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Association between EBV 
serological patterns 
and lymphocytic profile of SjS 
patients support a virally triggered 
autoimmune epithelitis
Filipe Barcelos  1,2,3,4*, Catarina Martins  1,2, Ricardo Monteiro  1,2, Joana Cardigos  5,  
Tiziano Prussiani2, Miguel Sítima  2, Nuno Alves  5,6, José Vaz‑Patto  3, 
Jaime Cunha‑Branco  1,2,4,7 & Luís‑Miguel Borrego  1,2,8

Sjögren’s syndrome (SjS) is characterized by lymphocytic infiltration of exocrine glands, i.e. 
autoimmune epithelitis. Lymphocytes are central in SjS pathogenesis, with B-cell hyperactivity 
mediated by T-cells. B-cells are main targets of Epstein-Barr virus (EBV) infection, a frequently-
suggested trigger for SjS. We aimed to evaluate how the EBV infection modulates B and T-cell subsets 
in SjS, including as controls Rheumatoid arthritis patients (RA) and healthy participants (HC). SjS 
patients presented decreased CXCR5+T-cells, although IL21-secreting Tfh and Tfc cells were increased. 
Tfc were positively correlated with ESSDAI scores, suggesting their relevant role in SjS pathogenesis. 
As previously described, SjS patients showed expanded circulating naïve B-cell compartments. SjS 
patients had a higher incidence of EBV-EA-D-IgG+ antibodies, characteristic of recent EBV-infection/
reactivation. SjS patients with past infection or recent infection/reactivation showed increased 
CXCR3+Th1 and CXCR3+Tfh1 cells compared to those without active infection. SjS patients with a 
recent infection/reactivation profile presented increased transitional B-cells compared to patients with 
past infection and increased plasmablasts, compared to those without infection. Our results suggest 
EBV-infection contributes to B and T-cell differentiation towards the effector phenotypes typical of 
SjS. Local lymphocyte activation at ectopic germinal centres, mediated by Tfh and Tfc, can be EBV-
driven, perpetuating autoimmune epithelitis, which leads to gland destruction in SjS.

Sjögren’s syndrome (SjS) is a chronic systemic autoimmune disease, with an estimated prevalence between 
0.2–0.5%1, affecting predominantly middle-aged women. It is characterized by lymphocytic infiltration of the 
exocrine glands, referred to as autoimmune epithelitis2. Lachrymal and salivary glands (SG) are the most affected 
glands, originating the hallmark features of xerostomia and xerophthalmia. Extraglandular manifestations are 
common and can be caused by either lymphocytic infiltration of epithelial tissues, or immune complex disease3.

Lymphocytes are central in the pathogenesis of SjS4, and a lymphocyte profile with increased naïve B-cells 
and decrease memory B-cells is typical5, reflecting the increased migratory pathway of differentiated B-cells 
into affected organs6. A deviation of B-cell differentiation towards plasma cells has also been described in SjS7.

In SjS, T-cells infiltrate affected organs, like the SG, and support hyperactivity of B-cells8. In fact, interactions 
between T-cells and activated B-cells occur in GC-like structures developed in target tissues, such as the SG9. 
Recently, follicular helper T-cells (Tfh) have been addressed as players in SjS pathogenesis. Tfh cells are a major 
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source of interleukin (IL)-21, which mediates B-cell survival and promotes ectopic formation of germinal-
centre(GC)-like structures10. SjS patients present increased circulating Tfh cells and expanded Tfh differentiation 
in the SG11,12. Tfh cells also express the chemokine receptor X5 (CXCR5), which induces their homing towards 
lymph nodes, particularly to B-cell sites. Since the expression of CXCR5 has been encountered in CD8+ T-cells, 
the existence of a follicular cytotoxic (CD8+) T-cell subset (Tfc) is now accepted, as well as their possible role in 
the regulation of GC B-cell responses and autoantibody production13,14.

The aetiology of SjS is still poorly understood, but the concept of an infectious trigger is widely spread. Virally-
triggered autoimmunity in SjS possibly results from an antigen-driven CD4+ T-cell activation. Combined with 
a genetic predisposition to loss of tolerance, this activation process elicits a migration of both CD4+ T-cells and 
B-cells towards exocrine glands, where the expansion and formation of plasma cells occurs8. Lymphotrophic 
viruses, namely Cytomegalovirus (CMV) and Epstein-Barr virus (EBV), are strong candidates for triggering the 
disease15. EBV primary infection occurs in B lymphocytes of the oropharyngeal mucosa, where lytic and latent 
phases of the viral cycle take place. In the active lytic phase, EBV replicates and propagates, while in the latent 
phase it remains inactive in B-cells16. Viral agents also interfere with T-cell mediated responses17. In chronic 
viral infections, helper T-cells sustain cytotoxic T-cell responses as long as viral antigens persist18. Moreover, the 
proinflammatory Th1 profile, usually present in acute viral infections, is somehow replaced by Tfh in response 
to viral persistence and prolonged T-cell receptor stimulation19.

The implication of EBV in SjS is widely accepted. Mechanisms such as molecular mimicry and genetic suscep-
tibility to EBV infection can overlap with T-cell costimulatory overactivity, impaired EBV-specific T-cell response, 
cross-reactivity of anti-EBV antibodies or inhibition of B-cell apoptosis, often associated with stimulation-driven 
polyclonal and monoclonal lymphoproliferation (recently reviewed by Máslínska20). Nonetheless, the impact of 
viral infection on the typical B-cell profile and hypergammaglobulinemia observed in SjS patients needs further 
clarification. Thus, we aimed to evaluate circulating B and T-cell subsets of SjS patients and to assess their rela-
tion to the EBV background of patients.

Results
Population.  Fifty-seven SjS patients were recruited along with 20 Rheumatoid Arthritis (RA) patients and 
24 healthy controls (HC). From our cohort, we assessed EBV serology in 34 SjS patients, 20 RA patients, and 20 
HC. Participants’ characteristics are presented in Supplementary Table 1.

T‑cell subsets.  SjS patients presented lower CD4+ T-cell percentages and absolute counts than HC (p = 0.002 
and p < 0.0001, respectively). Accordingly, the absolute counts of CXCR5+ Tfh cells were also lower in the SjS 
group compared to both HC (p < 0.0001) and RA patients (p = 0.038). However, the percentages of IL21-secret-
ing CD4+ T-cells were increased in SjS patients when compared to both RA patients and HC (p < 0.0001). None-
theless, a positive correlation between the percentages of IL21+ CD4+ T-cells and the percentages of CXCR5+ Tfh 
cells (r = 0.281, p = 0.034) was observed.

CD8+ T-cells percentages were higher in SjS patients compared to HC (p = 0.001), but not absolute counts. 
Additionally, IL21-secreting CD8+ T-cells’ were increased in SjS patients when compared to both HC (p = 0.029) 
and RA patients (p < 0.001). CXCR5+CD8+ T-cells were positively correlated with ESSDAI scores (p = 0.029, 
r = 0.430) of SjS patients. Results are summarized in Table 1 and Supplementary Table 2.

B‑cell subsets.  Considering the IgD/CD27 classification, the percentages of IgD+CD27− B-cells (naïve) were 
higher in SjS patients when compared to HC (p = 0.028) and RA patients (p = 0.043), and SjS patients also pre-
sented higher absolute counts of this subset compared to RA (p = 0.015). Total memory B-cells (CD27+IgD+/−) 
and unswitched memory B-cells (CD27+IgD+) were lower in SjS patients compared to HC (p = 0.001). However, 
only absolute counts of switched memory B-cells (CD27+IgD−) were lower in SjS compared to HC (p < 0.001), 
and no differences were observed towards RA patients.

Using the Bm1-5 classification, B-cells were classified as Bm1, Bm2, Bm2′, Bm3 + 4, eBm5, and Bm5 subsets21. 
The percentages of Bm1 cells were significantly lower in SjS compared to RA (p = 0.005) and HC (p = 0.008), and 
the absolute counts were also significantly lower in SjS (p = 0.002) compared to HC. Bm2 (naïve) and Bm2′ (tran-
sitional) percentages were significantly higher in SjS compared to RA patients (p = 0.015 for Bm2 and p = 0.041 for 
Bm2′), and Bm2′ absolute counts followed the same trend (SjS vs RA; p = 0.003). Lower percentages (p = 0.037) 
and absolute values (p < 0.001) of eBm5 cells were found in SjS when compared to HC. As for Bm5 cells, SjS 
patients presented lower percentages than RA (p = 0.011), and lower absolute counts than HC (p = 0.001). The 
results are summarized in Table 1 and Supplementary Table 2.

EBV serological markers.  All patients and controls were negative for anti-VCA IgM and anti-EA IgA, 
except for 1 HC that presented borderline levels for anti-EA IgA. All samples were positive for anti-VCA IgG, 
except for 2 SjS patients, who showed negative values for these antibodies. Most patients and HC showed posi-
tive values for anti-EBNA IgG (76.5% of SjS; 80.0% of RA and 85.0% of HC), and negative values for anti-VCA 
IgA (79.4% of SjS; 75.0% of RA and 80.0% of HC), without significant differences between groups. Interestingly, 
for anti-EA IgG, significant differences were observed between SjS patients and HC (32.4% in SjS; 20.0% in RA; 
5.0% in HC). The results are presented in Table 2.

EBV serological patterns in SjS patients.  Recognizing that SjS patients presented an increased prev-
alence of Anti-EBV EA-D IgG and also an important presence of anti-EBNA IgG, we further divided these 
patients into 3 subgroups according to the serological EBV profile observed: G1 (n = 18), previous infection (EA-
IgG–, EBNA IgG +); G2 (n = 11), recent infection/reactivation (EA IgG + , EBNA IgG + /-), and G3 (n = 5), no 
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serological evidence of active infection (EA IgG–, EBNA IgG–)20. Demographic and clinical data are presented 
in Table 3.

SjS patients with recent infection/reactivation markers (G2) had earlier disease manifestations and shorter 
disease duration.

Half of the patients from group G1 and 2/3 of those in group G2 had active disease at the time of recruitment, 
with G1 patients showing higher ESSDAI scores than G2 patients. The lowest ESSDAI scores were observed in G3 
patients. Skin involvement was more frequent in G2 patients. Parotid enlargement and Raynaud’s phenomenon 

Table 1.   Percentages of T and B-cell subsets in all groups. T and B cells subsets’ percentages presented in 
mean ± standard deviation. Bold numbers highlight the populations that were significantly different. Kruskal–
Wallis test was applied for statistical significance. #  Tfh1 and Tfh17 are represented as percentages among 
CXCR5+ Tfh cells. SjS Sjögren’s syndrome, RA rheumatoid arthritis, HC healthy controls.

Percentages SjS RA HC p value

T-cell subsets

T-cells 74.97 [69.14–78.43] 80.25 [71.59–82.54] 74.71 [70.11–79.57] 0.151

CD4 T-cells 61.23 [53.09–67.65] 66.26 [52.80–71.62] 69.09 [60.83–75.89] 0.006

CXCR5+ Tfh 18.44 [14.69–23.56] 20.00 [15.48–25.47] 20.80 [17.38–22.93] 0.502

Tfh1# 36.23 [30.18–41.25] 28.64 [23.87–38.20] 31.65 [27.30–35.47] 0.014

Tfh17# 21.15 [16.63–26.72] 24.92 [17.08–29.57] 20.88 [17.57–29.11] 0.405

IL-21+ 12.41 [8.25–14.92] 8.98 [7.32–11.39] 9.69 [6.32–11.94] 0.031

IL-17+ 2.20 [1.46–3.17] 2.43 [1.20–3.90] 2.40 [1.72–6.74] 0.750

IL-21+ IL-17+ 0.67 [0.50–0.94] 0.71 [0.34–0.94] 0.68 [0.28–1.09] 0.829

CD8 T-cells 38.40 [31.88–46.92] 33.74 [28.38–47.21] 30.90 [23.44–39.17] 0.012

CXCR5+ Tfc 2.53 [1.99–3.60] 1.98 [1.42–3.69] 3.44 [1.98–3.80] 0.456

IL-21+ 4.05 [2.31–5.65] 2.32 [1.15–3.03] 2.79 [0.97–4.40] 0.001

IL-17+ 0.89 [0.56–1.40] 1.06 [0.74–1.80] 1.14 [0.75–2.08] 0.217

IL-21+ IL-17+ 0.27 [0.14–0.45] 0.18 [0.09–0.59] 0.33 [0.16–0.75] 0.350

B-cell subsets

B-cells 9.73 [6.87–13.34] 6.38 [4.40–8.60] 10.40 [8.57–13.65] < 0.001

Naïve 66.58 [51.84–77.34] 55.80 [30.28–69.42] 53.01 [43.22–69.21] 0.030

Memory 29.46 [20.23–44.44] 32.17 [25.38–56.76] 44.45 [27.37–54.71] 0.032

Unswitched memory 13.64 [8.91–22.57] 15.99 [10.80–27.53] 21.61 [14.57–32.20] 0.029

Switched memory 14.50 [10.00–21.85] 17.41 [13.59–30.69] 19.52 [13.72–26.48] 0.107

Double negative 2.21 [1.51–4.10] 5.59 [2.33–7.74] 2.07 [1.44–2.93] 0.006

Bm1 9.60 [5.62–15.63] 14.27 [11.19–21.66] 13.86 [10.12–22.68] 0.003

Bm2 60.32 [48.75–67.10] 48.81 [31.48–63.13] 53.57 [47.42–61.74] 0.036

Bm2′ 8.08 [3.72–13.44] 3.97 [1.87–9.91] 5.03 [3.46–8.20] 0.053

Bm3 + 4 1.40 [0.93–3.57] 1.61 [0.82–3.52] 1.19 [0.94–1.97] 0.476

eBm5 8.85 [6.07–12.79] 10.90 [8.28–14.26] 11.76 [8.26–15.69] 0.082

Bm5 6.87 [4.40–13.07] 17.14 [7.42–26.14] 8.86 [6.81–11.98] 0.006

Table 2.   EBV serological evaluation in SjS, RA and HC. Results for the different anti-EBV antibodies in the 
different patient groups (positive/negative for quantitative assays; positive/borderline/negative for semi-
quantitative assays). SjS Sjögren’s syndrome, RA rheumatoid arthritis, HC healthy controls. *p < 0.05, for SjS 
versus HC (Fisher’s exact test); n.s., non-significant.

Group
SjS
(n = 34)

RA
(n = 20)

HC
(n = 20) p value

IgG antibodies—quantitative assays (positive/negative)

EBV CA IgG +  32/2 20/0 20/0 n.s

EBV EA IgG +  11/23 4/16 1/19 0.022*

EBV EBNA IgG +  26/8 16/4 17/3 n.s

IgA/IgM antibodies—semiquantitative assays (positive/borderline/negative)

EBV CA IgA 1/6/27 2/3/15 3/1/16 n.s

EBV CA IgM 0/0/34 0/0/20 0/0 /20 n.s

EBV EA IgA 0/0/34 0/0/20 0/1/19 n.s
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were not documented in G3 patients. A higher proportion of G2 patients presented increased gammaglobulin, 
with higher mean IgG compared to G1 and G3 (1.52 g/dl vs 1.42 g/dl vs 1.29 g/dl, respectively). None of the 
abovementioned differences reached statistical significance, though.

Regarding T-cells, G1 and G2 patients presented increased CXCR3+ CD4+ T cells (Th1) cells and CXCR3+ 
CXCR5+ CD4+ T cells (Tfh1) compared to G3 (Th1: G1vsG3, p = 0.121, and G2vsG3, p = 0.009; Tfh1: G1vsG3, 
p = 0.003, and G2vsG3, p = 0.066).

As for B-cells, transitional Bm2′ cells were augmented in G2 patients compared to G1 (p = 0.024). Moreover, 
plasmablasts (Bm3 + Bm4) were increased in G1 and G2 patients compared to G3 (%, G1vsG3, p = 0.088 and 
G2vsG3, p = 0.003; absolute counts, G1vsG3, p = 0.020 and G2vsG3, p = 0.003).

These data are presented in Table 4 and Supplementary Table 3.

Table 3.   Characterization of SjS patients and of SjS subgroups with distinct EBV serology. Patient’s 
characteristics are represented as number of occurrences (n) and percentages (%). Whenever there were 
missing values, percentages reflect the number of occurrences over the number of patients tested for the 
item. Ocular evaluation included Schirmer’s test and corneal staining score. The oral signs item consisted 
of a decreased unstimulated salivary flow. Focus score was defined as the number of lymphocyte aggregates 
(≥ 50 cells) per 4 mm2 of glandular area of the biopsy sample. Joint symptoms include arthritis and joint pain 
of inflammatory origin, but only cases that would score in the articular domain of ESSDAI were considered 
as extra-glandular disease. Likewise, in some patients skin involvement (which not included xerosis) was not 
considered as extra-glandular disease if it would not score in the cutaneous domain of ESSDAI. Clinically 
active disease was defined as activity in any ESSDAI domain, except the hematologic and biologic. SjS primary 
Sjögren’s syndrome, F female, M male, y years, SSA/SSB Sjögren’s syndrome A/B antibody, ANA antinuclear 
antibody, RF rheumatoid factor, ESSDAI,EULAR Sjögren’s syndrome disease activity index.

Sjögren’s syndrome
n=34

Distinct EBV serology Sjögren’s subgroups

G1 
EA IgG- EBNA IgG+
n = 18

G2 
EA IgG+ EBNA IgG+/-
n = 11

G3 
EA IgG– EBNA IgG–
n = 5

Age (years, median, Min-Max) 57.1 (28.6–74.8) 57.1 (28.6–71.4) 49.1 (29.9–74.8) 63.8 (49.2–67.4)

Age of onset (years, median, Min–
Max) 43.7 (24.5–68.3) 43.8 (24.5–58.7) 39.3 (25.3–68.3) 50.9 (36.0–61.2)

Age at diagnosis (years, median, 
Min-Max) 48.9 (26.7–71.7) 49.3 (26.7–62.0) 48.5 (29.7–71.7) 53.8 (41.6–65.2)

Symptom duration (years, median, 
Min-Max) 11.9 (1.0–29.5) 13.1 (1.3–29.5) 8.1 (1.0–26.1) 12.8 (5.4–17.8)

Ocular symptoms, n (%) 31 (91.2) 17 (94.4) 10 (90.9) 4 (80.0)

Oral symptoms, n (%) 33 (97.1) 18 (100) 11 (100) 4 (80.0)

Ocular signs, n (%) 22 (64.7) 11 (61.1) 8 (72.7) 3 (60.0)

Oral signs, n (%) 23 (67.6) 15 (83.3) 5 (45.5) 3 (60.0)

Parotid enlargement, n (%) 6 (17.6) 5 (28.8) 1 (9.1) 0 (0.0)

Focus Score ≥ 1, n (%) 23/32 (71.9) 15/17 (88.2) 3/10 (30.0) 5 (100)

Active disease, n (%) 17 (50.0) 9 (50.0) 7 (63.6) 1 (20.0)

ESSDAI (mean, Min–Max) 2.53 (0–14) 2.94 (0–14) 2.27 (0–6) 1.60 (0–4)

ESSDAI ≥ 5, n (%) 5 (14.7) 4 (22.2) 1 (9.1) 0 (0.0)

Extra-glandular disease (ever), n (%) 16 (47.1) 8 (44.4) 5 (45.5) 3 (60.0)

Joint symptoms (ever), n (%) 13 (38.2) 5 (28.8) 5 (45.5) 3 (60.0)

Skin involvement (ever), n (%) 10 (29.4) 4 (22.2) 5 (45.5) 1 (20.0)

Other extraglandular involvment 2 (5.9) 2 (11.1) 0 (0.0) 0 (0.0)

Raynaud’s phenomenon 5 (14.7) 3 (16.7) 2 (18.2) 0 (0.0)

SSA (%) 27 (79.4) 13 (72.2) 10 (90.9) 4 (80.0)

SSB (%) 13/30 (43.3) 7/17 (41.2) 3/8 (37.5) 3 (60.0)

ANA ≥ 1/320, n (%) 28 (82.4) 15 (83.3) 8 (72.7) 5 (100)

ANA ≥ 1/640, n (%) 21 (61.8) 12 (66.7) 6 (54.5) 3 (60.0)

Rheumatoid factor, n (%) 16/29 (55.2) 9/16 (56.3) 4/9 (44.4) 3/4 (75.0)

Gammaglobulin ≥ 1.6 g/dl, n (%) 11 (32.4) 5 (28.8) 5 (45.5) 1 (20.0)

Therapy (any), n (%) 21 (61.8) 13 (72.2) 5 (45.5) 3 (60.0)

Glucocorticoids, n (%) 12 (35.3) 6 (33.3) 3 (27.3) 3 (60.0)

Hydroxychloroquine, n (%) 12 (35.3) 8 (44.4) 2 (18.2) 2 (40.0)

Imunossupressants, n (%) 6 (17.6) 5 (28.8) 0 (0.0) 1 (20.0)
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Discussion
Our study aimed to explore the relation between the EBV serological profile of SjS patients and the distribution 
of circulating B and T-lymphocyte subsets. First, we report interesting differences in follicular T-cell subsets 
between SjS patients and both HC and RA patients. Despite circulating CXCR5+ T cell subsets were decreased in 
SjS patients, functionally IL21-secreting CD4+ (Tfh) and CD8+ (Tfc) T cells seem to be more pronounced in these 
patients. IL21-secreting CD8+ T cells (Tfc) were even positively correlated with ESSDAI scores, suggesting their 
relevant role in SjS pathogenesis. Moreover, we confirmed the enriched circulating naïve B-cell compartment of 
SjS patients (compared to both control groups, healthy and autoimmune), previously reported in the literature5.

The major observation of our study, however, comes from the EBV profile, with SjS patients presenting a 
greater incidence of EBV-EA-D-IgG positivity, a profile characteristic of recent infection/reactivation of EBV 
infection. Furthermore, SjS patients with either serological evidence of past EBV infection or recent infection/
reactivation presented higher values of CXCR3+ CD4+ T cells (Th1) and CXCR3+ CXCR5+ CD4+ T cells (Tfh1) 
compared to those without serological evidence of active infection. Also, the B-cell compartment was distinctive 
in SjS patients with signs of recent EBV infection/reactivation: showing higher levels of transitional Bm2′ cells 
compared to patients with past infection and increased plasmablasts, compared to patients without serological 
evidence of infection.

The factors underlying the onset and development of SjS are still uncertain. Nevertheless, typical immune 
profiles have been characterized in these patients, which can be relevant to unveil important links to other trigger-
ing players in this autoimmune disease. Despite B-cells are the main target for EBV latent infection, T-cells have 
also a role in this play, and have been studied in autoimmune diseases for which EBV is considered a potential 
trigger. For instance, EBV-specific CD8+ T-cells are increased during B-cell transformation and in the productive 
viral replication phases of EBV in infected RA22 and SLE patients23. Additionally, the EBV-specific CD8+ T-cell 
pool is reduced by immunosuppressive therapy24.

Our study supports the presence of a promoted follicular T-cell environment in SjS patients, traduced by 
the increased secretion of IL21 by both CD4+ and CD8+ T-cells. We found no differences in the percentages of 
circulating CXCR5+ follicular T-cells between groups, and absolute counts for this subset were even decreased 

Table 4.   Immune profile of SjS patients with distinct EBV serology patterns (percentages). Percentage values 
for all T and B cells subsets in median [minimum–maximum] in SjS patients evaluated for EBV serology. SjS 
Sjögren’s syndrome, EBV Epstein-Barr virus. # Tfh1 and Tfh17 are represented as percentages among CXCR5+ 
Tfh cells. *Bold numbers highlight the populations that were significantly different. Kruskal–Wallis test was 
applied for statistical significance.

Percentages
G1
EA IgG− EBNA IgG+ (n = 18)

G2
EA IgG+ EBNA IgG+/− (n = 11)

G3
EA IgG– EBNA IgG– (n = 5) p value

T-cell subsets

T-cells 77.0 [68.7–83.9] 75.6 [71.9–78.4] 74.8 [63.2–76.2] 0.395

CD4 T-cells 59.9 [50.2–63.6] 62.8 [53.0–67.3] 59.7 [47.4–66.7] 0.727

CXCR5+ Tfh 17.1 [13.8–24.1] 19.7 [14.2–23.7] 17.4 [13.6–27.7] 0.851

Tfh1# 37.3 [34.1–41.3] 37.4 [31.3–43.1] 28.2 [19.9–32.7] 0.025*

Tfh17# 21.6 [16.1–27.8] 18.7 [13.9–26.2] 23.3 [20.2–37.5] 0.168

IL-21+ 12.4 [8.1–14.5] 13.27 [9.4–15.0] 13.4 [6.9–24.7] 0.857

IL-17+ 2.42 [1.65–3.38] 2.76 [1.63–3.21] 2.20 [1.52–3.62] 0.882

IL-21+ IL-17+ 0.68 [0.53–1.20] 0.73 [0.64–0.99] 0.58 [0.47–1.12] 0.666

CD8 T-cells 40.1 [36.4–49.8] 37.2 [32.7–47.0] 40.4 [33.4–52.7] 0.716

CXCR5+ Tfc 2.40 [2.25–3.38] 2.80 [2.10–3.60] 1.90 [1.50–2.40] 0.152

IL-21+ 3.94 [2.52–5.30] 4.42 [2.53–8.47] 3.59 [2.04–33.68] 0.698

IL-17+ 1.04 [0.57–1.38] 1.21 [0.90–1.61] 0.64 [0.42–2.13] 0.467

IL-21+ IL-17+ 0.28 [0.14–0.50] 0.37 [0.23–0.48] 0.34 [0.15–1.14] 0.833

B cell subsets

B cells 9.8 [6.6–11.3] 11.0 [8.3–18.4] 7.7 [5.3–9.5] 0.130

Naïve 66.7 [48.7–74.4] 71.9 [49.4–77.5] 66.6 [50.4–77.1] 0.751

Memory 31.4 [23.3–49.0] 26.5 [19.6–49.7] 29.3 [22.4–47.1] 0.589

Unswitched Memory 15.0 [13.0–24.8] 12.0 [7.9–20.0] 15.0 [6.1–28.5] 0.145

Switched memory 15.3 [10.0–26.8] 14.2 [10.3–22.5] 16.3 [10.9–18.4] 0.978

Double negative 2.11 [1.52–3.06] 2.30 [1.59–3.32] 4.07 [1.04–6.91] 0.803

Bm1 10.0 [7.2–15.7] 5.5 [4.12–10.0] 12.5 [4.5–24.9] 0.203

Bm2 60.5 [45.5–67.1] 60.0 [47.4–64.0] 51.5 [47.7–64.2] 0.831

Bm2’ 6.9 [2.3–11.9] 13.6 [6.4–17.4] 5.9 [3.8–18.6] 0.087*

Bm3 + 4 2.21 [1.00–4.24] 2.83 [1.31–4.48] 1.10 [0.74–1.26] 0.043*

eBm5 9.7 [6.0–13.9] 9.2 [7.6–12.8] 11.5 [7.0–12.1] 0.997

Bm5 6.45 [4.67–14.81] 6.24 [4.05–11.45] 8.11 [6.07–14.83] 0.647
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in SjS patients, possibly due to the decreased absolute counts of CD4+ T-cells observed in these patients. Similar 
data had been described in the work of Brokstad25, which reported no differences for total CXCR5+ CD4 T-cell 
percentages, but only changes in particular subsets of these cells in SjS patients, such as the increase in Tfh-like 
ICOS+PD‐1+ cells. Interestingly, in our study, another Tfh-like subset was increased in SjS patients, the IL21+ Tfh 
cells. Indeed, both CD4+ and CD8+ T-cells were more prone to produce IL21, the Tfh modulating cytokine. If the 
lower absolute numbers may indicate retention of CXCR5+ follicular T-cells at the exocrine glands, as supported 
by previous studies showing a T-cell predominance in lymphocytic infiltrates of these organs26, SjS patients 
seem to be predisposed to promote Tfh differentiation. Also, when naïve T-cells and salivary gland epithelial 
cells are co-cultured, Tfh differentiation is observed, i.e. T-cells acquire a classical Tfh phenotype and are able 
to secrete IL2127. Thus, this systemic follicular function may be overexpressed in SjS patients, also as an effect 
of the local altered interplay. We have previously reported that the ESSDAI score, which is a measure of disease 
activity in SjS, seemed to be correlated with IL21+ CD8+ T cells (Tfc) levels28. In fact, patients with more active 
disease present increased circulating Tfc cells, though the causative link between these observations is still to be 
clarified (i.e. whether higher levels of Tfc cells lead to increased disease severity or, on the contrary, happen in 
response to disease aggravation).

In addition, the increase in IL21-expressing T-cells resembles the profile of a chronic active viral infection, as 
proposed by Fahey and collaborators, who showed that viral persistence redirects T-cell differentiation towards 
the Tfh profile in animal models19. Moreover, patients with infectious mononucleosis show an increase in a 
particular subset of Tfh cells in peripheral blood29, which supports our hypothesis that viral triggers may take 
part in the modulation of the immune responses also in SjS patients29.

Interestingly, Fahey and colleagues19 proposed that viral-induced Tfh cells deviate from an original Th1 profile. 
In line with this, we observed that SjS patients with serological evidence for recent infection/reactivation pre-
sented increased Th1 and Tfh1 subsets. Thus, the autoimmune background of SjS patients could provide T-cells 
with alternate activation signals leading them to assume both Th1 and Tfh1 profiles under viral persistence, since 
it is accepted that the pathogenesis of SjS is mediated by Th1-derived responses27.

Strikingly, the implication of Tfc cells in SjS pathogenesis is supported by their increase in patients with higher 
disease activity. In line with our results, serum levels of IL21 had already been associated with systemic disease 
activity in SjS30, but our results seem to highlight a role for CD8 T-cells in this scenario. Initially, CXCR5+ CD8 
T-cells were described as early effector memory CD8 T-cells present in B-cell follicles of human tonsils13. Recently 
these cells were implicated in the control of chronic viral infections29,31,32. Also, associations between humoral 
responses and CXCR5+ CD8 T-cells32,33 were identified, as these cells express co-stimulatory molecules. In fact, 
increased immunoglobulin production by B-cells occurs when they are co-cultured with CXCR5+ CD8 T-cells, 
suggesting these cells have other immune functions besides cytotoxic activities33. Considering that dysregulated 
humoral responses are present in SjS, Tfc cells, along with Tfh cells, may induce the atypical antibody production 
of SjS patients. Nevertheless, the major function of the follicular CD8+ T-cells may still be limiting the replication 
of viral agents in B-cell follicles, as these cells show increased cytotoxic capacities34.

As for B-cells, it is accepted they are EBV’s main target35. Several studies tried to relate SjS pathogenesis with 
a specific clonality of B-cells. One of the hallmarks of Sjögren’s syndrome is, in fact, the formation of ectopic 
lymphoid structures (ELS) in the SG. ELS are composed of B-cell/T-cell follicles, supported by networks of 
stromal follicular dendritic cells, which support ectopic GC reactions36. Active EBV infection has been associ-
ated with ELS in the SG of SjS patients and appears to contribute to local growth and differentiation of disease-
specific autoreactive B-cells37. Despite the possibility of an EBV-triggered B-cell proliferation in SjS, EBV-infected 
memory B-cells were found to express lower levels of self- and poly-reactive antibodies than their uninfected 
counterparts38.

As corroborated by our data, SjS patients present a typical circulating B-cell compartment, enriched in 
transitional/naïve subsets, in opposition to memory subsets. If we consider the observations from Coleman 
and colleagues on the effect of EBV in B-cells39, we may also suggest a possible role for EBV in the alterations 
observed in the B-cell compartment of SjS patients. In fact, these authors have recognized that murine tran-
sitional B-cells from the spleen can be reservoirs for gammaherpesvirus like EBV, which can remain latent in 
these cells, prolonging their life span indefinitely. Our results are in line with this hypothesis, as SjS patients with 
serological evidence of recent infection/reinfection presented higher percentages of transitional Bm2′. Whether 
this is an effect of EBV or other concomitant viral infection, remains to be elucidated. However, the viral input 
for this feature of SjS patients can be also supported by our observation that transitional B cells were particularly 
increased in patients with recent infection/reactivation. We acknowledge that the assessment of the viral genome 
in different B-cell subsets could clarify this idea.

Regarding the serological EBV markers, we found an increased prevalence of Anti-EBV EA-D IgG in SjS 
patients, compared to both RA and HC, as described in previous works37,40. The anti-EBV EA-D IgG prevalence 
in our SjS patients (about 33% vs 5% in HC) was very close to the one reported by Pasoto and colleagues41 (36% 
vs 4.5% in HC), which strengths our data, and led us to further assess the immune compartments according to 
the EBV serological profile of SjS patients. Interestingly, patients with evidence of EBV infection, and particularly 
those with recent infection/reactivation (EA-D IgG positive) had earlier disease manifestations, but also a distinct 
immune profile, with a shift towards pro-inflammatory Th1/Tfh1 subsets in the T-cell compartment. Further-
more, SjS patients with evidence of recent infection/reactivation exhibited higher levels of transitional B-cells 
and plasmablasts, which may traduce the importance of EBV in the modulation of the immune responses in SjS 
patients, with possible clinical impact, as suggested by an earlier onset of clinical manifestations. The effect of 
cytotoxic T-cell (CTL) responses, with both CD8+ and CD4+ T cells, or even other unconventional T cell subsets, 
may restrict the expansion of latently infected B-cells in long-term carriers or patients with past infection42,43. This 
later immune balance may be the cause for the differences observed in transitional B-cells between SjS patients 
with recent infection/reinfection and patients with previous infection (G1). Usually increased in SjS, these cells 
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represent a potential EBV reservoir, and are markedly increased in G2 patients, showing however a relapse to 
lower values in past infections as an effect of an effective immune control happening in these patients (G1).

To better comprehend how EBV profiles modulate immune populations, or whether the changes are SjS-
driven, a comparison between SjS patients and HC with similar EBV serological patterns would be very helpful. 
However, considering the reduced number of HC that could be included in the EBV subgroups G1 (3 HC) and 
G2 (1 HC), such analysis was not possible. In the future, we aim to better address this question, extending the 
study to a larger cohort, with more SjS patients, but also healthy controls.

Clinical differences between groups were also difficult to assess due to the small size of our patients’ groups. 
The ESSDAI score in both groups of patients with positive EBV serology (G1 and G2) was higher than in EBV-
negative patients (G3). G1 patients had a non-significantly higher ESSDAI compared to G2 patients, in line 
with a recent report by Sanosian44, who didn’t find distinct ESSDAI scores in anti-EBV EA-positive compared 
to anti-EBV EA-negative patients. No differences were found in specific clinical ESSDAI domains between G1 
and G2 groups, contrasting to the report of Pasoto41, who found higher articular activity in anti-EBV EA-positive 
patients. Nevertheless, the greater frequency of active disease in our G2 patients may suggest an influence of 
recent EBV infection/reactivation in disease activity status, which may be further supported by the higher levels 
of IgG observed in this group, despite no statistical significance was achieved. Furthermore, our observations 
on the B-cell compartment are in line with this, as the increased transitional Bm2′ and plasmablasts observed in 
the EBV infection/reactivation group also suggests a higher B-production and differentiation on these patients, 
possibly contributing in parallel for the increased gammaglobulin levels and greater disease activity.

Interestingly, in our study, IgA and IgM EBV-antibodies behaved similarly in SjS, RA and HC, with a predomi-
nance of negative samples for these biomarkers in all groups. As for VCA IgM, an acute-phase marker, despite it 
may be present in different viral scenarios, no differences were expected in SjS according to previous reports45.

In other systemic autoimmune diseases, particularly SLE, increased levels of IgA antibodies against the two 
lytic antigens studied (VCA and EA) have been reported45,46. Literature is scarce for this evaluation in SjS patients, 
nonetheless, both VCA-IgA and EA-IgA seem to be less present in SjS that in other autoimmune conditions 
such as SLE. Along with a few previous studies45,46, our data suggest a lower mucosal immune response against 
EBV in SjS, compared to other autoimmune conditions, with anti-EBV IgA antibodies prevalence similar to 
HC. Whether this corresponds to a better or worst control of latent infections in SjS remains to be elucidated.

To our knowledge, our study is the first to report an association between EBV serological patterns and the 
immune profile of SjS patients, despite EBV EA (early antigen) had already been correlated with autoantibodies 
production40. Although we observed no further differences in the clinical manifestations of SjS patients accord-
ing to their EBV serology, we were able to identify distinct immune profiles according to the EBV serological 
pattern. Still, we must recognize the low number of patients considered and the absence of other confirmatory 
methodologies for the effective viral infection. Nonetheless, our data support the idea that different EBV sero-
logical profiles affect circulating B and T-cells in SjS patients. In fact, a more active serological background, as 
the ones observed in groups G1 and G2, may suggest a viral influence in the immune system driving it to the 
more pro-inflammatory scenario observed in SjS patients when compared to both other autoimmune conditions 
or healthy controls.

Other authors have supported the hypothesis that reactivation in the lytic phase of EBV infection promotes 
immunological dysfunction in SjS37. Considering our results, we also believe special attention should be given 
to the group of SjS patients with serological evidence for recent infection/reactivation, which present a pro-
inflammatory profile, with increased Th1/Tfh1 ratio cells along with elevated transitional B-cells and increased 
plasmablast differentiation.

We acknowledge limitations in our study, such as the absence of standard molecular biology assays to confirm 
EBV infection. In future studies, it would be relevant to assess not only serology, but also EBV viral load, and 
eventually other viruses with potential impact in SjS development, such as CMV. Also, our study was performed 
exclusively in peripheral blood, and we realize it may not properly reflect the numbers and interactions of 
immune cells at exocrine glands. For instance, SG biopsies would not only clarify the hypotheses on cell traffic 
between affected organs and the circulating lymphocyte pool but would also allow us to prove the presence of 
EBV in such organs.

Nevertheless, from our results, it is possible to suggest that EBV plays a role in inducing B and T-cells towards 
an effector phenotype. EBV enters the replicating phase in the exocrine glands, where this facilitated interaction 
between EBV antigens and effector T-cells might lead to a breakdown of tolerance. The ensuing autoimmune 
response mediated by effector B and T-cells might lead to a localized lymphocyte activation with the formation 
of ectopic GC or GC-like structures. This process, mediated by Tfh and Tfc, can thus perpetuate the autoimmune 
epithelitis and result in gland destruction.

Our work provides a new perspective on how EBV might be involved in lymphocytic alterations known to 
be a feature in SjS. Clarifying the role of follicular CD4 and CD8 T-cells in the context of viral infection can be 
of great value in confirming a viral-triggered autoimmune response in SjS, but a specific strategy for the char-
acterization of these cells in peripheral blood and target organs is still needed.

Our study can also constitute a starting point for approaching the role of CXCR5+ and IL21+ CD8 T-cells 
(Tfc) in the context of autoimmunity. The association between CXCR5+ CD8 T-cells and disease activity in SjS 
observed in our study may be an indicator of their involvement in the pathophysiology of autoimmune epithelitis. 
In the current scenario where Tfc cells involvement in autoimmune pathologies is yet to be elucidated, our study 
pioneers the association of Tfc cells with human autoimmunity and paves the way for further studies regarding 
Tfc cells in autoimmune diseases. Indeed, considering the possible pathogenic role of EBV in the pathogenesis 
of SjS, therapies directed towards the interaction between EBV and activated effector T-cells and B-cells could 
halt the EBV-triggered lymphocytic activation, and have a relevant clinical applicability.
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Methods
Population.  In this study, we included SjS patients classified according to the 2016 American College of 
Rheumatology(ACR)/European League Against Rheumatism (EULAR) criteria47, and Rheumatoid Arthritis 
(RA) patients classified according to the 2010 ACR/EULAR criteria48. Patients were consecutively recruited, 
considering as additional exclusion criteria for SjS the use of B-cell-depleting therapies, and for RA patients the 
presence of xerostomia or xerophthalmia, as well as the use of any biologic disease-modifying anti-rheumatic 
drug. Disease activity in SjS was evaluated with the EULAR SjS disease activity index (ESSDAI)49. Clinically 
active disease was defined as activity in any ESSDAI domain, except the hematologic and biologic.

The healthy control group (HC) consisted of women without symptoms or signs of xerostomia or xeroph-
thalmia, or any history of autoimmune rheumatic diseases, selected from the Ophthalmology outpatient clinic 
of Hospital CUF Descobertas.

Informed consent was obtained from all participants. The study was approved by the Ethics committees of 
both recruiting institutions, and NOVA Medical School Ethics Committee (no. 17/2016/CEFCM).

Figure 1.   Gating strategy for the identification of circulating T and B-cell subsets. (A) Gating strategy for 
the identification of CD4 T-cells (CD3+ CD4+ lymphocytes): CXCR5+ CD4 T-cells were identified (Tfh), and 
within this subset, according to the expression of CXCR3 and CCR6, Tfh1 (CXCR3+ CCR6−), Tfh17 (CXCR3− 
CCR6+) and Tfh1/Tfh17 (CXCR3+ CCR6+) cells were identified. CD8 T-cells were identified as the CD3+ CD4− 
population of lymphocytes. Within CD8 T-cells, CXCR5+ cells were identified (Tfc), but also CXCR5− cells were 
characterized according to the expression of CCR7 (negative, positive and high positive). (B) Gating strategy 
for the identification of B-cells (CD19+ lymphocytes). Using the expression of IgD and CD27 cells were divided 
in naïve (IgD+ CD27−), unswitched memory (IgD+ CD27+), switched memory (IgD− CD27+) and double 
negative (IgD− CD27−). Using the Bm1-5 classification, considering IgD and CD38, B-cells were divided in Bm1 
(CD38− IgD+), Bm2 (CD38+ IgD+), Bm2′ (CD38hi IgD+), Bm3 + 4 (CD38hi IgD−), eBm5 (CD38+ IgD−) and Bm5 
(CD38− IgD−). +: positive;  - : negative; hi: high; Tfh—Follicular helper T cells; Tfc—Follicular cytotoxic T cells; 
DN—Double negative.
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Flow cytometry procedures.  For the immunophenotyping protocols, peripheral blood samples collected 
in EDTA-coated tubes were processed and analyzed within 24 h of collection. A pre-validated panel of mono-
clonal antibodies (mAbs) was used for the characterization of T and B-cell subsets, including CD3, CD4, CD8, 
CD19, CD24, CD27, CD38, CCR6, CCR7, CXCR3, CXCR5, Anti-IgD, and Anti-IgM. A lyse-wash protocol was 
performed for both T and B-cell characterization. A lyse-no wash single platform strategy was used to obtain 
absolute counts of all cell subsets(BD Trucount tubes BD Biosciences, San Diego CA, USA). All samples were 
acquired in a 4-color cytometer (BD FACS-Calibur, BD Biosciences).

CellQuest Pro (BD Biosciences) software was used for acquisition and analysis purposes and Infinicyt 2.0 
(Cytognos S.L., Salamanca, Spain) software was also used for more differentiated subset analysis.

Whenever appropriate, fluorescence-minus-one control tubes were prepared to assess the positivity of dimer 
expressions. The subsets analyzed, and the respective gating strategies, are displayed in Fig. 1. Within T-cells, 
we characterized CD4+ and CD8+ (CD4-) subsets, including CXCR5+ Tfh and Tfc cells, and the Tfh1 and Tfh17 
profiles, according to the expression of CXCR3 and CCR6, respectively. B-cells’ subsets were addressed accord-
ing to the classical IgD/CD27 classification, and the Bm1-5 classification, often used in autoimmunity settings21.

Functional assays for the evaluation of IL21 production by T‑cells.  Heparinized peripheral blood 
samples were used to assess IL21 and IL-17 production by CD4+ and CD8+ T-cells.

In brief, cells were stimulated with PMA and ionomycin, for 5 h at 37ºC in a 5% CO2 atmosphere in the 
presence of brefeldin-A. After stimulation, cells were lysed, washed and incubated with anti-CD3 and anti-CD8 
mAbs for surface staining. For intracellular stain, cells were treated according to the protocol defined by the 
manufacturer for the BD Fixation/Permeabilization Solution Kit with BD GolgiPlug™ (BD Biosciences) and then 
marked with anti-IL21 and anti-IL-17 mAbs, after cell fixation and permeabilization. For each patient, stimulated 
and unstimulated tubes were run in parallel to assure proper stimulation and staining controls. Gating strategy 
is presented in Fig. 2, with IL21+ (IL17−) cells being identified within CD8+ and CD8− T cells, respectively con-
sidered as Tfc and Tfh cells.

EBV serological markers.  Enzyme-linked immunosorbent assays (ELISA) were used for the assessment 
of IgG, IgA and IgM antibodies (Abs) against EBV antigens (Ags). All ELISA kits were obtained from Euroim-
mun (Euroimmun, Luebeck, Germany) and used according to the manufacturers’ instructions. The following Abs 
for EBV Ags were determined: IgG for diffuse early Ag (EA-D), IgG for viral capsid Ag (VCA), IgG for nuclear 
Ag-1 (EBNA1), IgA for EA-D, IgA for VCA and IgM for VCA. All tests for IgG Abs were quantitative, while IgA 
and IgM were semiquantitative. In quantitative assays, sample concentration was determined using 3-point cali-
bration curves constructed with ELISA-Logit software, available at https​://ednie​uw.home.xs4al​l.nl/Calib​ratio​n/
Logit​/Logit​.htm (V24May2017). The cut-off level for all IgG antibodies assayed was 20 RU/ml. For semiquantita-
tive assessments, a single calibrator was determined in triplicate per assay. The ratio sample/calibrator was used 

Figure 2.   Gating Strategy for the identification of circulating CD4 and CD8 T-cells secreting IL-21 after 
stimulation. After identifying T-cells according to the expression of CD3 in the lymphocyte gate, CD4 T-cells 
were identified as the CD3+ CD8− subset and CD8 T-cells as the CD3+ CD8+. (A) Expression of IL-21 and IL-17 
in CD4 and CD8 T-cells after a 5-h incubation period with no stimulation. (B, C). Expression of IL-21 and 
IL(-)7 in CD4 and CD8 T-cells after a 5-h stimulation with PMA and ionomycin, in the presence of brefeldin A. 
Unstimulated controls were used for each sample, to assess the levels of positivity for IL-21 and IL-17.

https://ednieuw.home.xs4all.nl/Calibration/Logit/Logit.htm
https://ednieuw.home.xs4all.nl/Calibration/Logit/Logit.htm
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to assess positivity levels (Negative: ratio < 0.8; Borderline: ratio ≥ 0.8 to < 1.1; Positive: ratio ≥ 1.1). Patients were 
randomly assigned to undergo EBV serology evaluation.

Statistics.  Graph Pad Prism™ 6.0 (Graph Pad Software, San Diego, CA, USA) was used for statistical analysis. 
The normality of data sets was assessed using D’Agostino & Pearson omnibus and Shapiro–Wilk normality tests. 
ANOVA and Kruskal–Wallis tests were made for multiple analyses among groups, followed by Dunn’s multiple 
comparisons test. When a significant difference was found, comparisons were done using Unpaired Student’s 
t-test with Welch’s correction or Mann–Whitney test, for every two groups. For categorical variables, Fischer’s 
or Chi-square tests were applied to assess differences between groups. Statistical significance was considered for 
p values < 0.05.

Ethics approval.  This study was approved by the Ethics committee of Hospital Cuf Descobertas, 8/09/2014, 
Ethics committee of Instituto Português de Reumatologia, 3/07/2015 and NOVA Medical School Ethics (No. 
17/2016/CEFCM).

Informed consent.  All patients have signed informed consent to participate according to the Declaration 
of Helsinki.
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