previously	described	(Avey	&	
Mohanty, 2020).	Briefly,	young	and	older	cohorts	were	separated,	
and endpoints were calculated in each season and each age group 
separately. Baseline and fold changes were log2 transformed, and 
an exponential curve was fit to the fold change versus baseline ti-
ters for each strain. Next, the residuals were calculated, and for each 
subject, the maximum residual across all strains was selected as the 
maxRBA.	 Finally,	HR	 and	 LR	were	defined	 as	 the	 top	 and	bottom	
40th	percentile	of	maxRBA,	respectively.	A	total	of	13	HR	and	16	LR	
(6	HR	and	8	LR	in	young	subjects	and	7	HR	and	8	LR	in	older	subjects)	
and 4 with an indeterminate response were classified using this ap-
proach.	The	code	to	calculate	maxRBA	is	available	in	the	Calculate_
maxRBA() function from the titer R package (https://bitbu cket.org/
klein stein/ titer).

4.1.3  |  LC–	MS	untargeted	metabolomics	profiling	
from plasma samples

The plasma metabolomic profiles of participants were measured 
from plasma samples using a combination of four LC– MS meth-
ods that measure complementary metabolites: two methods that 
measure polar metabolites, a method that measures metabolites 
of	intermediate	polarity	(e.g.,	fatty	acids	and	bile	acids),	and	a	lipid	
profiling	 method	 (see	 below	 for	 method-	specific	 details).	 For	 the	
analysis	queue	 in	each	method,	participants	were	randomized	and	
longitudinal samples from each participant were randomized and 
analyzed	as	a	group.	As	the	aliquots	for	the	LC–	MS	methods	were	
prepared from each sample, a pooled sample was created by com-
bining	an	additional	 aliquot	 from	each	 sample	 into	a	50 ml	 conical	
centrifuge tube. The pooled sample was mixed by vortexing and sub- 
aliquoted	to	create	pooled	plasma	QC	samples,	which	were	injected	

https://bitbucket.org/kleinstein/titer
https://bitbucket.org/kleinstein/titer
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in	pairs	at	 intervals	of	approximately	20	samples	 for	QC	and	data	
standardization.

Samples were prepared for each method using extraction proce-
dures that are matched for use with the chromatography conditions. 
Data	were	acquired	using	LC–	MS	systems	consisting	of	Nexera	X2	
U-	HPLC	 systems	 (Shimadzu	 Scientific	 Instruments)	 coupled	 to	 Q	
Exactive/Exactive Plus orbitrap mass spectrometers (Thermo Fisher 
Scientific).

LC– MS Method 1 –  HILIC- pos
Positive ion mode MS analyses of polar metabolites. LC– MS samples 
were prepared from or plasma (10 μl)	via	protein	precipitation	with	
the	addition	of	nine	volumes	 (90 μl)	of	74.9:24.9:0.2	v/v/v	acetoni-
trile/methanol/formic acid containing stable isotope- labeled inter-
nal standards (valine- d8, Isotec; and phenylalanine- d8, Cambridge 
Isotope	Laboratories).	The	samples	were	centrifuged	(10	min,	9000 g,	
4°C),	 and	 the	 supernatants	 injected	 directly	 onto	 a	 150 × 2 mm	
Atlantis	HILIC	column	(Waters).	The	column	was	eluted	isocratically	
at	a	flow	rate	of	250 μl/min	with	5%	mobile	phase	A	(10 mM	ammo-
nium	formate	and	0.1%	formic	acid	in	water)	for	1	min	followed	by	a	
linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic 
acid)	over	10	min.	The	column	was	kept	at	30°C.	MS	analyses	were	
carried out using electrospray ionization in the positive ion mode 
using full scan analysis over m/z 70– 800 at 70,000 resolution and 
3	Hz	data	acquisition	rate.	Additional	MS	settings	are	as	follows:	ion	
spray	 voltage,	 3.5	 kV;	 capillary	 temperature,	 350°C;	 probe	heater	
temperature,	300°C;	sheath	gas,	40;	auxiliary	gas,	15;	and	S-	lens	RF	
level 40.

LC– MS Method 2 –  HILIC- neg
Negative ion mode MS analysis of polar metabolites. LC– MS sam-
ples	were	prepared	from	plasma	(30 μl)	via	protein	precipitation	with	
the	 addition	 of	 four	 volumes	 (120 μl)	 of	 80%	methanol	 containing	
inosine- 15N4, thymine- d4, and glycocholate- d4 internal standards 
(Cambridge	 Isotope	 Laboratories).	 The	 samples	 were	 centrifuged	
(10	min,	9000 g,	4°C),	and	 the	supernatants	were	 injected	directly	
onto	a	150 × 2.0 mm	Luna	NH2	column	(Phenomenex).	The	column	
was	eluted	at	a	flow	rate	of	400 μl/min with initial conditions of 10% 
mobile	phase	A	(20 mM	ammonium	acetate	and	20 mM	ammonium	
hydroxide	in	water)	and	90%	mobile	phase	B	(10 mM	ammonium	hy-
droxide	in	75:25 v/v	acetonitrile/methanol)	followed	by	a	10	min	lin-
ear	gradient	to	100%	mobile	phase	A.	The	column	temperature	was	
kept	at	40°C.	MS	analyses	were	carried	out	using	electrospray	ioni-
zation in the negative ion mode using full scan analysis over m/z 70– 
750	at	70,000	resolution	and	3	Hz	data	acquisition	rate.	Additional	
MS	settings	are	as	follows:	ion	spray	voltage,	−3.0	kV;	capillary	tem-
perature,	350°C;	probe	heater	temperature,	325°C;	sheath	gas,	55;	
auxiliary gas, 10; and S- lens RF level 50.

LC– MS Method 3 –  C18- neg
Negative ion mode analysis of metabolites of intermediate polar-
ity	(e.g.,	bile	acids	and	free	fatty	acids).	Plasma	(30 μl)	was	extracted	
using	90	μl of methanol containing PGE2- d4 as an internal standard 

(Cayman	Chemical	Co.)	and	centrifuged	 (10	min,	9000 g,	4°C).	The	
supernatants (10 μl)	 were	 injected	 onto	 a	 150 × 2.1 mm	ACQUITY	
BEH	C18	column	 (Waters).	The	column	was	eluted	 isocratically	 at	
a	 flow	 rate	of	450 μl/min	with	20%	mobile	phase	A	 (0.01%	 formic	
acid	in	water)	for	3	min	followed	by	a	linear	gradient	to	100%	mobile	
phase	B	(0.01%	acetic	acid	in	acetonitrile)	over	12 min.	The	column	
temperature	was	kept	at	45°C.	MS	analyses	were	carried	out	using	
electrospray ionization in the negative ion mode using full scan anal-
ysis over m/z	70–	850	at	70,000	resolution	and	3	Hz	data	acquisi-
tion	 rate.	Additional	MS	settings	are	as	 follows:	 ion	spray	voltage,	
−3.5	 kV;	 capillary	 temperature,	320°C;	probe	heater	 temperature,	
300°C;	sheath	gas,	45;	auxiliary	gas,	10;	and	S-	lens	RF	level	60.

LC– MS Method 4 –  C8- pos
Lipids	(polar	and	nonpolar)	were	extracted	from	plasma	(10	μl)	using	
190 μl of isopropanol containing 1- dodecanoyl- 2- tridecanoyl- sn- gly
cero-	3-	phosphocholine	as	an	internal	standard	(Avanti	Polar	Lipids).	
After	centrifugation	 (10	min,	9000 g,	ambient	temperature),	super-
natants (10 μl)	were	injected	directly	onto	a	100 × 2.1 mm	ACQUITY	
BEH C8 column (1.7 μm;	Waters).	The	column	was	eluted	at	a	flow	
rate	 of	 450 μl/min isocratically for 1 minute at 80% mobile phase 
A	(95:5:0.1	vol/vol/vol	10 mM	ammonium	acetate/methanol/acetic	
acid),	followed	by	a	linear	gradient	to	80%	mobile-	phase	B	(99.9:0.1	
vol/vol	methanol/acetic	acid)	over	2	min,	a	linear	gradient	to	100%	
mobile phase B over 7 min, and then 3 min at 100% mobile phase 
B.	 The	 column	 temperature	was	 kept	 at	 30°C.	MS	 analyses	were	
carried out using electrospray ionization in the positive ion mode 
using full scan analysis over m/z 200– 1100 at 70,000 resolution and 
3	Hz	data	acquisition	rate.	Additional	MS	settings	are	as	follows:	ion	
spray	 voltage,	 3.0	 kV;	 capillary	 temperature,	 300°C;	probe	heater	
temperature,	300°C;	sheath	gas,	50;	auxiliary	gas,	15;	and	S-	lens	RF	
level 60.

Data processing
Nontargeted	 data	 were	 processed	 using	 Progenesis	 QI	 software	 (v	
2.0,	 Nonlinear	 Dynamics)	 to	 detect	 and	 de-	isotope	 peaks,	 perform	
chromatographic retention time alignment, and integrate peak areas. 
Identification of nontargeted metabolite LC– MS peaks were con-
ducted	by	matching	measured	retention	times	(RT)	and	mass	to	charge	
ratios (m/z)	 to	 mixtures	 of	 reference	 metabolites	 analyzed	 in	 each	
batch.	Additionally,	we	matched	unknown	features	in	the	data	set	to	
an internal database of >600 compounds that have been character-
ized using the Broad Institute methods. This library contains com-
pounds that have been confirmed by matching their RT, m/z, and MS/
MS fragmentation patterns in multiple human biofluids in previous 
studies using authentic reference standards. To annotate unknowns 
in this dataset using this library, we used in- house alignment scripts to 
adjust the RT and m/z and match study unknowns to the compound 
library. No MS/MS was generated for this study. Temporal drift was 
monitored and normalized with the intensities of features measured 
in	one	of	 the	doubly	 injected	QC	pooled	 reference	samples	using	a	
nearest	neighbor	approach,	where	sample	intensities	in	each	QC	pool	
are used to scale their closest samples in the batch. To determine the 
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analytical precision of the method for each measured metabolite, we 
computed	coefficients	of	variation	 (CV)	 for	annotated	and	unknown	
features	using	the	remaining	QC	pools	not	used	for	scaling	temporal	
drifts. The average CV values per method for annotated compounds 
ranged from 7% to 11%, which is within the historical analytical pre-
cision of the methods applied. Finally, principal component analyses 
were generated and scores plots used to determine the presence of 
any potential outlying samples.

4.2  |  Metabolomics computational and 
statistical analysis

The relative intensities of metabolites were pre- processed, normal-
ized, and log- transformed for further analysis. Metabolites that were 
not	detected	(NA)	 in	more	than	50%	of	samples	were	removed,	and	
the	remaining	NA	metabolites	were	imputed	with	half	of	the	minimum	
value of that metabolite. The metabolites were median normalized 
within samples, and their intensities were scaled by multiplying by 106 
and log- transforming to stabilize variance. To investigate how factors 
such as age, gender, response, and time point contributed to the vari-
ation of metabolomics profiles, we used lme4, an R package for linear 
mixed models, to calculate means of the F value of each factor (fixed 
effects)	and	the	same	subjects	as	random	effects	(log2(normalized me-
tabolite) ~ AgeGroup	+ Gender + Response + TimePoint +	(1|subject)).	
We	also	used	principal	component	analyses	to	characterize	each	group	
of	factors.	To	identify	differentially	abundant	metabolites	pre-		(Day	0)	
and	post-	vaccination	(Days	2,	7,	and	28)	in	young	and	older	subjects,	
we used a lme4 to fit a linear mixed model with the time point as fixed 
effect and the same subjects as random effects (log2(normalized me-
tabolite) ~ TimePoint	+	(1|subject)).	Linear	mixed	models	were	applied	
on normalized log2-	transformed	data.	One-	way	ANOVA	testing	was	
used to evaluate p-	values	at	each	time	point	(Days	2,	7,	and	28)	rela-
tive	to	baseline	(Day	0).	p- Values were corrected for multiple compari-
sons	using	the	Storey	method	(Storey	&	Tibshirani,	2003)	to	calculate	
false	discovery	rate	(FDR).	Differentially	abundant	metabolites	(DAM)	
were defined by thresholds of p- value <0.05	and	|FC| ≥ 1.2	with	results	
displayed for FDR of <0.05, <0.1,	 and <0.2 in figures, as indicated. 
Hierarchical clustering and heatmap generation were performed by 
Morpheus (https://softw	are.broad	insti	tute.org/morph	eus) based on 
Euclidean distance or by R using heatmap.3 library. To identify similar 
and closely related metabolites, we use human metabolome database 
(HMDB)	 (Wishart	 et	 al.,	 2018)	 to	 classify	 the	 metabolites	 into	 the	
same subclass or pathways.

4.3  |  Transcriptomics samples and 
computational and statistical analysis

Transcriptomics data from the same cohort were downloaded from 
GSE59654.	We	selected	data	from	the	same	33	subjects	matching	
those for which we obtained metabolomics data. Transcriptomic 
data were available for all 33 subjects at Day 0 and Day 7, while for 

Days	2	and	28	data	were	available	for	29	and	31	subjects,	respec-
tively.	Differentially	 expressed	genes	 (DEGs)	 across	different	 time	
points were determined using the limma package with GEO2R in R. 
DEGs were defined by thresholds of p- value <0.05	 and	 FC ≥ 1.25	
or ≤ 1/1.25.	To	identify	similar	gene	signatures	from	PBMC	transcrip-
tomics data, we performed Blood Transcription Modules analysis 
by BTM tools (Li et al., 2014).	Fisher's	exact	test	was	performed	on	
the differentially expressed gene lists for each BTM. - logp- values 
were used in the heatmap, where positive values represent modules 
enriched among the upregulated genes and the negative represent 
modules enriched in the downregulated genes. Hierarchical cluster-
ing and heatmap generation were performed by Morpheus based on 
Euclidean distance between - logP vectors.

4.4  |  Integrated analysis of metabolomics and 
transcriptomics

Sparse	partial	least	squared	was	performed	using	mixOmics	(Rohart	
et al., 2017)	 to	 identify	highly	positively	and	negatively	correlated	
genes and metabolites. Matching samples from the gene and meta-
bolic profiles were first identified. Because the transcriptomic data 
for	Days	2	and	28	were	only	available	 for	29	and	31	subjects,	 re-
spectively, the metabolic datasets also need to remove 4 and 2 un-
matched subjects, respectively, to obtain a complete set of matched 
samples.	 We	 selected	 the	 differentially	 abundant	 metabolites	 in	
young and old high responder groups to explore their highly cor-
related	genes.	We	selected	the	top	5000	variable	genes	from	their	
normalized profiles. Finally, these genes and metabolites were then 
fed into sPLS in the R package mixOmics to identify highly positive 
and negative correlations. The clusters of gene sets from sPLS were 
used to identify gene functions using Metascape (Zhou et al., 2019).	
The correlation networks were visualized using Cytoscape (Shannon 
et al., 2003)	v3.8.2.
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