
An end-to-end model of active electrosensation1

Denis Turcu1,2, Abigail Zadina1, L.F. Abbott1,2, and Nathaniel B. Sawtell1,22

1The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, 1Department of Neuroscience, 2Kavli3

Institute for Brain Science, Columbia University, New York, New York, United States of America4

1 Abstract5

Weakly electric fish localize and identify objects by sensing distortions in a self-generated electric6

field. Fish can determine the resistance and capacitance of an object, for example, even though the7

field distortions being sensed are small and highly-dependent on object distance and size. Here we8

construct a model of the responses of the fish’s electroreceptors on the basis of experimental data,9

and we develop a model of the electric fields generated by the fish and the distortions due to objects10

of different resistances and capacitances. This provides us with an accurate and efficient method11

for generating large artificial data sets simulating fish interacting with a wide variety of objects.12

Using these sets, we train an artificial neural network (ANN), representing brain areas downstream13

of electroreceptors, to extract the 3D location, size, and electrical properties of objects. The model14

performs best if the ANN operates in two stages: first estimating object distance and size and then15

using this information to extract electrical properties. This suggests a specific form of modularity16

in the electrosensory system that can be tested experimentally and highlights the potential of end-17

to-end modeling for studies of sensory processing.18

2 Introduction19

Weakly electric fish sense their environment by emitting electrical fields known as electric organ20

discharges [1]. The electric field around the fish associated with an electric organ discharge, which21
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we refer to as the EOD, consists of a basal EOD, which is the field that would exist in empty water,22

plus the electric field induced due to nearby objects, called the electric image, which appears as a23

distortion in the basal EOD. Nearby objects with electrical resistances higher than the surrounding24

water (e.g. rocks) result in less EOD-induced current flow near the object, producing a local decrease25

in the amplitude of the EOD. Living objects (e.g. small invertebrates that are prey for the fish),26

on the other hand, have lower electrical resistances than water and hence increase field amplitude.27

Living objects also have sizable electrical capacitances, which alters the temporal waveform of the28

EOD.29

The outcome of EOD signal processing is the remarkable ability of weakly electric fish to spatially30

localize objects and characterize their properties (including size, shape, and electrical resistance and31

capacitance) in the dark, based solely on information extracted from their EODs [2, 3, 4]. While the32

importance of localizing objects and determining their size and shape is obvious, the unique ability33

of electric fish to discriminate electrical properties is likely to be of special importance for foraging34

by aiding the fish in finding preferred prey [5]. The object-induced perturbations of the EOD35

that support electrosensation are typically small and are highly sensitive to distance (decreasing as36

1/distance4) and to object size (increasing as radius3). This limits the distances over which the fish37

can determine object properties to the multi-cm range. The species studied here, Gnathonemus38

petersii, emits pulsatile EODs of ∼ 1 V amplitude and ∼ 300 µs duration. Behavioral studies39

suggest that microvolt changes in EOD amplitude and sub-microsecond temporal distortions of the40

EOD waveform can be detected by the fish [2, 3, 4, 5]. Although the initial stages of electrosensory41

processing have been intensively studied [6, 7, 8], how information contained in subtle perturbations42

of the EOD is transformed into behaviorally meaningful representations of object location and43

identity remains largely unknown.44

The EOD is sensed by approximately 1, 000 electroreceptor organs distributed across the fish’s45

body surface, each of which contains two classes of receptors known as A- and B-cells [9]. A-46

and B-cells encode different features of the EOD (see Section 3) and project to separate regions47

of the electrosensory lobe (ELL), the first stage of electrosensory processing in the fish’s brain48

[10, 11, 12, 13]. Projections from these two regions, the medial zone (MZ) for A-cells and the49

dorsolateral zone (DLZ) for B-cells, converge in the midbrain and are subsequently processed within50
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an interconnected network of brain regions including the optic tectum, thalamus, telencephalon, and51

cerebellum [14, 15, 16].52

To investigate the processing of EOD signals, we begin by constructing models of electroreceptor53

responses and electric field generation that allow us to simulate the elctrosensation of objects with54

varying locations, sizes, and electrical properties. We then use these large simulated datasets to55

train a variety of ANN architectures to simultaneously localize objects and identify their electrical56

properties, a task solved by the fish during foraging.57

3 Results58

3.1 Measuring and modeling electroreceptor responses59

Our first goal was to develop a model of the sensory information transmitted by A- and B-type elec-60

troreceptors. Prior electrophysiological recordings have shown that A-type receptors are primarily61

sensitive to changes in EOD amplitude, whereas B-type receptors respond to both amplitude and62

waveform changes, but a precise description of the stimulus features encoded by A- and B-type63

receptors is lacking [10, 12, 13, 17]. To address this, we recorded responses in both the MZ and64

DLZ to a large set of simulated EODs designed to mimic objects with different resistances and65

capacitances (Fig 1 A). In these experiments, fish were paralyzed, blocking the action of the electric66

organ, so both the basal EOD and the distortions in it were generated artificially, triggered by elec-67

trophysiological measurement of EOD command signals. Delivered fields were recorded to verify68

that they matched the desired waveforms (Sup Fig 8). These stimuli generated prominent field69

potentials which we recorded with microelectrodes positioned at matched somatotopic locations in70

the MZ and DLZ. Based on previous results, we used the amplitude of the first negative peak of the71

LFP (henceforth called the LFP amplitude) as a proxy for the activity of individual electroreceptor72

afferent nerve fibers [18, 19, 20]. Distorting the basal EOD evoked large and reliable changes in LFP73

amplitude in both zones (Fig 1 B). We report EOD distortions and sensory responses as percentage74

differences from the basal EOD or the response to it.75

Previous studies [5, 21] have characterized distortions of the EOD due to resistive and capacitive76
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objects in terms of changes in the peak-to-peak amplitude (PP = P+N) and the positive-to-negative77

peak ratio (P/N) of the EOD waveform (Fig 1 A). Plotting LFP amplitude as a function of the PP78

and P/N values of the corresponding stimuli, we found that responses in the MZ depend primarily79

on the PP value of the stimulus (Fig 1 C, left), while those in the DLZ depend more on P/N (Fig80

1 C, right). However, the gradients of the measured responses are not truly aligned (see Section 681

for alignment details) with either of these two features (arrows in Fig 1 C).82

To provide a better description of the measured LFP responses, we constructed a model based on83

convolving the distorted EOD waveforms with two filters, one for the MZ and another for the DLZ84

Figure 1: Responses to resistive and capacitive stimuli in the medial and dorsolateral
zones of the ELL A Examples of delivered EODs. The basal EOD (green) is plotted behind
individual examples (gray) that include distorted EODs with different amplitudes and waveform
shapes, simulating the effects of objects with different electrical properties. B Example LFP re-
sponses to delivered stimuli from a single fish. The color for each trace reflects the PP amplitude
modulation for MZ (left) and the P/N ratio modulation for DLZ (right). Dashed black line marks
the timing of the EOD. Traces for each of the 56 different distorted stimuli delivered in this example
experiment are shown. C Summary of LFP responses for all stimuli in the PP and P/N feature
space, color-coded by the MZ response (left) and the DLZ response (right). Data from a single fish
from an experiment in which 240 different distorted stimuli were delivered. Arrows indicate the
directions of the gradients of MZ and DLZ responses in the feature space.
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(Fig 2 A). Because we characterize electrosensory responses by the amplitude at a single time point85

(the magnitude of the negative peak in the LFP), the convolution took the form of a projection,86

i.e. a product of the stimulus waveform and the filter, integrated over time. We also added an offset87

Figure 2: Convolutional filter model of MZ and DLZ responses. A Schematic of the model.
B Filters obtained from fitting the data for both filter types. Base EOD (black), average filter (solid
color), and individual experiments filters (light color) are shown. C Performance of the filter model
in predicting the single-trial LFP response. D Summary of LFP responses for all stimuli in the
filters feature space, color-coded by the MZ response (left) and the DLZ response (right). Data
from a single fish, same experiment shown in Fig 1 C. Arrows indicate the direction of gradients
of the responses in the feature space. E Summary across experiments of the alignment of the LFP
responses with the PP & P/N features (left) and the filters features (right) (n = 13, MZ; n = 12,
DLZ).
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parameter to this sum. We determined the filter shapes and offsets by minimizing the squared88

difference between the prediction of the filter model and the data across EOD stimuli. Artificial89

stimulus noise was included as a regularizer in this minimization, with the appropriate noise value90

chosen by cross-validation (Sup Fig 9 A). The resulting model explains 92% of the variance across91

single trial responses (Fig 2 C) and provides interpretable convolutional filters that are robust across92

experiments (Fig 2 B). The filter shapes suggest that A-type receptors weigh and sum the three93

peaks of the EOD waveform (Fig 2 B, left), while the B-type receptors are sensitive to temporal94

features of the EOD waveform, including the slope and timing of the zero-crossing (Fig 2 B, right).95

As in Fig 1 C, we plotted the experimental responses as a function of stimulus features, only96

now using the projections of the stimuli onto the two filters as our axes (Fig 2 D). The MZ and97

DLZ responses are better aligned (Fig 2 E) with the features extracted from our model (arrows in98

Fig 2 D) than with the PP and P/N feature space (arrows in Fig 1 C). We also compared our filters99

with the results of a principal component analysis (PCA) on the set of experimentally delivered100

stimuli. Two principal components (PCs) explain most of the variance across stimuli (Sup Fig 9101

B), matching the number of sensory cell types. Moreover, the first two PCs resemble the filters102

extracted by our model (Sup Fig 9 C, compare to Fig 2 B), with the main difference being that the103

PCs are required to be orthogonal by construction.104

3.2 From objects to EODs105

To study the neural computations underlying realistic electrosensory tasks, we need to expand106

beyond the experimental data to compute responses from the entire electroreceptor array for objects107

that vary in their electrical properties, size, and location. Detailed numerical models have been108

developed to compute the spatial patterns of object-induced modulations of the basal EOD [22, 23].109

While these models have proven extremely useful for studies of electrosensory systems [22, 24, 25,110

26, 27, 28], they have two significant drawbacks for our purposes. First, they are static methods,111

meaning they do not simulate objects with capacitive properties. Second, they are computationally112

intensive [29, 30], making them poorly suited for generating the large amounts of simulated sensory113

input required for training ANN models. An alternative is approximate analytic models [31, 32]114
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or electric circuit models [33], but these do not provide the full flexibility needed for our purposes.115

We therefore developed a field model framework (see Appendix A) that can quickly and flexibly116

generate realistic EOD patterns. Our framework captures the spatial geometry of the fish and117

objects (Fig 3 A), using the field model fitted to data in [34]. It captures the EOD distortions118

due to both resistive and capacitive properties of objects (Fig 3 B) by solving the dipole distortion119

problem [31, 32] in a computationally efficient way tailored to this system (Appendix A). It can120

also reproduce the spatial pattern of an object’s electrical image on the body of the fish (Fig 3 C).121

This framework can simulate many fish-object conditions at approximately 50 times real-time on a122

personal computer.123

3.3 Characterization of object electrical properties124

It has been assumed that the electrosensory system derives the resistance and capacitive properties125

of objects by combining input from A- and B-type receptors, possibly in the midbrain [14, 15].126

However, this process has not been studied directly with neural recordings, so it remains unclear127

Figure 3: An efficient electric field model for simulating effects of resistive and capac-
itive objects. A 3D visualization of the fish near a spherical object in the aquarium. The fish
is covered in model electroreceptor organs and an electric image induced by the object is shown.
Equipotential surfaces around the fish during the EOD capture the funneling effect due to the shape
of the fish. B Example distortions of the EOD due to objects of different electrical properties. The
basal EOD is shown in dashed-black. Purely resistive objects distort the amplitude of the EOD,
either increasing (distortion due to metal object with small resistance in green) or decreasing (dis-
tortion due to rock object with large resistance in orange) the amplitude. Living objects with low
resistance and capacitive properties distort both the amplitude and the waveform of the basal EOD
(blue). C Close-up of the electric image on the skin of the fish visible in A. Modulation is shown
as percentage of the basal signal. Individual simulated receptors are visible as green circles on the
skin of the simulated fish.
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how the signals conveyed by A- and B-type receptors support this computation. We therefore128

examined this process using a modeling approach. We began by training a small, feedforward ANN129

to extract resistive and capacitive properties of a 2.5 cm spherical object centered at a fixed distance130

of 2.25 cm from the fish, based on simulated input from a single electroreceptor organ on the skin131

containing both A- and B-type receptor cells.132

We presented the ANN with A- and B-cell inputs to a range of resistances and capacitances that133

would likely be encountered by a fish (Fig 4 A). We chose the range and the logarithmic spacing of134

the resistances and capacitances we simulated based on previous experiments [2, 3, 5]. The network135

successfully extracts these electrical properties with good accuracy, especially for capacitance (Fig136

4 B,C). The ANN can also extract resistance and capacitance on held-out individual trials, when137

provided with the experimental LFP waveforms recorded in the MZ and DLZ as input (prediction138

error on held-out data was below 5% from true capacitance or resistance values).139

Figure 4: Electric properties for objects of fixed location and size. A Objects with different
resistances and capacitances occupy different regions of the feature space defined by the MZ and DLZ
filters. The size of the spherical object (1 cm) and distance from the fish (0.5 cm) were held fixed.
Lines of constant resistance (blue palette) and constant capacitance (orange palette) are shown.
The origin in modulation space corresponds to no object present. Resistance and capacitance in
all figures are reported as the base 10 log of these quantities in Ω or F . B Performance of ANN
extracting the resistance of different objects with fixed spatial properties. C Equivalent to B but
for capacitance.
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3.4 Object localization and characterization140

The ANN model described in the previous section extracted the capacitance and resistance of141

an object of fixed size and at a fixed distance. Foraging fish must solve a more complex task,142

determining the 3D location and size of an object, as well as its electrical properties. The difficulty143

of this problem can be illustrated by plotting MZ-DLZ feature maps (Fig. 4 A) as a function of144

the distance to and size of the object generating the EOD distortion (Fig 5 A,B). To obtain these145

results, we simulated EOD distortions due to objects with varying resistances and capacitances146

at different distances from the fish (Fig 5 A) and for objects of varying size (Fig 5 B). We chose147

distance and size values that are typically encountered in experiments [35, 36, 37, 38, 39]. Fish-148

object distance and object size have a large effect on EOD distortions. From Appendix A, equation149

7, it follows that the feature space scaling with inverse distance follows a polynomial of degree 4 for150

objects within a body length of the fish, and the feature space scaling with object radius follows a151

polynomial of degree 3. These scalings have a dramatic effect on the performance of the models we152

now consider.153

Previous work defined an “electric color line” to capture distance effects [40, 41]. In this work, the154

EOD modulations produced by an object with fixed electrical properties and fixed size, but located155

at different distances from the fish, were plotted in the PP and P/N feature space (Fig 1 C). It156

was noted that points corresponding to specific objects at different distances lay on approximately157

straight lines. Along the corresponding electric color line an object can be perceived as having the158

same “color” independent of how far away it is from the fish, in analogy to visual colors with a159

range of physical characteristics appearing similar. Our electric field model replicates this result,160

showing that the ratio between the qualitative PP & P/N features fall roughly on a line for the161

same object when the distance to the fish is varied, but this “line” has some curvature (Fig 5 C).162

This is because the features PP & P/N are not defined by linear operations on the stimulus. Our163

electroreceptor model is linear, and the electric color line in the filter (as opposed to PP & P/N)164

feature space is truly linear (Fig 5 D).165

We modeled the extraction of both spatial and electric object properties end-to-end using the166

physics model to generate electrosensory data and the electroreceptor model to provide the sensory167
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input. Prior work indicated that electrical properties are best encoded in the responses of the most168

modulated receptors, e.g. those close to the peak response across the skin surface (see electric image169

on skin in Fig 3 A). On the other hand, spatial properties are encoded in spatial features of the170

electric image across the fish’s skin, such as its 2D location and overall width and height [42, 43, 38].171

Thus, in this case, we modeled receptors across the full surface of the fish (not a single receptor172

Figure 5: Feature space for active electrosensation. A Multiple feature spaces formed by the
modulations of the MZ and DLZ filters due to objects with varying resistance and capacitance, with
each horizontal plane (different colors) corresponding to a different distance from the fish. Object
size and lateral location are fixed. The feature space shrinks by a degree-4 polynomial with inverse
distance. B Similar to A, except each horizontal plane corresponds to the a different object radius,
with the distance and lateral location fixed. The feature space increases by a degree-3 polynomial
with radius. C Amplitude and waveform modulations of the stimulus for objects of fixed size,
but of different electrical properties and distances from the fish. Individual points are colored by
the distance to the fish and represent distinct combinations of resistance and capacitance. Points
corresponding to fixed electric properties but different distances defining electric color lines. In the
PP and PN feature space, the electric color lines are not straight — average R2 for all 20 shown
lines is 0.93 with standard deviation 0.16. D Similar to C, but in the filters feature space. The
electric color line is perfectly straight in this space — average R2 for all 20 shown lines is 1.00 with
standard deviation < 10−11.
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as for the ANN above). To accommodate this array of detectors, we used a more sophisticated173

variant of an ANN, a convolutional neural network (CNN), to extract object properties. The174

spatial convolutional filters of the CNN integrate information across the skin array, and the CNN175

processes this information in sequential stages of convolutional and feedforward layers. We reasoned176

that CNNs would be suitable for this task on the basis of their success in vision tasks. We tested177

performance of CNNs with varying numbers of layers and parameters to cover the model space from178

underparameterized to overparameterized and ensure robustness of results (Section 6).179

Figure 6: Object localization and characterization by feedforward neural network mod-
els. All results reported here are based on cross-validated trials that were not part of training
dataset. A Performance of spatial-unaware models on extracting the resistance (top) and capaci-
tance (bottom) from the sensory input. This performance shows a binary classification bias of the
models extracting the resistance, due to the scaling rule that preserves angles, but not distances
in the feature space. The scaling rule angle-preserving effect impairs capacitance performance,
explained in part by orientation of the equi-capacitance lines in Fig 4 A). Example performance
for one model is shown. The average (± standard deviation) R2 for each property across n = 10
models was: resistance – 0.621±0.008, capacitance – 0.353±0.019. B Full end-to-end CNN models’
performance on spatial and electrical properties of simulated objects. Example performance for one
model is shown. The average (± standard deviation) R2 for each property across n = 10 models
was: lateral position – 0.938 ± 0.017, vertical position – 0.925 ± 0.017, distance – 0.919 ± 0.027,
radius – 0.825± 0.019, resistance – 0.785± 0.021, capacitance – 0.542± 0.018.
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We first trained the end-to-end CNN models to extract the electrical properties of simulated180

objects from sensory input, with no specific information about the spatial variables provided during181

training (no spatial information was included in the loss function, although spatial properties affect182

the sensory input). The resulting networks perform poorly on extracting electrical properties (Fig183

6 A) compared to the previous results when distance to and size were constant (Fig 4 B, C). This184

is not surprising given the high degree of sensitivity of the feature space to distance and size (Fig185

5 A,B). Interestingly, properties of the feature space also account for the structure of the errors186

in these networks. For resistance, the models distinguish between large value and small values,187

effectively performing a binary classification. This can be attributed to the fact that scaling of the188

feature space when distance and size vary preserves angles, but not magnitudes. This allows models189

to use linear decision boundaries that pass through the origin of the feature space (Fig 4 A) for190

classification. Based on the lines of equal resistance, splitting the predictions into large and small191

values results in better than chance performance. For capacitance, the same principle applies, but192

the equal-capacitance lines are not as favorable for linear decision boundaries passing through the193

origin, so performance is worse than for resistance.194

We next examined if this problem could be solved by training the end-to-end CNN models on195

the full task, including both spatial and electrical information during training. The resulting models196

perform well on spatial localization on the extended range of simulated objects chosen to match197

typical experiments (Fig 6 B left & center). However, they show the same structured errors for the198

electrical properties (Fig 6 B right) as the electrical-only models, albeit with somewhat improved199

performance. We reasoned that, even when a CNN is able to extract spatial properties, it may not200

be able to fully use this information to solve the problems raised by the severe scaling of the feature201

space, which makes extracting electrical properties hard. In addition, given the steep dependence202

of the scaling, the CNN’s estimates of spatial properties may not be accurate enough to provide203

sufficient robustness. In fact, both of these effects contribute to network performance.204

To address the problem of using spatial information to inform electrical feature extraction, we205

combined a CNN trained to determine the spatial features of an object with the ANN that we used206

previously to extract purely electrical properties (Section 3.3), with one new wrinkle. The small,207

downstream ANN was pre-trained to learn appropriate multiplicative rules to scale its electrical208
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feature space on the basis of object distance and radius values (Section 6.3). Then the CNN fed209

its extracted distance and radius values into the downstream ANN, which then applied the learned210

scaling rule and extracted electrical properties. This hybrid model slightly improved performance211

for capacitance extraction, but did not improve resistance performance (Fig 7 A). Nevertheless, the212

downstream ANN implements the scaling rules successfully and, importantly, it accurately extracts213

the electrical properties of simulated objects with widely varying locations and sizes (Fig 7 B) when214

the true values of distance and size were fed into it to drive the scaling. This network’s performance215

is comparable with behavioral performance of fish throughout the same orders of magnitude and216

for similar logarithmic scaling of resistance and capacitance values that were tested in previous217

experiments [2, 3]. This indicates that the downstream ANN requires accurate estimates of distance218

to and size of the object to perform well, more accurate than the CNN model can extract from219

a single EOD. Fish likely use multiple EODs to localize and characterize objects; they have been220

observed to emit EODs at rates up to 80 Hz when inspecting objects [44, 36]. This suggests that221

they might use multiple samples to sharpen their spatial estimates not only to improve spatial222

localization, but also to better judge the electrical properties of objects.223

Figure 7: Characterization of object electrical properties by hybrid models. A Perfor-
mance of a hybrid CNN-ANN model with internal spatial estimates from the CNN fed to an ANN
that has learned the scaling rule of the feature space and extracts the resistance (left) and capac-
itance (right) from the sensory input. The average (± standard deviation) R2 for each property
across n = 10 models was: resistance – 0.779± 0.017, capacitance – 0.597± 0.031. B Performance
of the trained ANN component of the hybrid model when it receives the true spatial values on
extracting the resistance (left) and capacitance (right) from the sensory input. The average (±
standard deviation) R2 for each property across n = 10 models was: resistance – 0.857 ± 0.019,
capacitance – 0.797 ± 0.09. All results here are based on cross-validated trials that were not part
of training dataset.
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4 Discussion224

We have constructed an end-to-end model for extracting spatial and electric properties of objects225

from EOD signals. In these models, sensory transduction of the EOD was based on stimulus-filters226

extracted from neural responses evoked by A- and B-type electroreceptor afferents to simulated227

EODs mimicking the effects of objects with a range of properties. The extracted filters resemble228

the principal components of the sensory data, correspond to orthogonal directions in a feature space,229

and generate features that fall along a straight line for objects of fixed resistance and capacitance230

but varying distances from the fish. These desirable characteristics suggest that the A- and B-type231

receptors are well adapted to the requirements of electrolocation.232

We found that extracting both electric and spatial properties of an object over a range of values is233

a difficult task for artificial networks, as it must be for the neural circuitry of the fish. The difficulty234

arises primarily from the high degree of sensitivity of the electrical feature space to distance and235

size [45]. These spatial aspects scale the electrical feature space, which allows for categorization of236

objects but makes determining resistance and capacitance values difficult. We solved this problem237

by pre-training a network to implement distance- and size-dependent scaling operations. Using238

object distance and radius as an input to scale the feature space to a consistent size simplifies the239

task that the ANN must solve to extract the resistance and capacitance of the simulated object.240

Extracting all of the properties of an object, both spatial and electrical, independently is difficult241

due to strong space-electrical interactions. Pre-training about the nature of these interactions, in242

particular the existence of a multiplicative scaling of the electrical feature space by distance and243

radius, resolves this difficulty. It is critical, however, that the internally computed distance and244

radius be accurate because the scaling is highly sensitive to spatial properties. This insight suggests245

that an internally driven multiplicative operation could be implemented within downstream brain246

regions that process electrosensory information. In addition, the idea of using internal computations247

to drive multiplicative scaling could map onto other systems, such as vision, audition or in artificial248

intelligence applications, that must deal with scaling effects. For example, internal scaling of images249

to a standard size on the basis of brain-derived distance estimates could be a useful strategy in vision250

[46, 47].251
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Do the brains of electric fish implement anything resembling the two-stage computation de-252

scribed above? Electrophysiological studies of active electrolocation in Gnathonemus petersii, as253

well as other species of African pulse-type electric fish, have primarily focused on the first stage of254

electrosensory in the ELL [19, 48, 49]. In contrast, very little is known about the neural represen-255

tation of object size, distance, or electrical properties, which presumably emerge at higher stages256

of electrosensory processing. Anatomical tracing suggests that information from the MZ and DLZ257

is fused into a single somatotopic map in a midbrain structure known as the torus semicircularis258

[14, 15, 16]. Studies of the jamming avoidance response in the South American wave-type electric259

fish (a behavior that allows fish to avoid electric interference from conspecific EODs), recorded260

from individual midbrain neurons that combine input from amplitude- and phase-coding pathways261

(similar to the A- and B-type receptor pathways discussed here) [50]. However, little is known262

about the potential roles of such neurons in object processing [51]. Midbrain neurons project to263

”higher” electrosensory processing stages in the optic tectum, cerebellum, and thalamus and also264

send projections back to the ELL via the preeminential nucleus [14, 52]. This latter pathway has265

been shown to adaptively shape ELL responses to looming and receding objects in South American266

weakly electric fish [53]. Our work suggests that signals corresponding to spatial and electrical prop-267

erties of objects may be processed, at least initially, in separate modules and only later combined.268

A goal for future studies is to combine the end-to-end modeling approaches developed here with269

multi-area electrophysiological recordings, ideally in freely swimming fish, to characterize where and270

how representations of object electrical properties, size, and distance are formed.271
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6 Methods440

6.1 Experimental model and subject details441

6.1.1 Animals442

Male and female wild-caught Mormyrid fish of the species Gnathonemus petersii were used in these443

experiments (fish were 7–12 cm in length, of unknown age, and sex was not specifically selected for).444

Fish were housed in 60 gallon tanks in groups of 5–20. Water conductivity was maintained between445

70–150 µS both in the fish’s home tanks and during experiments. All experiments performed in446

this study adhere to the American Physiological Society’s Guiding Principles in the Care and Use447

of Animals and were approved by the Institutional Animal Care and Use Committee of Columbia448

University.449

6.1.2 Method details450

6.1.2.1 Surgical procedures451

For surgery to expose the brain for recording, fish were anesthetized (MS:222, 1:25,000) and held452

against a foam pad. Skin on the dorsal surface of the head was removed and a long-lasting local453

anesthetic (0.75% Bupivacaine) was applied to the wound margins. A plastic rod was cemented to454

the anterior portion of the skull to secure the head. The posterior portion of the skull overlying455

the ELL was removed. Gallamine triethiodide (Flaxedil) was given at the end of the surgery456

(∼ 20 µg/cm of body length) and the anesthetic was removed. Aerated water was passed over the457

fish’s gills for respiration. Paralysis blocks the effect of electromotoneurons on the electric organ,458

preventing the EOD, but the motor command signal that would normally elicit an EOD continues459

to be emitted at an average rate of 2 to 5 Hz.460

6.1.2.2 Electrophysiology461

The EOD motor command signal was recorded with a Ag-AgCl electrode placed over the electric462

organ. The command signal is the synchronized volley of electromotoneurons that would normally463

elicit an EOD in the absence of neuromuscular blockade. The command signal lasts about 3 ms and464

consists of a small negative wave followed by three larger biphasic waves. Onset of EOD command465
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was defined as the negative peak of the first large biphasic wave in the command signal. Recordings466

of local field potentials were made with low resistance (< 5 MΩ) glass microelectrodes filled with 2M467

NaCl. Signals were recorded and filtered at 3–10 kHz (Axoclamp 2B amplifier, Axon Instruments)468

and digitized at 20–40 kHz (CED power1401 hardware and Spike2 software; Cambridge Electronics469

Design, Cambridge, UK). For most experiments, recordings were made simultaneously from the MZ470

and DLZ by placing two electrodes in somatotopically matching locations in the granular layers of471

the two zones. Somatotopic location and depth within the ELL was judged based on LFP responses472

to the EOD motor command and to local electrosensory stimuli delivered by a hand-held dipole473

electrode that could be positioned over various regions of the skin.474

6.1.2.3 Electrosensory stimulation475

Simulated EODs designed to mimic objects with different resistances and capacitances were476

delivered using a stimulus isolation unit (A-M systems, model 4100) in constant current mode477

connected to a pair of carbon rods (2 mm diameter, 4 cm length) placed lengthwise (∼ 1 cm478

distance from the skin) on either side of the head of the fish. Current amplitude was adjusted for479

each fish such that the baseline stimulus evoked LFPs of ∼ 70% maximal amplitude. A baseline480

stimulus consisting of an EOD waveform measured from a discharging fish with no object present was481

delivered for ∼ 30 minutes before delivering the set of perturbed stimuli. All stimuli were triggered482

at a brief delay (4.5 ms) following the fish’s spontaneously emitted EOD motor commands.483

Three sets of simulated EODs, containing 240, 99 and 56 stimuli, were designed to approximately484

cover a small rectangular grid in the PP and P/N modulation space. One set of stimuli was used485

for each fish. Stimuli were delivered in random order in 1–2 bouts containing 10–15 repetitions of486

a distorted EOD separated by 5–10 repetitions of the baseline stimulus.487

6.2 Alignment of LFP responses with features488

The alignment of mormyromast LFP responses with the feature directions, summarized in Fig 2489

E and indicated by arrows in Fig 1 C and Fig 2 D, was computed as the average direction of the490

slope of the responses in the feature space. For each feature in a feature pair, we computed the491

slope of the LFP response with respect to that feature’s modulation, while maintaining the other492
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feature approximately constant by binning its modulation values. We used 6 bins for the results493

reported in Fig 2 E, but results were similar when using other number of bins from 4 to 8. Using494

more bins resulted in too few samples per bin, and using fewer bins broke the assumption that the495

other feature was approximately constant. We computed the gradient direction of the alignment as496

the average of the slopes across the bins.497

6.3 CNN details498

We generated electrosensory data using our field model framework to train the ANN models. The499

electrosensory dataset contained objects with six properties (3D location, radius, resistance, capac-500

itance) that were independently varied on a grid of values, with between 11 and 32 possible values501

for each property. The simulated values were selected to cover the distributions of values typically502

used in experiments for all six properties. The training dataset contained approximately 40 · 106503

simulated objects around the fish, and the validation dataset contained approximately 10 · 106 ob-504

jects. All ANN training was performed in Python using the PyTorch library [54] and the PyTorch505

Lightning library [55].506

The CNN used in Section 3.4 has the same structure as AlexNet [56, 57]. We explored a variety507

of specific architecture sizes, varying the number of parameters from approximately 200 · 103 to508

40 · 106. We varied the number of parameters by changing the number of layers, channels, and509

neurons. These hyper-parameters ranged from 2–5 convolutional layers with 8–128 channels and510

2–4 feedforward layers with 64–5120 neurons. We also applied MaxPool layer to the first and last511

convolutional layers, and dropout layers with a 0.5 dropout rate to the feedforward layers and512

trained networks using either ReLU or TanH activation functions. We used either the Adam and513

SGD optimizers with learning rates ranging from 0.0001 to 0.02. We used the mean squared error514

loss function computed on the six objects properties to train the networks. We trained the CNNs515

to convergence on training data, typically for 50 epochs with a batch size varying from 2, 000–516

35, 000. Batch size was chosen to maximize the amount of data that fit in CPU and GPU memory517

for a training step, according to the network size. We used the validation dataset to monitor the518

performance of the networks during training, and to select the best model for testing.519
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The hybrid ANN architecture is only slightly more complex than the CNN. In particular, it uses520

two separate CNN heads applied to the sensory input — the head receiving the electric image as521

input and extracting spatial properties of the object (i.e. the same CNN described above), and the522

head receiving the electric image along with spatial properties, provided either by the spatial head523

or externally, and extracting electrical properties of the object.524

The electric head of the ANN has a much simpler structure than the spatial head, with only one525

fixed spatial convolutional filter applied to the input, followed by 2–3 feedforward layers with 5–20526

units. In between the fixed spatial convolutional and the feedforward layers, this head receives the527

spatial properties (distance and radius) of the object, and processes them independently to compute528

a scaling factor for the electrical feature space. The scaling factors are learned by the network, by529

learning the coefficients of two separate polynomial functions that scale the features with distance530

and radius. The feature space is scaled by these polynomials before the feedforward layers, and the531

network is trained to extract the electrical properties of the object from the scaled feature space.532

The fixed spatial convolutional filter, combined with a MaxPool layer on the whole skin, has the533

role of finding the most modulated receptor across the skin, and focusing the network on the most534

informative features for electrical property extraction. This head of the CNN is coupled with the535

spatial head to extract all object properties.536

6.4 Code availability537

Code is available for each component of this work. The electroreceptors model code is avail-538

able at github.com/DenisTurcu/efish-receptors-model, the field model framework is available at539

github.com/DenisTurcu/efish-physics-model, and code for the localization and characterization540

models is available at github.com/DenisTurcu/efish-characteriation.541
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7 Supplementary figures542

Figure 8: Delivered and recorded stimuli. A Example of the delivered stimulus (black) and the
recorded stimulus (white) for verifying the accuracy of the simulated EOD waveforms. B Summary
of scatter points for all stimuli, where each scatter point represents the value of the stimulus at a
given time point. Inset marks the histogram of errors of the summary scatter plot.

Figure 9: Mormyromast model validation and stimuli PCA. A Validation error of the
model on held-out single-trial LFP data. This instructs the choice of the noise level in the model.
B Explained stimulus variance by the first four principal components. C The first two principal
components of the delivered stimuli.
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A Electric Field Model543

We introduce a model that can generate electrosensory data processed by the fish during active544

electrolocation. Our model is based on previous work [31, 32, 34], and includes certain extensions545

that make it suitable for our investigations. With this framework, we can simulate approximately546

500 discharges every second, about 10–100 times more than fish typically emit in free behavior. As547

such, this is suitable for generating fast and accurate electrosensory data for investigating active548

electrolocation.549

A.1 Field model details550

Electric potential measurements in the environment of weakly electric fish set the basis for modeling551

the electric field generated by the fish using the EO in their tail. [23, 24] measured the potential552

on an array of electrodes surrounding the fish and used a numerical method, boundary element553

method (BEM), to model the electric field. Other studies have used numerical methods such as554

BEM or finite element method (FEM) to model the electric field generated by weakly electric fish555

[22, 25, 26, 27, 28] because these methods are accurate and can simulate desireable features of556

the problem, such as realistic shapes and different conductivity properties for the water, insides of557

the fish, skin of the fish, and objects in the environment. These numerical methods are broadly558

designed to solve partial differential equations, such as Poisson’s equation for electrostatics that is of559

interest for this work, but they suffer from demanding large computational costs across domains of560

application [58, 59, 60], despite many efforts devoted to speeding up the computations [61, 62, 63].561

Additionally, these methods are designed to solve a static problem, but, to fully capture both562

resistive and capacitive effects of nearby objects, the electric field model should be dynamic.563

An analytic field model based on the electric field generated by the fish is more suitable for our564

investigations. [34] fitted a static multipole model based on data collected by [23, 24] that captures565

the electric potential surrounding the fish during a discharge. While [34] refers to the electric sources566

as “charges”, they based their model on the previous work of [31], where the sources are referred to567

as “currents”. The latter is more appropriate for this system because the fish and its environment568

are conductive media, where electric charges can move freely instead of remaining stationary. This569
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allows us to account for the effect of the water conductivity on the electric field generated by the fish570

[31]. Additionally, we can control the temporal waveform of the discharge via the source currents’571

amplitude during an EOD to capture the dynamic effects of both resistive and capacitive object572

properties [31]. These analytic models assume that the fish is electrically transparent with respect573

to water, but the length of the fish and of the distribution of current sources mimics the field outside574

of the fish, including the previously coined funneling effect [64]. As such, we use the formalism from575

[31] in this work, and adapt the model fitted by [34] to suit our investigations.576

We model the EOD as n + 1 pulse current point sources and sinks, collectively called sources,577

placed on a segment along the length of the fish, based on the multipole model fit by [34]. The578

sources are distributed uniformly along the whole length of the fish, L, on the mid-line of the fish.579

As an example, we assume a straight fish lying along the positive x̂− axis, and whose tail is at the580

origin. The sources are located at r⃗i = L i
n
x̂ for i ∈ {0, . . . , n}. Each source has an associated base581

magnitude mi, defined as m0 = −1 and mi =
1
n
for i ∈ {1, . . . , n}. At most times, the sources582

are inactive, but during the EOD pulse they become active, being multiplied by an appropriately583

scaled waveform I(t) = Iof(t), where f(t) is the normalized unperturbed EOD. This ensures that584

at all times, the net current generated by the fish is 0, since current point sources and sinks cancel585

out. The current flowing through one of the sources is then given by Ii(t) = miIof(t).586

The electric field in an infinite, homogeneous and isotropic conductive medium due to a source, i,587

can be computed using the current density j⃗i(r⃗, t) at a location r⃗ in the medium and the conductivity588

of the medium, σw for water in this case:589

E⃗i(r⃗, t) =
j⃗i(r⃗, t)

σw

=
Ii(t)

4πσw∥r⃗ − r⃗i∥3
(r⃗ − r⃗i). (1)

Assuming the fish is electrically transparent with respect to water, the electric field at any point590

in the medium is given by the superposition of each point current’s electric field:591

E⃗(r⃗, t) =
n∑

i=0

E⃗i(r⃗, t) =
Io
σw

f(t)F⃗ (r⃗), (2)

where F⃗ (r⃗) = 1
4π

(∑n
i=1

r⃗−r⃗i
n|r⃗−r⃗i|3 −

r⃗
r3

)
.592
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In this model, fish generate a current flow in their conductive environment, water, that gives593

rise to an electric field distribution during the discharge. Electric charges must be moving through594

the medium to generate the current flow. Therefore it is not obvious that we can simply model the595

discharge waveform by controlling the temporal amplitude of the discharge with a temporal function596

f(t), as described above and implied in [31]. Previous multipole-based models of the EOD either597

have assumed that we can, with brief discussion of this potential problem [31] or have considered a598

static model analyzing the amplitudes of stimuli only [34]. To motivate the steady-state assumption,599

we use that a charge distribution inside a conductor decays over a timescale τ = ε/σ. For water600

with σwater ≈ 100µS/cm and εwater ≈ 10−9F/m, the timescale τwater ≈ 10−7s is much shorter than601

the duration of the EOD, approximately 10−3s. Therefore, the temporal waveform of the discharge602

can be controlled by the function f(t).603

A.2 Object polarization and dipole distortions604

Objects placed in mediums with non-zero electric field distribution, and with different electrical605

properties than their own, become polarized and distort the original electric field. Here, we discuss606

the polarization of objects placed in water, close to weakly electric discharging fish, and the field607

distortions they create. [31] introduced this model for investigating object distortions in the electric608

field generated by weakly electric fish, with an integral solution to solve for the electric field dis-609

tortion due to the object. [32] solved the integral problem using Fourier analysis for the wave-type610

weakly electric fish, Apteronotus. Both of these studies have used material electrical properties, i.e.611

conductivity and relative permittivity of the object and water, to simulate object distortions, but612

experiments with weakly electric fish often use artificial objects with known macroscopic electrical613

properties, i.e. resistance and capacitance.614

Here, we adapt these previous models to our investigations of the pulse-type weakly electric fish,615

G. petersii. First, we found that the complete Fourier analysis solution from [32] is not applicable616

to the pulse-type EOD of G. petersii, for many realistic choices of object electrical properties,617

because the harmonic series does not readily converge in these scenarios. Therefore, we combine618

the Fourier analysis solution with a numerical integration solution to solve for the nearby object619
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distortion. Second, we link the material properties and macroscopic electrical properties of objects620

in our solution, bridging the gap between the two, and improving the simulation capabilities of our621

framework.622

Like [31, 32], we consider a spherical object placed in a spatially uniform, but time-varying,623

electric field. This is a good first approximation for including foreign objects, such as worms, in624

the field model because the electric field does not vary widely over the volume of the object, for625

small objects [32]. We aim to compute the electric field perturbation due to the object at any626

location in space, in particular at the locations of the mormyromast electroreceptors. To do so,627

we use the electric field generated by the EOD (Equation 2), measured at the location of the628

center of the object, r⃗obj. We assume that the object is small enough such that the uniform-field629

approximation holds. In this idealized problem, the object is placed in an spatially uniform electric630

field, E⃗(r⃗obj, t) = (Io/σw)f(t)F⃗ (r⃗obj). We use the dipole approximation to solve the field distortion631

induced by the object via Legendre series due to the azimuthal symmetry [32]. The temporal632

component of the EOD and the charge conservation boundary conditions make it simpler to solve633

the problem in the Fourier frequency domain and then invert back to the temporal domain. Let634

f̃(ω) be the Fourier transform (FT) of f(t). Then, the FT of the electric potential perturbation at635

point r⃗ due to the spherical object of radius a and location r⃗obj is:636

δ̃ϕ(r⃗, ω) =
a3Iof̃(ω)

σw∥r⃗ − r⃗obj∥3
g(iω) F⃗ (r⃗obj) · (r⃗ − r⃗obj), (3)

where g(iω) =
σobj−σw+iωεo(kobj−kw)

σobj+2σw+iωεo(kobj+2kw)
, σw and σobj are the water and object conductivities, respec-637

tively, kw and kobj are the water and object relative permittivity constants, respectively, and εo638

is the vacuum permittivity. We expand g(iω) around 0, namely g(iω) =
∑∞

j=0 gj(iω)
j. Then,639

δ̃ϕ(r⃗, ω) = a3Io
σw∥r⃗−r⃗obj∥3

F⃗ (r⃗obj) · (r⃗ − r⃗obj)
∑∞

j=0 gj(iω)
j f̃(ω). Using the inverse FT (IFT), for com-640

pactly supported functions such as f(t), we find that IFT [(iω)j f̃(ω)] = djf
dtj

. Then, the potential641

perturbation is:642

δϕ(r⃗, t) = a3Io
F⃗ (r⃗obj) · (r⃗ − r⃗obj)

σw∥r⃗ − r⃗obj∥3
φ(t), (4)
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where φ(t) =
∑∞

j=0 gj
djf
dtj

(t). Due to the brief duration of the pulse and high frequencies of the643

EOD, this series does not converge for many choices of the electrical properties σobj and kobj. We644

can separate the spatial and temporal variables, thus we plug in the FT of this dipole distortion,645

δ̃ϕ(r⃗, ω) = a3Io
F⃗ (r⃗obj)·(r⃗−r⃗obj)

σw∥r⃗−r⃗obj∥3
φ̃(ω) into the left hand side of Equation 3, to get:646

(2σw + σobj)φ̃(ω) + εo(2kw + kobj)iωφ̃(ω) = (σobj − σw)f̃(ω) + εo(kobj − kw)iωf̃(ω)
IFT
==⇒

⇒ (2σw + σobj)φ(t) + εo(2kw + kobj)
dφ

dt
= (σobj − σw)f(t) + εo(kobj − kw)

df

dt
. (5)

We convert from material properties to macroscopic electrical properties based on simple as-647

sumptions. We assume the spherical object with radius a is a resistor-capacitor object with cross648

section πa2 and length 2a, such that we estimate:649

Rw/obj =
2

πaσw/obj

and Cw/obj =
πaεokw/obj

2
(6)

and we substitute in Equation 5 to transition between material and macroscopic object properties.650

The electric field distortion is given by the spatial gradient of the potential perturbation, namely651

δE⃗(r⃗, t) = −∇⃗δϕ(r⃗, t). The azimuthal symmetry of the problem permits solving for the electric652

field perturbation using only a 2D plane which passes through the center of the object and contains653

E⃗(r⃗obj, t). The electric field perturbation in the rest of space can be obtained by rotational symmetry.654

For simplicity, we translate the system such that r⃗obj = 0⃗. Since we already solve the temporal655

component, we include it here to provide the full solution:656

δE⃗(r⃗, t) = −∇(δϕ, t) =

= −a3Io
σw

∇

(
F⃗ (r⃗obj) · r⃗

r3

)
φs(t) =

= −a3Io
σw

(
1

r3
∇(F⃗ (r⃗obj) · r⃗) + (F⃗ (r⃗obj) · r⃗)∇

1

r3

)
φs(t) =

= −a3Io
σw

(
1

r3
F⃗ (r⃗obj) + (F⃗ (r⃗obj) · r⃗)(−3)

1

r4
ˆ⃗r

)
φs(t) =

=
a3Ioφ

s(t)

σw∥r⃗∥5
(
3
(
F⃗ (r⃗obj) · r⃗

)
r⃗ − ∥r⃗∥2F⃗ (r⃗obj)

)
(7)
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Due to the mentioned coordinate translation, r⃗ is measured from the object center. Therefore, in657

the simulations, we apply the r⃗ → r⃗ − r⃗obj transformation.658

A.3 Transdermal potential659

The transdermal potential sensed by mormyromast receptors is given by the voltage drop across660

the receptor, and it is the base for the electric image formed on the skin of the fish. For a receptor661

at a location r⃗rec where the surface normal to the skin of the fish is given by n̂rec, the voltage drop662

can be computed as:663

∆Vrec(t) =
ρskin
ρw

E⃗tot(r⃗rec, t) · n̂rec, (8)

where E⃗tot(r⃗, t) = E⃗(r⃗, t) + δE⃗(r⃗, t) is the total electric field, due to both the EOD (Equation 2)664

and objects perturbations (Equation 7), if objects are present. The skin resistivity ρskin has units665

of Ωm2 because it is measured across the whole thickness of the skin for a surface patch, without666

dividing by the thickness.667
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