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Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbid-
ity, especially in older adults. Transcriptomic analysis in populations across multiple flu 
seasons has provided insights into the molecular determinants of vaccine response. 
Still, the metabolic changes that underlie the immune response to influenza vaccina-
tion remain poorly characterized. We performed untargeted metabolomics to analyze 
plasma metabolites in a cohort of younger and older subjects before and after influ-
enza vaccination to identify vaccine-induced molecular signatures. Metabolomic and 
transcriptomic data were combined to define networks of gene and metabolic signa-
tures indicative of high and low antibody response in these individuals. We observed 
age-related differences in metabolic baselines and signatures of antibody response to 
influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, 
fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic sig-
nature associated with age-dependent vaccine response, finding increased trypto-
phan and decreased polyunsaturated fatty acids (PUFAs) in young high responders 
(HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. 
Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, 
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1  |  BACKGROUND

Seasonal epidemics caused by influenza viruses, such as H1N1, 
H3N2 influenza A viruses, and influenza B viruses, are a major pub-
lic health concern that cause mild to severe respiratory infections 
in humans. A recent study estimated that up to 5 million cases and 
290,000 to 650,000 influenza-associated respiratory deaths annu-
ally occur worldwide, particularly among adults aged 65 or older 
(Iuliano & Roguski, 2018). Avian influenza viruses (H5N1, H7N9, and 
others) may cross the species barrier through a re-assortment step 
to cause pandemics in the human population that have increased 
morbidity and mortality relative to seasonal influenza epidemics 
(Krammer,  2019; Palese,  2004; Smith et al.,  2009). To decrease 
the public burden caused by seasonal or pandemic influenza, three 
types of effective vaccines (inactivated, live attenuated, and recom-
binant hemagglutinin antigen [HA] vaccines) have been developed. 
However, response to the vaccine remains poor in many popula-
tions. Older populations, for example, have a diminished capacity to 
mount a sufficient protective response to flu vaccination due to age-
related changes in immune system function (Grubeck-Loebenstein & 
Della Bella, 2009; McElhaney, 2011; Poland et al., 2014).

Improvement of vaccine efficacy requires an understanding 
of the mechanisms by which vaccination bolsters the immune re-
sponse. In response to challenges such as infection and vaccina-
tion, immune cells undergo metabolic reprogramming to address 
increased energy demands and need for rapid effector cell prolifer-
ation (Jung et al., 2019). In recent years, studies from the emerging 
field of immunometabolism have indicated that cellular metabolism 
plays a critical role in immune cell differentiation, development, and 
maintenance (Haschemi & Kosma, 2012; O'Neill et al., 2016). Several 
key metabolic pathways have been linked to control of immunity, 
including glycolysis (Shi et al.,  2011), TCA cycle (Liu et al.,  2017; 
Tannahill et al.,  2013), pentose phosphate pathway (Haschemi & 
Kosma, 2012), fatty acid metabolism (Berod & Friedrich, 2014), and 
metabolism of amino acids such as glutamine (Nakaya et al., 2014) 
and tryptophan (Uyttenhove et al.,  2003). The development of 
highly sensitive metabolic profiling techniques has facilitated the 
identification of metabolite signatures associated with immuno-
logical responses, providing valuable tools for dissecting complex 

immunometabolic signaling networks (Haschemi & Kosma,  2012; 
O'Neill et al., 2016).

Studies of systems vaccinology in influenza have used cellular 
and transcriptomic profiles of peripheral blood mononuclear cells 
(PBMC) and serology to predict the immune response to influenza 
vaccination in healthy adults (Bucasas & Franco,  2011; Furman 
& Jojic, 2013; Nakaya et al.,  2011; Obermoser et al.,  2013; Tsang 
et al., 2014). A common finding among these studies is that immune 
response to influenza vaccine can be predicted by early response 
(Days 1–3) post-vaccination and is associated with a transcriptomic 
signature enriched for gene ontologies for innate immune responses, 
antigen presentation, and induction of interferon type I response 
genes. Longitudinal studies showed consistent transcriptomic and 
microRNA signatures of influenza vaccination across seasons in 
the same cohort (Nakaya et al., 2015). One of the most consistent 
findings is that age is an important contributor to influenza vaccine 
response (Furman & Jojic, 2013; Haschemi & Kosma, 2012; Nakaya 
et al., 2011; Rogers et al., 2019; Tsang et al., 2014). We previously 
investigated the transcriptomic signature of immune response to 
influenza vaccination and found that a mitochondrial biogenesis 
signature was associated with vaccine antibody response (Thakar 
et al., 2015). A 5-year longitudinal study led to the identification of 
age-related transcriptional signatures that are predictive of flu vac-
cination responses (Avey & Mohanty, 2020; HIPC-CHI Signatures 
Project Team and HIPC-I Consortium, 2017). The first multi-omics 
integrated analysis of metabolomics, transcriptomics, and gut mi-
crobiome composition uncovered associations between bacterial 
species and metabolic phenotypes in healthy and antibiotic-treated 
adults receiving influenza vaccine, demonstrating that antibiotic-
induced microbiome changes affect the human immune response to 
influenza vaccine (Hagan & Cortese, 2019). These studies demon-
strate the importance of identifying molecular markers associated 
with vaccine response to help identify potential avenues for im-
provement of vaccine efficacy.

In this study, we use a combination of transcriptomics and un-
targeted metabolomics to define signatures of high and low an-
tibody response after vaccination against influenza in a cohort of 
young and older adults. Consistent with previous studies, we also 
identify age as one of the main factors that determines response 

which are building blocks for prostaglandins and other lipid immunomodulators, in 
young HR subjects at Day 28 is related to a robust immune response to influenza vac-
cination. Increased glycerophospholipid levels were associated with an inflammatory 
response in older HRs to flu vaccination. This multi-omics approach uncovered age-
related molecular markers associated with influenza vaccine response and provides 
insight into vaccine-induced metabolic responses that may help guide development of 
more effective influenza vaccines.

K E Y W O R D S
immune response, influenza, metabolomics, systems biology, systems vaccinology, 
transcriptomics, vaccine



    |  3 of 18CHOU et al.

to influenza vaccination. The difference in response between age 
groups was associated with signatures derived from metabolic path-
ways involved in fatty acid and sterol lipid metabolism. Young high 
responders showed increased tryptophan pathway metabolites and 
reduced levels of polyunsaturated fatty acids. In contrast, older high 
responders show increased fatty acid synthesis and accumulation 
of cholesteryl esters. Through this multi-omics approach, we iden-
tify age-related molecular markers associated with influenza vaccine 
response. Uncovering these molecular profiles will help to identify 
populations at risk of influenza vaccine failure, as well as to inform 
design of vaccine development trials to improve vaccine efficacy.

2  |  RESULTS

2.1  |  Age has the strongest effect on the metabolic 
response to influenza vaccination

To assess metabolic changes after flu vaccination, we performed 
untargeted metabolomics on blood plasma samples of 33 individu-
als of a well-studied cohort of young (age 21–30) and community-
dwelling older (age ≥65) adults (Thakar et al., 2015; Figure 1a) who 
received the seasonal trivalent inactivated influenza vaccine (TIV, 
A/California/7/09 (H1N1)-like virus; A/Perth/16/2009 (H3N2); 
and B/Brisbane/60/2008) during the 2011–2012 season. These 33 
subjects were selected for this study based on their classification 
as either strong or weak responders to influenza vaccine and avail-
ability of transcriptomic data. The subjects' blood plasma samples 
were collected pre-vaccination (Day 0), and at Days 2, 7, and 28 post-
vaccination. Subjects were classified by response rate based on flu 
vaccine-specific hemagglutination inhibition (HAI) titers, which were 
measured at Day 0 and at 28 days post-vaccination. To account for 
the effect of pre-vaccine HAI titer, we calculated the maximum re-
sidual after baseline adjustment (maxRBA) (Avey & Mohanty, 2020). 
The maxRBA calculation corrects for the dependence on baseline 
titers by modeling post-vaccine fold increase in HAI titer as an ex-
ponential function of pre-vaccine titer and taking the maximum 
residual across vaccine strains (Figure S1). Using this method, we de-
fined high (HR) and low responders (LR) as the top and bottom 40th 
percentiles of the residuals, respectively. The 40th percentile was 
chosen because at this cutoff there is <10% indeterminate response 
to flu vaccine (Avey & Mohanty, 2020). This allows for an increase 
in sample size compared with lower percentiles without increasing 
substantially the number of false positives in the analysis. For this 
study, a subset of plasma samples from the previously described 
cohort was selected to adjust for differing proportions of HR/LR 
among young and older groups. In total, we selected samples from 
16 young and 17 older subjects, with a total of 13 HR and 16 LR (6 
HR and 8 LR in young subjects and 7 HR and 8 LR in older subjects) 
and 4 with an indeterminate response.

The untargeted metabolomic profile of plasma samples suggests 
that age was the largest contributor to variation in metabolite pro-
files, whereas gender, response to vaccine, or time point had less 

pronounced effects (Figure 1b). Principal component analysis (PCA) 
showed a clear separation of the young and older groups, consistent 
with the variation analysis (Figure 1c). Because of statistically signif-
icant BMI differences in the young vs. older populations (p = 0.006, 
Table 1), we included BMI as a variable in our linear regression mod-
els to account for its effect on differential metabolite abundance 
across age groups. At baseline (Day 0), distinct subclasses of me-
tabolites were differentially abundant between younger and older 
individuals. These include fatty acids, linoleic acids, and glycero-
phospholipids, which were higher in the young group, while amino 
acids and triacylglycerols were higher in the older group (Figure S2). 
Based on the strong age-dependent influence on metabolite pro-
files, we chose to perform subsequent analyses on young and older 
groups independently.

2.2  |  Differential molecular signatures after flu 
vaccination in young and elderly

We next compared pre-vaccination metabolite abundances with 
those at Days 2, 7, and 28 after vaccination to determine differen-
tially abundant metabolites (DAMs). We annotated 534 metabolites 
using the Human Metabolome Database (HMDB), which classi-
fies metabolites by their chemical structure (Wishart et al., 2007; 
Figure S3a,b). Among the five groups of metabolites that contained 
the highest number of DAMs were amino acids, peptides, and ana-
logues, fatty acids and conjugates, fatty acid esters, steroid esters, 
and triradylglycerols (a sub-class of lipids that includes triacylglyc-
erols) (Figure  2a). Purine metabolism (Figure  2b) and glycine and 
serine metabolism (Figure  2c) are the major metabolic pathways 
related to amino acids, nucleotides, peptides, and analogues. We 
observed similar post-vaccination trends across age groups for 
several metabolite subclasses. For example, purine metabolism 
pathway metabolites significantly increased after vaccination; this 
increase was particularly strong among older subjects. Notably, gene 
expression analysis using a previously published dataset from this 
same cohort (Thakar et al.,  2015) revealed upregulation of genes 
involved in the purine-containing compound metabolic process 
(GO:0072521). Most of the genes upregulated at Day 7 and Day 28 
were in the young group, whereas most upregulated genes at Day 
2 were in the older group (Figure  S4a). Inosine increased in both 
age groups at Day 2, and this increase persisted at Day 7 and Day 
28 in the older cohort. Inosine is an intermediate in the degrada-
tion of purines and purine nucleosides that helps innate immunity 
distinguish cellular from viral RNA (Mannion et al., 2014) and plays 
a role in CD8+ effector T-cell function under glucose-restricted con-
ditions (Wang et al., 2020). Metabolites from the glycine and serine 
metabolic pathway also increased after vaccination, although the 
majority of metabolites that changed in the young were not sig-
nificant (Figure  2c). Sarcosine was significantly increased in older 
subjects at Days 2, 7, and 28 but only increased in young subjects 
by Day 28 (Figure 2c, Table S1). Production of cytosolic sarcosine 
can be catalyzed by glycine N-methyltransferase (GNMT), which 
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F I G U R E  1 Study design and global characterization of plasma metabolome profiles. (a) Blood plasma samples from a total of 33 subjects 
(16 young (age 21–30 years) and 17 older (age ≥65)) were collected prior to vaccination (Day 0) and at 2, 7, and 28 days post-vaccination. 
Subjects were classified as high responders (HR) or low responders (LR) by HAI titers (see Section 4) at 28 days post-vaccination using 
maxRBA (Avey & Mohanty, 2020). Metabolite abundance in plasma was assessed using high-throughput profiling by LC–MS-based 
metabolomics, and gene expression levels in PBMCs were assessed using high-throughput profiling by Illumina beadChips microarray as 
previously reported (Thakar et al., 2015). Finally, computational and integrative analyses of the metabolomics and transcriptomics datasets 
were performed. (b) The effect of factors such as age, gender, response, and timepoint and their interactions on the variation of plasma 
metabolite abundance in the study cohort. F value determined by one-way ANOVA. (c) Sampleto-sample variation in plasma metabolomics 
revealed by principal component analysis (PCA). Each dot represents a sample, colored by age, gender, response, and time point, 
respectively.
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mediates sarcosine synthesis using S-adenosylmethionine (SAM) 
(Luka et al., 2009). This conversion has been associated with de-
creases in energetic metabolism (Obata et al., 2014), enhancement 
of dendritic cell migration, and response to dendritic-based cancer 
cell vaccines (Dastmalchi & Karachi,  2019). However, the possible 
effect of elevated levels of sarcosine in older subjects is not clear; 
sarcosine is elevated in older subjects but it is not a strong indicator 
of high versus low response to flu vaccine in this cohort (Figure 3b). 
3-phosphoglyceric acid (3-PG), a glycolysis intermediate that is also 
an intermediate in serine synthesis (Figure S4b), was significantly in-
creased in young adults after vaccination at Day 7 and Day 28 and 
in older adults at Day 7, and serine was significantly increased in 
older individuals (Figure 2c, Table S1). This correlated well with the 
patterns on T cell-related blood transcription module (BTM) profiles, 
which were systematically constructed and integrated from publicly 
available human blood transcriptomes by (Li et al., 2014), in young 
and older adults (Figure S4c), as previous studies reported that ser-
ine was required for T-cell proliferation to regulate adaptive immu-
nity (Ma et al., 2017).

Among metabolites in the bile acid synthesis pathway, our data 
show that the secondary bile acids hyodeoxycholate and ursodeoxy-
cholate increase after vaccination in young and older adults at Day 
7. Deoxycholate increases in young subjects after vaccination at Day 
7, while glycolithocholate increases in older adults at Days 2 and 7 
(Figure  2d, Table  S1). A previous study suggested that the loss of 
secondary bile acids is associated with NLRP3 inflammasome and 
AP-1-associated gene JUN and FOS activation, which may imply a 

negative correlation between secondary bile acids and NLRP3/JUN/
FOS (Hagan & Cortese,  2019). Consistent with this, we observed 
downregulated gene expression for NLRP3 post-vaccine in young 
and old subjects. However, JUN and FOS expression were upregu-
lated in older subjects (Figure S4d), an observation consistent with 
studies suggesting that secondary bile acids (Fu & Coulter, 2019) and 
AP-1 transcription factors (Qiao et al., 2016) are associated with pro-
inflammatory signaling.

Other metabolites exhibited differences in abundance between 
the two age groups after vaccination. For example, metabolism of 
α-linolenic and linoleic acids, as well as fatty acyl carnitines and cho-
lesteryl esters, is significantly decreased in younger subjects on Day 
7 (Figure  2e–g). In contrast, in older adults these metabolites are 
either unaffected (α-linolenic and linoleic acid metabolism) or largely 
increased (fatty acyl carnitines and cholesteryl esters) (Figure 2e–
g). Other metabolites such as triacylglycerol (TAGs) metabolites that 
changed significantly after vaccination in the older cohort, show the 
opposite trend in young adults (Figure  2h). This may reflect a dif-
ferential balance in fatty acid synthesis/fatty acid oxidation in older 
versus younger adults.

To identify enriched gene functions from our differentially ex-
pressed genes, we analyzed BTMs. Among the most notable age-
dependent changes were the modules enriched in T cells (I) (M7.0), 
enriched in T cells (II) (M223), and signaling in T cells (I) (M35.0), as 
well as enriched in NK cells (I) (M7.2) and (II) (M157) and NK cell sur-
face signature (S1), all of which were upregulated in the older group 
after vaccination (Figure S4c).

2.3  |  Molecular signatures associated with 
response to vaccination in young subjects

To examine changes in metabolite profiles in the context of vaccine 
response among young subjects, we identified DAMs in young HRs 
and LRs at Days 2, 7, and 28 after flu vaccination compared with base-
line values. We identified a total of 103 DAMs across all time points 
(Figure 3a). The highest number of differentially abundant metabolites 
in HR belong to amino acid and tryptophan metabolism, alpha-linolenic 
and linoleic acid metabolism, and metabolism of medium-chain and 
long-chain fatty acids. The differences we observed among young HR/
LRs were mostly nominally significant with an FDR > 0.1, with the ex-
ception of L-glutamic acid and serotonin. In young HRs L-tryptophan, 
5-Hydroxy-L-tryptophan, and indoleacetic acid were increased after 
vaccination at Day 28 (Figure 3b, Table S2); this upward trend was only 
observed in younger and not older subjects. Since tryptophan catabo-
lism through the kynurenine pathway suppresses T-cell responses, the 
higher levels of these tryptophan metabolites could be consistent with 
a stronger T-cell response in HR (Platten et al., 2019). We observed op-
posing trends at Day 28 in α-linolenic acid and linoleic acid metabolism 
and medium-chain and long-chain fatty acids, with a decrease after 
vaccination occurring at Day 28 in young HRs (Figure 3c). This group 
of metabolites includes seven polyunsaturated fatty acids (PUFAs: 
arachidonic acid, linoleic acid, gamma-linolenic acid, eicosapentaenoic 

TA B L E  1 Clinical characteristics of older and young subjects

Group
Older 
(N = 17)

Young 
(N = 16) p-Value

Age

Median [MAD] 72 [5.9] 27 [3] 1.4e-07

Gender

Female 59% (10) 56% (9) ns

Male 41% (7) 44% (7)

Response

HR 41% (7) 38% (6) ns

LR 47% (8) 50% (8)

ND 12% (2) 12% (2)

BMI

Median [MAD] 27.4 [3.3] 22 [1.5] 0.006

Mean [SD] 28.5 [5.7] 23.5 [3.3]

Race

White 82% (14) 75% (12) ns

Asian 5.9% (1) 12% (2)

Black or African 
American

12% (2) 0% (0)

Other/Unknown 0% (0) 12% (2)

Note: Continuous measures (Age and BMI): Kolmogorov–Smirnov test. 
Categorical measures (Gender, Response, and Race): Chi-square test.
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F I G U R E  2 Differential molecular signatures induced by flu vaccination in young and old groups. (a) Differentially abundant metabolite 
levels (absolute value of fold change ≥1.2, p < 0.05, and FDR < 0.2) at Day 2, Day 7, and Day 28 post-vaccination relative to Day 0 in young 
and old groups. Selected metabolite classes are shown. Molecular signatures in the following pathways show similar trends in young and 
older groups: (b) purine metabolism, (c) glycine and serine metabolism, (d) bile acid biosynthesis. Molecular signatures in the following 
pathways show differing trends in young and older groups: (e) alpha-linolenic acid and linoleic acid metabolism, (f) steroid esters, (g) 
carnitine metabolites and (h) triacylglycerol. Results for AMP, ADP, and ATP appear in both (b) and (c) as they are members of both pathways. 
Color labels correspond to indicated log2FC. Gold color labels in the right of panel d represent the primary bile acids and gray color labels 
represent the secondary bile acids. *FDR < 0.1, **FDR < 0.05.

F I G U R E  3 Molecular signatures associated with response to vaccination in young subjects. (a) Differentially abundant metabolite levels 
(absolute value of fold change ≥1.2, p < 0.05, and FDR < 0.2) at Day 2, Day 7, and Day 28 post-vaccination relative to Day 0 for HR and LR 
groups. (b, c) Molecular signatures for the top differential metabolic pathways in young HR and LR (b) Amino acids & tryptophan Metabolism. 
(c) Alpha linolenic acid and linoleic acid metabolism & medium-chain and long-chain fatty acids. The metabolites that belong to PUFA 
metabolites are gamma-linolenic acid, linoleic acid, alpha-linolenic acid, docosahexaenoic acid, arachidonic acid, 8,11,14-Eicosatrienoic acid, 
and Eicosapentaenoic acid. Gold color labels in the right of panel c represent the PUFA metabolites. Color labels correspond to indicated 
log2FC. +FDR < 0.2, *FDR < 0.1, **FDR < 0.05.
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acid, alpha-linolenic acid, 8,11,14-eicosatrienoic acid, and docosahex-
aenoic acid), most of which decrease after vaccination at Day 28 in the 
young HR group (except eicosapentaenoic acid) (Figure 3c, Table S2). 
BTM profiles of young HR and LR showed an upregulation of genes 
involved in dendritic cell activation (II) (M165), type I interferon re-
sponse (M127), and viral sensing and immunity; IRF2 targets network 
(I) (M111.0 and M111.1) in HR patients at Day 2 post-vaccination 
(Figure S5a). A previous study indicated that dendritic cells (DCs) are 
important in initiating long-term adaptive immunity during flu vacci-
nation (Athale & Banchereau, 2017) with induction of plasmacytoid 
DCs (pDCs) that secreted type I interferons (IFNs). Young HR also 
showed upregulation of genes involved in B cell memory B at Day 7 
(Figure S5a), which coincides with the typical appearance of antibody-
secreting cells following influenza vaccination.

2.4  |  Molecular signatures associated with 
response to vaccination in older subjects

Differentially abundant metabolites in older HRs and LRs were also iden-
tified at Days 2, 7, and 28 after flu vaccination by comparison with Day 
0. A total of 255 DAMs were identified across all time points (Figure 4a, 
Table S2). Medium chain fatty acid biosynthesis (Figure 4b) and steroid-
related metabolites (Figure 4c) show similar trends in older HR vs LR 
groups, although changes only reached significance in HRs. Caprylic 
acid and capric acid are medium-chain fatty acids that decreased after 
vaccination in the older HR cohort. Medium chain fatty acids are ben-
eficial to human health as a source of energy for cells and their anti-
bacterial and antiviral activity (Fletcher & Meredith, 2020; Huang & 
Tsai, 2014); however, their function in the response to influenza vac-
cine is unclear. Most sterol metabolites also showed similarities with an 
upward trend in both older HRs and LRs, but most significant changes 
again occur in HRs. The sterol-related metabolites belong to the cho-
lesteryl esters and are involved in reverse cholesterol transport. The 
increase in these metabolites after vaccination in the older HR group 
suggests that vaccination increased storage of cholesterol as cholesteryl 
esters. Glycerophospholipids (Figure 4d) show differing trends among 
responder groups, significantly increasing across post-vaccination time 
points in HRs while they trend downward in LRs. The BTM profiles of 
old adults suggested a picture that is very different from that observed 
in the young cohort. Older HR had overall less induction of BTMs com-
pared to young HR (Figure S5b); in contrast, older LR seem to promote 
a late NK and T cell-based response (Figure S5b). In common with young 
LR, older LR individuals share a BTM signature for protein folding and 
phosphatidylinositol metabolism (Figure S5b), which was implicated in 
response to the live attenuated varicella-zoster vaccine (Li et al., 2017).

2.5  |  Integrated metabolomic and transcriptomic 
signature identifies high responder signatures

We have identified metabolites that are quantitatively differen-
tial in the older and young cohorts with high and low responder 

profiles to flu vaccination (Figure  3a and Figure  4a). Next, we 
performed sparse partial least squared (sPLS) correlation analysis 
of the differentially abundant metabolites in the high responder 
group to identify possible correlations of these metabolites with 
gene expression profiles found in young and older HR. We selected 
the results of sPLS dimension 1 with strong correlations (R ≥ 0.4). 
Figure 5a shows two different clusters of genes and metabolites in 
young HR, including those with inverse correlations. The metabo-
lites identified in our analysis could be classified into four major 
groups: polyunsaturated fatty acids (PUFAs), monounsaturated 
fatty acids (MUFAs), saturated fatty acids (SFA), and others. Genes 
could also be classified into four major groups: immunity, protein 
binding, metabolic process, and others. We analyzed how these 
metabolites and genes correlate during the response to influenza 
vaccination and found that metabolites shown in the upper left 
part of Figure 5a increased significantly at Day 28 post-vaccination 
while the metabolites shown in the lower right part of Figure 5a 
decreased on Day 28 post-vaccination (Figure  5b). These differ-
ences in metabolite-transcript correlates were also observed at 
Days 2 and 7 post-vaccination, but they did not reach statistical 
significance. Our previous results in Figure 2e indicated that PUFAs 
significantly decreased in the young but not in the older cohort. In 
young adults, we found that PUFAs are significantly reduced at Day 
28 in the high responder group, while in the low responder group, 
this decrease is reached early at Day 7 (Figure 3c). Furthermore, 
we found several genes with immune response function: CD1D, 
MAP3K8, EP300, LYN, MERTK, and METTL3, involved in the regu-
lation of T-cell activation that had a positive correlation with the 
abundance of PUFAs. In contrast, several genes involved in neu-
trophil degranulation (R-HSA-6798695), like BST2, CAPN1, STOM, 
and TMEM30A showed negative correlation with the abundance of 
PUFAs (Figure 5a, Figure S6a, Table S3). This suggests that broad 
depletion of PUFAs in HR subjects at Day 28 could be related to the 
immune response to influenza vaccination.

For sPLS correlation analysis in the old HR cohort (Figure 5c,d), 
metabolites were classified into six major groups: glycerophospho-
lipids, steroids, TAGs, amino acids, diacylglycerols (DAGs), and oth-
ers. Genes were classified into five major groups: immunity, protein 
binding, metabolic process, endocytosis, and others. The results 
show metabolites with significantly decreased abundance at Days 
7 and 28 post-vaccination in the upper left and metabolites that 
were significantly increased at these timepoints in the lower right 
panel. Six Immunity 2 group genes (MX1, OAS3, IFITM3, RSAD2, 
LDLR, and IFI44) were involved in interferon alpha/beta signaling 
(R-HSA-909733), response to virus (GO:0016032), and viral pro-
cesses (GO:0009615), and one (KCTD12) was involved in mitotic 
cell cycle in stimulated CD4 T cells (M4.11) (Figure 5c, Figure S6b, 
Table  S3). These genes showed positive correlation with TAGs/
DAGs but negative correlation with glycerophospholipids and ste-
rols. Glycerophospholipid abundance has been associated with an 
inflammatory phenotype (Köberlin & Snijder, 2015), and a previous 
study found that glycerophospholipids are increased in response to 
fungal infection (Wu et al., 2021). These findings may imply that the 
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F I G U R E  4 Molecular signatures associated with response to vaccination in older subjects. (a) Differentially abundant metabolite levels 
(absolute value of fold change ≥1.2, p < 0.05, and FDR < 0.2) at Day 2, Day 7, and Day 28 post-vaccination relative to Day 0 in HR and LR 
groups. (b–d) Molecular signatures for the top differential metabolic pathways in old HR and LR: fatty acid biosynthesis, cholesteryl esters, 
and glycerophospholipids. Color labels correspond to indicated log2FC. +FDR < 0.2, *FDR < 0.1, **FDR < 0.05.
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F I G U R E  5 Integrated metabolomic and transcriptomic correlation and network in young and older high responders. Sparse Partial Least 
Squares Regression (sPLS) was used for simultaneous variable selection in the transcriptomics and metabolomics data sets in young (a, b) and 
older (c, d) HR. (a, c) Correlation networks of genes categorized by function and metabolites categorized by class. (b) Differentially abundant 
metabolites from (a). (d) Differentially abundant metabolites from (c). +FDR < 0.2, *FDR < 0.1, **FDR < 0.05.
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increased levels of glycerophospholipids in older HRs were associ-
ated with a strong response to flu vaccination.

3  |  DISCUSSION

We used a systems vaccinology approach to study the response to 
influenza vaccination and found that both young and older subjects 
develop an antibody response to immunization using different im-
munometabolic paths. Our study suggests that the main variable in 
response to influenza vaccination is age (Figure 1c), a finding that is in 
agreement with previous studies (Furman & Jojic, 2013; Haschemi & 
Kosma, 2012; Kennedy & Ovsyannikova, 2016; Nakaya et al., 2011; 
Rogers et al., 2019; Thakar et al.,  2015; Tsang et al.,  2014; Voigt 
et al., 2019). The differences we observed reflect a differential met-
abolic baseline of young versus older adults. Conversely, humans, 
like most animals in nature, are not immunologically naive. At Day 
0, younger individuals had higher levels of fatty acids and fatty acid 
conjugates, as well as glycerophospholipids and steroid esters, when 
compared to older adults (Figure S2). The difference in abundance 
of fatty acids and PUFAs could be a common feature of aging in 
mammals, since a similar signature with a decrease in serum fatty 
acids was also observed in aging mice (Tomás-Loba et al., 2013). In 
contrast, older adults had an increase in triacylglycerols and prod-
ucts of amino acid metabolism (Figure S2). This included C-glycosyl-
tryptophan, a metabolite of tryptophan that strongly correlates with 
age (Menni et al., 2013).

Our younger and older cohorts had no significant baseline dif-
ferences for serine or glycine metabolites; these amino acids are 
obtained from extracellular sources such as diet and are required 
for effector T-cell proliferation (Ma et al.,  2017). Serine metabolic 
genes are associated with a strong response to influenza vaccination 
(Tsang et al., 2014). However, older individuals showed significantly 
elevated levels of these amino acids after vaccination, suggesting 
that serine is not being consumed or is being synthesized de novo. 
In support of the latter view, the transcriptome signature in older 
individuals showed an increase in expression of serine biosynthetic 
enzymes (Figure S3b). Thus, the mechanisms to generate an immune 
response to the influenza vaccine in older cohorts may not be related 
to increased T-cell proliferation as serine is accumulating instead of 
being consumed. Conversely, serine and glycine are limiting factors 
in the synthesis of glutathione, an antioxidant which is essential for 
regulatory T-cell function (Kurniawan et al., 2020).

Purines have pleiotropic effects in immune cells, particularly in 
the activation of naive and effector T cells (Cekic & Linden, 2016) 
and modulation of purine metabolic genes has been correlated with 
response to influenza vaccine (Tsang et al.,  2014). While baseline 
levels of purine metabolites were similar in our young and older 
cohorts, purine metabolism exhibited age-specific changes after 
influenza immunization. Young adults had increased levels of ade-
nosine and guanosine derivatives on Day 7, while older individuals 
had increased levels of hypoxanthine and xanthine, catabolic sal-
vage pathway products of adenine and guanine. This suggests that 

older individuals are consuming adenine and guanine and converting 
them into xanthine and hypoxanthine which could be recycled to 
adenine and guanine through the salvage pathway. Indeed, others 
have found that levels of hypoxanthine and xanthine increase with 
age in humans (Zieliński et al., 2019). In aging athletes, there is also 
increased activity of the enzyme HGPRT that recycles hypoxanthine 
and xanthine to adenine (Zieliński et al.,  2019). Conversely, older 
individuals may be deficient in the synthesis of purines from the 
de novo pathway and therefore need to use the salvage pathway 
to obtain sufficient adenine and guanine. Indeed, while young sub-
jects express increased levels of PPAT and GART, the rate-limiting 
enzymes for the purine biosynthetic pathway, older cohorts do not 
upregulate the expression of these enzymes (Figure  S4a). These 
patterns may reflect metabolic adaptations required by older in-
dividuals to mount an effective immune response upon influenza 
vaccination. Furthermore, these purine intermediates may have 
immunologic functions of their own that shape the differentiated 
immune responses of old and young individuals. For example, ino-
sine may have a pro-inflammatory function in innate immunity as a 
known activator of the TLR7 and TLR8 pathway in mice (Sarvestani 
et al., 2014). Further research will be necessary to define the impact 
of purine metabolites in the response to influenza vaccines in older 
individuals.

We found a higher level of fatty acyl carnitines at baseline in 
older adults prior to influenza vaccination when compared to their 
younger counterparts (Table  S4), which may reflect an elevated 
basal level of fatty acid oxidation. Notably, fatty acid oxidation is 
important for the generation of memory CD8+ T cells in mice (Pearce 
et al., 2009), and increased basal fatty acid oxidation is observed 
in CD4+ T cells of older individuals (>65 years) (Yanes et al., 2019). 
Upon immunization, the levels of fatty acyl carnitines dropped in 
young cohorts while increasing further in older cohorts (Figure 2f). It 
is possible that fatty acid oxidation is increased in younger individu-
als after vaccination, leading to a depletion of fatty acyl carnitines in 
this population. In contrast, accumulation of fatty acyl carnitines in 
older subjects suggests that, while the conversion of fatty acids into 
fatty acyl carnitines is enhanced in older individuals, their down-
stream catabolism is not increased at the same rate after influenza 
vaccination. The functional significance of these findings in older 
individuals is not clear.

Many triacylglycerols (TAGs) were higher at baseline (Figure S2) 
but reduced in older individuals after vaccination (Figure 2h), sug-
gesting that these lipids are being depleted at a rate that is higher 
than their de novo synthesis. TAG synthesis is essential for T-cell 
memory responses in mice (Cui & Staron, 2015) and has been as-
sociated with regulatory T-cell function in humans (Howie & ten 
Bokum, 2019). In addition to potentially contributing to T-cell mem-
ory responses, these metabolites may play a role in dampening the 
inflammatory response in older individuals, perhaps working in con-
cert with the glutathione biosynthetic pathway promoting regula-
tory T-cell function.

We found a modest increase of the primary bile acids cho-
late and taurocholate at Day 2 and Day 7 post-vaccine in older 
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and young individuals, respectively (Figure  2d). Young individuals 
showed an increase in the secondary bile acid deoxycholate at Day 
7 (Figure  2d). Bile acids are catabolic products of cholesterol and 
can be divided between primary bile acids generated by the liver, 
and secondary bile acids that result from modification of primary 
bile acids by gut microbiota. Different types of bile acids bind to 
the nuclear hormone receptor FXR, either as agonists (Makishima 
et al., 1999; Parks et al., 1999) or as antagonists (Sayin et al., 2013). 
The presence of secondary and FXR antagonist bile acids was pre-
viously associated with systemic inflammation (Fu & Coulter, 2019). 
We also observed reduction in the levels of polyunsaturated fatty 
acids (PUFAs) in young compared to older individuals (Figure  2e). 
These fatty acids are precursors for many immunomodulatory mole-
cules with both pro- and anti-inflammatory activities like prostaglan-
dins, leukotrienes, resolvins, and maresins (Serhan, 2014; Serhan & 
Petasis, 2011). In this sense, it is interesting that in HRs there is an 
enrichment of sterol esters, conjugates of mainly cholesterol and 
fatty acids, that are composed of PUFAs compared to more satu-
rated fatty acids (Figure 4c). These sterol esters may be used as stor-
age for PUFAs that can be used to mount a robust immune response 
to influenza vaccine.

Transcriptomic analyses suggest that myeloid signatures are 
largely suppressed in young and older subjects after vaccination 
(Figure  S4c). Older subjects tend to have higher signatures for 
NK cells (Nakaya et al.,  2015), accumulate mature active CD56dim 
CD16+ NK cells (Solana et al., 2014), and show a reduced signature 
for type I interferon responses (Figure  S4c). The proinflammatory 
gene expression profile starts to be downregulated at Days 7 to 28 
post-vaccination (Figure S4c). In contrast, the phosphatidylinositol 
signature increases in young subjects, reaching a peak at Day 28, 
while older cohorts start from a higher level at Day 2 but this is de-
creased at later time points (Figure S4c). In BTM analysis, enriched in 
T cells (I) (M7.0) is upregulated at Day 7 in older subjects. The T-cell 
activation (II) (M7.3) module is only upregulated in young subjects 
at Day 28 post-vaccination, while in older subjects it is upregulated 
early on (Day 2) (Figure S4c). Previous studies showed that an in-
crease in phosphatidylinositol metabolism after vaccination cor-
relates with high T-cell response to the shingles Zostavax vaccine (Li 
et al., 2017). Our findings suggest that the phosphatidylinositol me-
tabolism module is upregulated early on after flu vaccination in older 
adults and more specifically on those in the high responder group 
(Figure S5b). This correlates well with the early upregulation in older 
adults of the T-cell activation module at Day 2 and the signaling in T 
cells and enriched in T-cell modules at Day 7 (Figure S4c).

Comparison of HR and LR in the young and older adults sug-
gests that older HRs have a subtle and early response to vaccina-
tion that is at the transcriptomic level nearly undetectable in our 
sample (Figure S5b). This contrasts with both young HR that show 
an immune response driven by strong antigen presentation and IFN 
response (Figure S5a). Glycerophospholipids are widely distributed 
in biological membranes and may play a role in immune responses 
(O'Donnell et al., 2018). Our study found changes in levels of phos-
phatidylethanolamines (PEs) and phosphatidylcholines (PCs) in early 

timepoints of the immune response to flu vaccine in older HRs 
(Figure 4d). PE is important in signaling and metabolic pathways that 
stimulate T-cell activation (Ma et al., 2021), and alterations in PE and 
PC levels have been observed in autoimmune diseases (Mendes-
Frias et al., 2020; Zeng et al., 2017). Increase in both PC and PE was 
associated with differentiation of naive T cells into TFH cells (Fu & 
Guy, 2021) and may impact robustness of vaccine response (Deng & 
Chen, 2021; Koutsakos & Wheatley, 2018).

In contrast to the young cohort, in older patients the decline in 
immune response with age results in impaired effector T-cell devel-
opment, functionality, and long-term memory generation (Gustafson 
& Kim, 2020). Notably, we found that older LRs tend to promote 
late NK and T cell-based responses, while young LRs seem to have 
a problem in building a response to the vaccine. Thus, our study 
suggests that older subjects may rely more on memory or cross-
memory responses than younger adults, who seem to rely more on 
immune responses driven by antigen presentation and IFN signaling. 
This is consistent with previous studies describing elevated memory 
T cells (Furman & Jojic, 2013) and expansion of atypical memory B 
cells (CD10−CD20+CD21−CD27−) and age-associated B cells (ABC, 
CD21−T-bet+CD11c+) in older populations (Nipper et al., 2018). It is 
possible that most older adults in the LR group may still develop a 
strong memory component but this may occur at a later time point 
than Day 28 post-vaccine. Future studies are needed to clarify 
whether older LRs form a delayed memory response and whether 
they would benefit from vaccine boosters or higher dosages. 
Furthermore, there is a need to identify the underlying causes of LR 
in young adults. These differences could be explored to increase the 
potency of vaccines for young and old subjects.

Young HRs show high correlation of immunomodulatory PUFAs 
(Serhan,  2014; Serhan & Petasis, 2011) and genes involved in the 
regulation of T-cell responses. Unsaturated fatty acids are pre-
cursors of prostaglandins and eicosanoids and have known immu-
nomodulatory properties (Serhan,  2014; Serhan & Petasis,  2011), 
including stimulation of IL-1α (Freigang & Ampenberger, 2013) and 
involvement in T-cell immunity (Nicolaou et al., 2014); therefore, it is 
possible that the broad depletion of PUFAs observed in HR subjects 
is caused by and contributes to a robust immune response to vacci-
nation. Furthermore, in young LR, PUFAs are quickly consumed and 
most likely are not available in enough concentrations to generate 
such a strong response. Indeed, high dietary intake of PUFAs can 
affect the immune response to vaccines in mice (Hogenkamp & van 
Vlies, 2011) and arachidonic acid, a PUFA, can increase response to 
flu vaccine in humans (Kelley & Taylor,  1997). Further studies are 
needed to determine whether increasing PUFAs in the diet of young 
individuals can contribute to higher response rates to flu vaccine. 
In contrast, older HRs showed a strong correlation with genes that 
are involved in rapid virus clearance, repression of the IFN response 
and positive regulation of the CD4 T-cell response with the presence 
of TAG/DAGs; in this regard, TAGs are associated with CD8+ T-cell 
memory in mice (Cui & Staron, 2015).

Taken together, the metabolomic and transcriptomic signature 
after vaccination with influenza shows that young subjects rely on 



    |  13 of 18CHOU et al.

strong T- and B-cell activation, which is supported by our previous 
transcriptomic analysis of influenza vaccine response (HIPC-CHI 
Signatures Project Team and HIPC-I Consortium, 2017). Accordingly, 
young groups show increased levels of adenosine and guanine, 
phosphatidylinositol metabolism and reduced levels of fatty acyl 
carnitines, suggesting increased fatty acid oxidation. Younger co-
horts show higher plasma levels of secondary and FXR antagonistic 
bile acids, an indication of possible systemic inflammatory response. 
In contrast, older cohorts accumulate amino acids serine and glycine 
which are involved in glutathione metabolism essential for regula-
tory T-cell function. Older subjects had lower increases over time in 
phosphatidylinositol metabolism and elevated consumption of TAGs, 
which in humans has been associated with regulatory T-cell function 
(Howie & ten Bokum, 2019). Thus, older individuals may rely more 
on T-cell memory and regulatory T cells for effective responses to in-
fluenza vaccinations. Future trials will benefit from targeting young 
and older cohorts differently in influenza vaccine studies.

3.1  |  Limitations of this study

Although the cohort used in this study is well characterized and was 
used to successfully establish associations between gene signatures 
and flu vaccine response, our study has several limitations. One limi-
tation is the limited subject sample size, which may reduce our ability 
to establish strong correlations between molecular signatures and 
response to flu vaccination. Furthermore, sample size also limited 
our ability to detect several metabolites that have small, but signifi-
cant, contributions to the response to flu vaccine. Future studies 
with larger sample size would increase our chances to identify less 
robust, but potentially biologically relevant, gene and metabolite 
signatures using more strict statistical tests. Another limitation is 
that a considerable number of features identified in our untargeted 
metabolomics approach are chemically unidentified, and therefore, 
our analysis is limited to known, well-annotated metabolites. Future 
studies will be required to identify molecular signatures originat-
ing from these unknown metabolites, to define their structures and 
identify biologically meaningful metabolite-gene associations. These 
studies can only be achieved using well-characterized cohorts of 
vaccinated patients, such as the one we describe in this study.

4  |  METHODS

4.1  |  Sample collection and preparation

4.1.1  |  Plasma sample isolation

A cohort comprised of 33 individuals (16 young individuals, age 21–
30) and 17 older adults (age ≥65 years) was studied. These individuals 
were recruited and studied at the gene expression level in consecu-
tive influenza vaccine seasons (2010–2011 and 2011–2012) in which 
the composition of the influenza vaccine was identical (Thakar 

et al., 2015). Participants were consented under a research proto-
col approved by the Human Subjects Research Protection Program 
of the Yale School of Medicine. Participants with an acute illness 
2 weeks prior to recruitment were excluded from the study, as were 
individuals with primary or acquired immune-deficiency, use of im-
munomodulating medications including steroids or chemotherapy, a 
history of malignancy other than localized skin or prostate cancer, or 
a history of cirrhosis or renal failure requiring hemodialysis. Whole 
blood was collected on pre-vaccination Day 0 and post-vaccination 
Day 2, Day 7, and Day 28 into EDTA lavender top tubes and plasma 
supernatant without cell debris were stored at −80°C until further 
use.

4.1.2  |  HAI titer measurement and response end 
point definition

Hemagglutination inhibition assays were performed as previously 
described (Thakar et al., 2015). maxRBA an automated metric that 
adjusts for inverse correlations between HAI titer fold changes 
and baseline titers was used to classify high responders (HR) and 
low responders (LR) to vaccination as previously described (Avey & 
Mohanty, 2020). Briefly, young and older cohorts were separated, 
and endpoints were calculated in each season and each age group 
separately. Baseline and fold changes were log2 transformed, and 
an exponential curve was fit to the fold change versus baseline ti-
ters for each strain. Next, the residuals were calculated, and for each 
subject, the maximum residual across all strains was selected as the 
maxRBA. Finally, HR and LR were defined as the top and bottom 
40th percentile of maxRBA, respectively. A total of 13 HR and 16 LR 
(6 HR and 8 LR in young subjects and 7 HR and 8 LR in older subjects) 
and 4 with an indeterminate response were classified using this ap-
proach. The code to calculate maxRBA is available in the Calculate_
maxRBA() function from the titer R package (https://bitbu​cket.org/
klein​stein/​titer).

4.1.3  |  LC–MS untargeted metabolomics profiling 
from plasma samples

The plasma metabolomic profiles of participants were measured 
from plasma samples using a combination of four LC–MS meth-
ods that measure complementary metabolites: two methods that 
measure polar metabolites, a method that measures metabolites 
of intermediate polarity (e.g., fatty acids and bile acids), and a lipid 
profiling method (see below for method-specific details). For the 
analysis queue in each method, participants were randomized and 
longitudinal samples from each participant were randomized and 
analyzed as a group. As the aliquots for the LC–MS methods were 
prepared from each sample, a pooled sample was created by com-
bining an additional aliquot from each sample into a 50 ml conical 
centrifuge tube. The pooled sample was mixed by vortexing and sub-
aliquoted to create pooled plasma QC samples, which were injected 

https://bitbucket.org/kleinstein/titer
https://bitbucket.org/kleinstein/titer
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in pairs at intervals of approximately 20 samples for QC and data 
standardization.

Samples were prepared for each method using extraction proce-
dures that are matched for use with the chromatography conditions. 
Data were acquired using LC–MS systems consisting of Nexera X2 
U-HPLC systems (Shimadzu Scientific Instruments) coupled to Q 
Exactive/Exactive Plus orbitrap mass spectrometers (Thermo Fisher 
Scientific).

LC–MS Method 1 – HILIC-pos
Positive ion mode MS analyses of polar metabolites. LC–MS samples 
were prepared from or plasma (10 μl) via protein precipitation with 
the addition of nine volumes (90 μl) of 74.9:24.9:0.2 v/v/v acetoni-
trile/methanol/formic acid containing stable isotope-labeled inter-
nal standards (valine-d8, Isotec; and phenylalanine-d8, Cambridge 
Isotope Laboratories). The samples were centrifuged (10 min, 9000 g, 
4°C), and the supernatants injected directly onto a 150 × 2 mm 
Atlantis HILIC column (Waters). The column was eluted isocratically 
at a flow rate of 250 μl/min with 5% mobile phase A (10 mM ammo-
nium formate and 0.1% formic acid in water) for 1 min followed by a 
linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic 
acid) over 10 min. The column was kept at 30°C. MS analyses were 
carried out using electrospray ionization in the positive ion mode 
using full scan analysis over m/z 70–800 at 70,000 resolution and 
3 Hz data acquisition rate. Additional MS settings are as follows: ion 
spray voltage, 3.5  kV; capillary temperature, 350°C; probe heater 
temperature, 300°C; sheath gas, 40; auxiliary gas, 15; and S-lens RF 
level 40.

LC–MS Method 2 – HILIC-neg
Negative ion mode MS analysis of polar metabolites. LC–MS sam-
ples were prepared from plasma (30 μl) via protein precipitation with 
the addition of four volumes (120 μl) of 80% methanol containing 
inosine-15N4, thymine-d4, and glycocholate-d4 internal standards 
(Cambridge Isotope Laboratories). The samples were centrifuged 
(10 min, 9000 g, 4°C), and the supernatants were injected directly 
onto a 150 × 2.0 mm Luna NH2 column (Phenomenex). The column 
was eluted at a flow rate of 400 μl/min with initial conditions of 10% 
mobile phase A (20 mM ammonium acetate and 20 mM ammonium 
hydroxide in water) and 90% mobile phase B (10 mM ammonium hy-
droxide in 75:25 v/v acetonitrile/methanol) followed by a 10 min lin-
ear gradient to 100% mobile phase A. The column temperature was 
kept at 40°C. MS analyses were carried out using electrospray ioni-
zation in the negative ion mode using full scan analysis over m/z 70–
750 at 70,000 resolution and 3 Hz data acquisition rate. Additional 
MS settings are as follows: ion spray voltage, −3.0 kV; capillary tem-
perature, 350°C; probe heater temperature, 325°C; sheath gas, 55; 
auxiliary gas, 10; and S-lens RF level 50.

LC–MS Method 3 – C18-neg
Negative ion mode analysis of metabolites of intermediate polar-
ity (e.g., bile acids and free fatty acids). Plasma (30 μl) was extracted 
using 90 μl of methanol containing PGE2-d4 as an internal standard 

(Cayman Chemical Co.) and centrifuged (10 min, 9000 g, 4°C). The 
supernatants (10  μl) were injected onto a 150 × 2.1 mm ACQUITY 
BEH C18 column (Waters). The column was eluted isocratically at 
a flow rate of 450 μl/min with 20% mobile phase A (0.01% formic 
acid in water) for 3 min followed by a linear gradient to 100% mobile 
phase B (0.01% acetic acid in acetonitrile) over 12 min. The column 
temperature was kept at 45°C. MS analyses were carried out using 
electrospray ionization in the negative ion mode using full scan anal-
ysis over m/z 70–850 at 70,000 resolution and 3 Hz data acquisi-
tion rate. Additional MS settings are as follows: ion spray voltage, 
−3.5  kV; capillary temperature, 320°C; probe heater temperature, 
300°C; sheath gas, 45; auxiliary gas, 10; and S-lens RF level 60.

LC–MS Method 4 – C8-pos
Lipids (polar and nonpolar) were extracted from plasma (10 μl) using 
190 μl of isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-gly
cero-3-phosphocholine as an internal standard (Avanti Polar Lipids). 
After centrifugation (10 min, 9000 g, ambient temperature), super-
natants (10 μl) were injected directly onto a 100 × 2.1 mm ACQUITY 
BEH C8 column (1.7 μm; Waters). The column was eluted at a flow 
rate of 450 μl/min isocratically for 1 minute at 80% mobile phase 
A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic 
acid), followed by a linear gradient to 80% mobile-phase B (99.9:0.1 
vol/vol methanol/acetic acid) over 2 min, a linear gradient to 100% 
mobile phase B over 7 min, and then 3 min at 100% mobile phase 
B. The column temperature was kept at 30°C. MS analyses were 
carried out using electrospray ionization in the positive ion mode 
using full scan analysis over m/z 200–1100 at 70,000 resolution and 
3 Hz data acquisition rate. Additional MS settings are as follows: ion 
spray voltage, 3.0  kV; capillary temperature, 300°C; probe heater 
temperature, 300°C; sheath gas, 50; auxiliary gas, 15; and S-lens RF 
level 60.

Data processing
Nontargeted data were processed using Progenesis QI software (v 
2.0, Nonlinear Dynamics) to detect and de-isotope peaks, perform 
chromatographic retention time alignment, and integrate peak areas. 
Identification of nontargeted metabolite LC–MS peaks were con-
ducted by matching measured retention times (RT) and mass to charge 
ratios (m/z) to mixtures of reference metabolites analyzed in each 
batch. Additionally, we matched unknown features in the data set to 
an internal database of >600 compounds that have been character-
ized using the Broad Institute methods. This library contains com-
pounds that have been confirmed by matching their RT, m/z, and MS/
MS fragmentation patterns in multiple human biofluids in previous 
studies using authentic reference standards. To annotate unknowns 
in this dataset using this library, we used in-house alignment scripts to 
adjust the RT and m/z and match study unknowns to the compound 
library. No MS/MS was generated for this study. Temporal drift was 
monitored and normalized with the intensities of features measured 
in one of the doubly injected QC pooled reference samples using a 
nearest neighbor approach, where sample intensities in each QC pool 
are used to scale their closest samples in the batch. To determine the 



    |  15 of 18CHOU et al.

analytical precision of the method for each measured metabolite, we 
computed coefficients of variation (CV) for annotated and unknown 
features using the remaining QC pools not used for scaling temporal 
drifts. The average CV values per method for annotated compounds 
ranged from 7% to 11%, which is within the historical analytical pre-
cision of the methods applied. Finally, principal component analyses 
were generated and scores plots used to determine the presence of 
any potential outlying samples.

4.2  |  Metabolomics computational and 
statistical analysis

The relative intensities of metabolites were pre-processed, normal-
ized, and log-transformed for further analysis. Metabolites that were 
not detected (NA) in more than 50% of samples were removed, and 
the remaining NA metabolites were imputed with half of the minimum 
value of that metabolite. The metabolites were median normalized 
within samples, and their intensities were scaled by multiplying by 106 
and log-transforming to stabilize variance. To investigate how factors 
such as age, gender, response, and time point contributed to the vari-
ation of metabolomics profiles, we used lme4, an R package for linear 
mixed models, to calculate means of the F value of each factor (fixed 
effects) and the same subjects as random effects (log2(normalized me-
tabolite) ~ AgeGroup + Gender + Response + TimePoint + (1|subject)). 
We also used principal component analyses to characterize each group 
of factors. To identify differentially abundant metabolites pre- (Day 0) 
and post-vaccination (Days 2, 7, and 28) in young and older subjects, 
we used a lme4 to fit a linear mixed model with the time point as fixed 
effect and the same subjects as random effects (log2(normalized me-
tabolite) ~ TimePoint + (1|subject)). Linear mixed models were applied 
on normalized log2-transformed data. One-way ANOVA testing was 
used to evaluate p-values at each time point (Days 2, 7, and 28) rela-
tive to baseline (Day 0). p-Values were corrected for multiple compari-
sons using the Storey method (Storey & Tibshirani, 2003) to calculate 
false discovery rate (FDR). Differentially abundant metabolites (DAM) 
were defined by thresholds of p-value <0.05 and |FC| ≥ 1.2 with results 
displayed for FDR of <0.05, <0.1, and <0.2 in figures, as indicated. 
Hierarchical clustering and heatmap generation were performed by 
Morpheus (https://softw​are.broad​insti​tute.org/morph​eus) based on 
Euclidean distance or by R using heatmap.3 library. To identify similar 
and closely related metabolites, we use human metabolome database 
(HMDB) (Wishart et al.,  2018) to classify the metabolites into the 
same subclass or pathways.

4.3  |  Transcriptomics samples and 
computational and statistical analysis

Transcriptomics data from the same cohort were downloaded from 
GSE59654. We selected data from the same 33 subjects matching 
those for which we obtained metabolomics data. Transcriptomic 
data were available for all 33 subjects at Day 0 and Day 7, while for 

Days 2 and 28 data were available for 29 and 31 subjects, respec-
tively. Differentially expressed genes (DEGs) across different time 
points were determined using the limma package with GEO2R in R. 
DEGs were defined by thresholds of p-value <0.05 and FC ≥ 1.25 
or ≤ 1/1.25. To identify similar gene signatures from PBMC transcrip-
tomics data, we performed Blood Transcription Modules analysis 
by BTM tools (Li et al., 2014). Fisher's exact test was performed on 
the differentially expressed gene lists for each BTM. -logp-values 
were used in the heatmap, where positive values represent modules 
enriched among the upregulated genes and the negative represent 
modules enriched in the downregulated genes. Hierarchical cluster-
ing and heatmap generation were performed by Morpheus based on 
Euclidean distance between -logP vectors.

4.4  |  Integrated analysis of metabolomics and 
transcriptomics

Sparse partial least squared was performed using mixOmics (Rohart 
et al., 2017) to identify highly positively and negatively correlated 
genes and metabolites. Matching samples from the gene and meta-
bolic profiles were first identified. Because the transcriptomic data 
for Days 2 and 28 were only available for 29 and 31 subjects, re-
spectively, the metabolic datasets also need to remove 4 and 2 un-
matched subjects, respectively, to obtain a complete set of matched 
samples. We selected the differentially abundant metabolites in 
young and old high responder groups to explore their highly cor-
related genes. We selected the top 5000 variable genes from their 
normalized profiles. Finally, these genes and metabolites were then 
fed into sPLS in the R package mixOmics to identify highly positive 
and negative correlations. The clusters of gene sets from sPLS were 
used to identify gene functions using Metascape (Zhou et al., 2019). 
The correlation networks were visualized using Cytoscape (Shannon 
et al., 2003) v3.8.2.
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