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Credal decision tree based novel 
ensemble models for spatial 
assessment of gully erosion 
and sustainable management
Alireza Arabameri1*, Nitheshnirmal Sadhasivam2,3, Hamza Turabieh4, Majdi Mafarja5, 
Fatemeh Rezaie6,7, Subodh Chandra Pal8 & M. Santosh9,10

We introduce novel hybrid ensemble models in gully erosion susceptibility mapping (GESM) through 
a case study in the Bastam sedimentary plain of Northern Iran. Four new ensemble models including 
credal decision tree-bagging (CDT-BA), credal decision tree-dagging (CDT-DA), credal decision tree-
rotation forest (CDT-RF), and credal decision tree-alternative decision tree (CDT-ADTree) are employed 
for mapping the gully erosion susceptibility (GES) with the help of 14 predictor factors and 293 gully 
locations. The relative significance of GECFs in modelling GES is assessed by random forest algorithm. 
Two cut-off-independent (area under success rate curve and area under predictor rate curve) and six 
cut-off-dependent metrics (accuracy, sensitivity, specificity, F-score, odd ratio and Cohen Kappa) 
were utilized based on both calibration as well as testing dataset. Drainage density, distance to road, 
rainfall and NDVI were found to be the most influencing predictor variables for GESM. The CDT-RF 
(AUSRC = 0.942, AUPRC = 0.945, accuracy = 0.869, specificity = 0.875, sensitivity = 0.864, RMSE = 0.488, 
F-score = 0.869 and Cohen’s Kappa = 0.305) was found to be the most robust model which showcased 
outstanding predictive accuracy in mapping GES. Our study shows that the GESM can be utilized for 
conserving soil resources and for controlling future gully erosion.

The agrarian economy is faced with the challenge of maintaining food security despite the increasing global 
population, and in tackling serious threats, including a decline in food productivity, climate change and lack of 
freshwater  resources1. Better conservation of soil resources, which necessitates control on soil erosion, is one of 
the most significant aspects in improving land  productivity2. Soil is a finite resource and plays a major role in 
human existence as the source of more than 99% of our  nourishment3. Among several triggering agents for soil 
erosion, water plays a major  role2. It has been assessed that soil erosion causes a yearly global GDP loss of almost 
$8  billion2. Iran is among the many countries that is worst affected by soil erosion, with an annual soil loss of 
about 32 tons per hectare from  farmlands3. The most adverse type of water-triggered soil erosion that largely 
deteriorates the agricultural lands of Iran is gully erosion (GE)2.

Gullies can be temporary (ephemeral) or permanent (classical) where the latter is larger than the  former9. 
In places where intense flow intersects earth bank, bank gullies can also occur. In general, gullies represent 
incised deep linear geomorphological features, varying in depth between 0.5 and 30  m4. Development of gullies 
mostly occur in loess  soil5. There are two phases in gully development, one is initiation of gully which occurs 
in smaller timespan and the other is the stable sediment transportation  phase2. GE is created by running water, 
mass-wasting and subterranean process that erodes soil  particles6, and results in numerous onsite and offsite 
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effects including land degradation, soil fertility loss, and accumulation of sediments, landslide, flooding and 
decline of water  quality5–7. GE not only causes environmental deterioration but also immensely impacts the 
socio-economic  aspects8. Previous studies have shown the main role of GE in transporting sediments from 
upper region of the  catchments9. Thus, a precise evaluation of gully erosion susceptibility (GSE) is an essential 
requirement for planners and decision-makers in controlling the subsequent problems of GE and for a sustain-
able management of soil  resources3.

Various factors including topographic, geologic, hydrologic, environmental, climatic and anthropogenic 
activities, instigate the process of  GE10–12. Rahmati et al.10 reported that drainage density, distance to stream and 
land use also play a vital role in triggering GE. Zhao et al.12 noted that GE is mostly initiated by natural processes 
rather than anthropogenic activities and that the density of gullies is reliant on the intensity of vegetation cover 
and topographic features.

Most of the physically based models reported in earlier studies of gully erosion were not aimed at predicting 
the gully hotspots, but focused on quantifying the erosion  rates11. For predicting the evolution of gullies, dynamic 
and static models have been utilized previously based on the development phase of the  gully2. However, both 
these models require different erosion factors which are hard to quantify for a large area. Thus, for the gully ero-
sion susceptibility mapping (GESM), researchers utilized various models such as knowledge based, statistical and 
machine learning algorithms (MLAs) coupled with geographical information system (GIS) and remote sensing 
(RS)13. The knowledge-based models include multi-criteria decision-making models (MCDM) that involve the 
decision made by experts to prepare the GESM. Even though there are more than nearly 20 MCDM models 
available, the derived factor weights based on these models are still  subjective14. Several bivariate and multivari-
ate statistical models such as frequency  ratio15, logistic  regression16, weights of  evidence17, and certainty  factor18 
also used for generating GESM. The benefit of employing statistical models is that various types of predictor 
variable can be easily accommodated in the  evaluation13. The disadvantages of using simple bivariate models are 
that these could be ad-hoc processes owing to the poor probability distribution that the bivariate models depend 
 on15. In the case of parametric multivariate models, the resultant spatial maps become smoother than in MLAs, 
and provide more elaborate maps of  GES19.

Various MLAs including random  forest20, logistic model tree (LMT)13, support vector machine(SVM)21, 
naive Bayes tree (NBT)13, multivariate adaptive regression spline (MARS)22, generalized linear model (GLM)23, 
artificial neural network (ANN)24, boosted regression tree (BRT)22, mixture discriminant analysis (MDA)18, 
classification and regression trees (CART)25, and functional data  analysis14 are commonly utilized for the crea-
tion of GESM. The MLAs exhibit a superior predictive accuracy than statistical models in GESM owing to 
their advantage in handling huge datasets and potential ability in assessing the intricate relationship between 
dependent and predictor  variables26. Performance of individual models can be enhanced using hybrid ensemble 
 methods27,28. Hybrid ensemble methods outperform the forecast preciseness of individual  MLA29. Arabameri 
et al.30 showed that meta-classifiers increase the classification accuracy of the base classifiers in gully erosion 
susceptibility modelling. It is essential to test a novel base classifier using different meta-classifiers11. Chowdhuri 
et al.31 reported high predictive accuracy of hybrid ensemble BRT-bagging (BA) algorithm in comparison with 
the individual BRT and bagging algorithms. Similar results were displayed by Roy and  Saha32 in their study in 
which the authors reported Multilayer perceptron neural network-dagging (DA) ensemble.

In this study, we propose novel hybrid ensemble models for mapping GES based on a case study on the Bastam 
sedimentary plain of Northern Iran. Apart from individual credal decision trees (CDT) model, we integrated four 
meta-classifiers including bagging, dagging, rotation forest (RF) and alternating decision tree (ADTree) with a 
base-classifier, i.e., the CDT for GESM. To our knowledge, no previous study has employed the CDT both as a 
base classifier in a hybrid ensemble model and as an individual model for predicting the GES. The four hybrid 
ensemble models, namely CDT-BA, CDT-DA, CDT-RF and CDT-ADTree along with CDT were compared, and 
the best model is identified. The significance of the gully erosion conditioning factors (GECFs) for mapping GES 
is evaluated using the random forest model. The predictor variables used in this work for forecasting GES include 
clay content, bulk density, elevation, distance to road, distance to stream, drainage density, lithology, land use/
land cover (LU/LC), normalized difference vegetation index (NDVI), rainfall, terrain rugged index (TRI), slit 
content, slope degree, and topography wetness index (TWI).

Results
Outcome of multi-collinearity test. The values of VIF and tol used for testing the multi-collinearity 
among GECFs are given in Table 2. The NDVI shows minimum VIF value of 1.099 and TRI has maximum 
VIF value of 4.184 and, since the tol is the reciprocal of VIF, the NDVI and TRI acquired the maximum (0.910) 
and minimum tol value (0.239). The VIF and tol values of GECFs from Table 1 indicate that there is no linear 
dependency among the GECFs and confirms that all the selected fourteen GECFs can be utilized for the genera-
tion of GESMs (Table 2).

Relative significance of GECFs. This study employed the random forest algorithm for assessing the sig-
nificance of GECFs in mapping GES. The confusion matrix created by random forest with gully presence (1) and 
gully absence (0) information is provided in Table 3. The algorithm generated an OOB error of 6.54%, which 
infers that the precision of the predicted values is equivalent to 93.46%. From Table 2, it can be observed that 
among 201 non-gully locations, 190 were identified as non-gully locations and 11 were determined to be gully 
locations. On the other hand, among 212 gully locations, 196 were predicted as gully locations while 16 were 
identified as non-gully locations. The outcome of the relative significance of GECFs assessed using the mean 
decrease in accuracy and mean decrease Gini of the random forest algorithm is provided in Table 3. The GECFs 
including drainage density (29.10), distance to road (24.72), rainfall (12.86) and NDVI (12.74) exhibited high 
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significance in influencing GE while slope degree (9.48), elevation (9.05), silt content (6.57), bulk density (6.27), 
TWI (5.79), TRI (5.55) displayed moderate control over the process, but factors such as lithology, clay content, 
distance to stream and LU/LC showed the least significance in the initiation of GE.

Gully erosion susceptibility mapping (GESM). Observations on the presence or absence of gully com-
prising the values of GECFs were provided as inputs for MLAs in R 3.6.0 to generate the GESMs. The GES index 
output generated by the CDT, CDT-DA, CDT-ADTree, CDT-BA and CDT-RF models (Fig. 1a–e, respectively) 
were exported to ArcGIS 10.5 and categorized into very low, low, moderate, high and very high susceptibility 
classes with the help of natural breaks technique.

Credal decision tree (CDT). The GESM produced by CDT shows that 51.16% and 1.67% of pixels come 
under very high and high GES zone, whereas moderate, low and very low GES zone covers 4.52%, 10.95% and 
31.70% of pixels in Bastam sedimentary plain, respectively (Fig. 1a). The total number of pixels present in each 
GES classes of CDT is provided in Table 4. The number of gully pixels in the very high, high, moderate, low and 
very low GES zones are279, 4, 3, 2, and 5 whereas the percentage of gully pixels in the same order of susceptibility 
classes was 95.22%, 1.37%, 1.02%, 0.68% and 1.71%, respectively.

CDT-dagging (DA). The GESM from CDT-DA model shows about 32.55%, 17.06%, 9.10%, 22.10% and 
19.19% of pixels in the study area that falls under very high, high, moderate, low and very low GES class, respec-

Table 1.  Multi-Collinearity analysis of the gully conditioning factors.

Conditioning factors

Collinearity 
Statistics

Tolerance VIF

Landuse 0.544 1.838

Lithology 0.885 1.130

Elevation 0.304 3.290

TWI 0.817 1.224

Rainfall (mm) 0.260 3.847

Content of silt (%) 0.366 2.736

Slope degree 0.272 3.676

TRI 0.239 4.184

Bulk density 0.455 2.196

Content of clay (%) 0.713 1.403

Distance to road (m) 0.459 2.177

Distance to stream (m) 0.717 1.394

Drainage density (km/km2) 0.659 1.518

NDVI 0.910 1.099

Table 2.  Confusion matrix from the RF model (0 = no gully, 1 = gully).

0 1

0 190 16

1 11 196

Table 3.  Relative influence of effective conditioning factors in the random forest model.

Factor Relative weight Factor Relative weight

Drainage density 29.10 Lithology 2.63

Distance to road 24.72 TWI 5.79

Rainfall 12.86 Bulk density 6.27

NDVI 12.74 Slope degree 9.48

Silt content (%) 6.57 Clay content (%) 2.59

Elevation 9.05 LU/LC 0.94

TRI 5.55 Distance to stream 2.51
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Figure 1.  Gully erosion susceptibility mapping using (a) credal decision tree (CDT), (b) CDT-Dagging, (c) 
CDT-ADTree, (d) CDT-Bagging, (e) CDT-rotational forest (RF). ArcGIS 10.5 software was used for preparing 
this map (https ://deskt op.arcgi s.com/en/).

https://desktop.arcgis.com/en/
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tively (Fig. 1b). The percentage of gully pixels present in very high to very low GES classes are 76.79%, 14.33%, 
4.78%, 2.73% and 1.37%, respectively (Table 4). The very high and high GES categories comprise 225 and 42 
gully pixels whereas the moderate, low and very low GES categories comprised 14, 8, and 4 gully pixels, respec-
tively. The total quantity of pixels in each GES zones of CDT-DA model is shown in Table 4.

CDT-alternative decision tree (ADTree). In the case of GESM generated by CDT-ADTree, the percent-
age of pixels covering very high and high GES categories are 26.75% and 21.20% whereas those of other GES 
categories including moderate, low and very low classes were 21.93%, 14.74%, and 15.37%, respectively (Fig. 1c). 
The percentage of gully pixels in very low, low, moderate, high and very high GES regions is 76.11%, 16.72%, 
3.41%, 2.37%, and 1.02% whereas the number of gully pixels present in the same order of GES regions was 223, 
49, 10, 8 and 3, respectively (Table 4). The information on the number of pixels in each susceptibility class of 
CDT-ADTree model is given in Table 4.

CDT-bagging (BA). The GESM predicted by CDT-BA (Fig. 1d) reveals that percentage of pixels covered 
by very high, high, moderate, low and very low GES classes are25.11%, 15.85%, 16.43%, 19.59%, and 23.02%, 
whereas the percentage of gully pixels present in the same order of GES classes are 76.11%, 15.36%, 4.78%, 3.07% 
and 0.68%, respectively (Table 4). The number of gully pixels existed in the same order of GES classes are 223, 
45, 14, 9, and 2, respectively. The number of pixels present in each category of GES generated by CDT-BA is 
displayed in Table 4.

CDT-rotational forest (RF). The GESM generated by CDT-RF shows that 20.74%, 13.64%, 15.55%, 21.19%, 
and 28.88% of pixels belong to very high, high, moderate, low, and very low GES classes, respectively (Fig. 1e). 
There are 69.92%, 19.11%, 6.83%, 3.75%, and 0.68% of gully pixels in very high, high, moderate, low and very low 
GES classes whereas the number of gully pixels in the same order are 204, 56, 20, 11, and 2, respectively (Table 4).

Outcome of validation measures and model comparison. In this study, we assessed the predictive 
performance of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA models with the help of different valida-
tion metrics such as accuracy, sensitivity, specificity, F-score, AUROC, Cohen’s Kappa, and RMSE using both 
calibration (Fig. 2) and testing dataset (Fig. 7).

Table 4.  Quantitative analysis of gully erosion susceptibility maps.

Model Class Number of gully pixels Percentage of class pixels (%) Percentage of gully pixels (%)

CDT-Dagging

Very low 4 19.19 1.37

Low 8 22.10 2.73

Moderate 14 9.10 4.78

High 42 17.06 14.33

Very high 225 32.55 76.79

CDT

Very low 5 31.70 1.71

Low 2 10.95 0.68

Moderate 3 4.52 1.02

High 4 1.67 1.37

Very high 279 51.16 95.22

CDT-ADTree

Very low 3 15.37 1.02

Low 8 14.74 2.73

Moderate 10 21.93 3.41

High 49 21.20 16.72

Very high 223 26.75 76.11

CDT-Bagging

Very low 2 23.02 0.68

Low 9 19.59 3.07

Moderate 14 16.43 4.78

High 45 15.85 15.36

Very high 223 25.11 76.11

CDT-RF

Very low 2 28.88 0.68

Low 11 21.19 3.75

Moderate 20 15.55 6.83

High 56 13.64 19.11

Very high 204 20.74 69.62
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The AUROC curve value of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA models using calibration 
dataset are 0.908, 0.904, 0.938, 0.942, and 0.920 (Figs. 2 and 4a) whereas the values are 0.941, 0.914, 0.944, 0.945, 
and 0.943 using training dataset, respectively (Figs. 3 and 4b).

Based on calibration dataset, the accuracy of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA models 
are 0.778, 0.773, 0.793, 0.812, and 0.788 (Fig. 2) and using validation dataset the accuracy is 0.790, 0.778, 0.824, 
0.869, and 0.813, respectively (Fig. 3). The sensitivity of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA 
models using calibration dataset are 0.776, 0.776, 0.790, 0.810, and 0.790 and specificity is 0.780, 0.771, 0.795, 
0.815, and 0.785, respectively (Fig. 2). On the other hand, the sensitivity of CDT-DA, CDT, CDT-ADTree, 
CDT-RF, and CDT-BA models using testing dataset are 0.784, 0.784, 0.818, 0.864, and 0.818 and specificity is 
0.795, 0.773, 0.830, 0.875, and 0.807, respectively (Fig. 3). Using calibration dataset, F-score of CDT-DA, CDT, 
CDT-ADTree, CDT-RF, and CDT-BA models are 0.778, 0.774, 0.792, 0.812, and 0.788 (Fig. 2) whereas using 
testing dataset, the F-score values were 0.789, 0.780, 0.823, 0.869, and 0.814, respectively (Fig. 3). The values of 
Cohen’s Kappa for CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA models are 0.637, 0.633, 0.649, 0.665, 
and 0.645 using training dataset (Fig. 2 and with testing dataset, the values are 0.277, 0.273, 0.289, 0.305, and 
0.285 (Fig. 3), respectively.

Figure 2.  Training performance of the models.

Figure 3.  Validation performance of the models.
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While using calibration dataset, the RMSE of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA models 
are 0.543, 0.575, 0.478, 0.420, and 0.512 (Fig. 2) and with testing dataset, the values are 0.611, 0.643, 0.546, 0.488, 
and 0.580, respectively (Fig. 3). The odd ratio values of the CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA 
models in training phase are 14.12, 12.35, 21.90, 44.33, and 18.79 whereas in testing phase the values of odd ratio 
are 12.29, 11.62, 14.62, 18.71, and 13.79, respectively (Fig. 5). The outcome of validation techniques including 
accuracy, sensitivity, specificity, F-score, AUROC, Cohen’s Kappa, odd ratio and RMSE displayed the excellent 
predictive ability of models in mapping GES. Based on the training and testing performance of the models, it is 
found that CDT-RF was the best model followed by CDT-ADTree, CDT-BA, CDT-DA and CDT models.

The values of SCAI (Fig. 6) generated from GES of CDT-DA, CDT, CDT-ADTree, CDT-RF, and CDT-BA 
models increased from very high to very low susceptibility. This outcome of SCAI reveals the enhanced predic-
tive performance of the GES models employed in this study.

Discussion
In recent years, various machine  learning33–36,  Fuzzy37–41, deep  learning42–47, and multiple criteria decision mak-
ing (MCDM)  models47,48 along with remote  sensing49–53 and geographic information system (GIS)54–56 have been 
developed with application in various scientific fields.

Even though the newly developed approaches have advanced from traditional statistical techniques to the 
 MLAs57–60, recent studies attempt to formulate novel/hybrid models that could achieve better predictive per-
formance than previously employed approaches. Thus, several studies have successfully enhanced the forecast 
ability of the MLAs by employing diverse novel ensemble methods. In this study, study we presented a novel 
hybrid ensemble for GESM in Bastam sedimentary plain of Northern Iran. We employed five MLAs for model-
ling GES among which four were novel hybrid ensemble models constructed by combining BA, DA, ADTree 

Figure 4.  Area under the curve of the models in the training and validation data.

Figure 5.  Odd ratio values of the models in the training and validation phases.
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and RF meta-classifiers with the CDT base classifier and another was an individual CDT. To our knowledge, 
the hybrid ensembles used in this research to model GES have been not implemented in any other GESM study. 
Fourteen GECFs including clay content, bulk density, elevation, distance to road, distance to stream, drainage 
density, lithology, LU/LC, normalized difference vegetation index (NDVI), rainfall, terrain rugged index (TRI), 
slit content, slope degree and topography wetness index (TWI) were chosen for the modelling of GES. The 
dependency test among the GECFs was carried out which exposed that there was no correlation, thus making 
it applicable for processing the outcome.

The importance of GECFs in modelling GES was assessed using the random forest algorithm, which revealed 
that drainage density, distance to road, rainfall and NDVI were the most influential factors of GES whereas slope 
degree, elevation, silt content, bulk density, TWI and TRI exhibited moderate control over the GES. Similarly, 
Pourghasemi et al.8 showed that drainage density, distance to stream, soil content and altitude largely influence 
the initiation of GE. Likewise, Arabameri et al.61 determined distance to stream and distance to road to influence 
the GES most. Capra et al. (2009)62 reported that formation of GE is higher when the vegetation cover decreases, 
and soil wetness increases due to high rainfall. Kariminejad et al.63 determined that silt content and slope angle 
influence GES. Arabameri et al.11 showed that topographic factors such as TWI, TRI and elevation has moderate 
control over the instigation of GE.

The process-response of a river catchment area is highly influenced by several environmental factors, among 
which drainage is the most vital one, which has a strong positive correlation with gully head cut  retreat11. The 
pattern of drainage is also critical in the initiation and further development of gullies. The drainage pattern in 
a river catchment area is highly affected by nature and structure of the geological formation, soil characteris-
tics, density of vegetation coverage, infiltration rate, and slope  degree22. Previous studies on gully erosion have 
shown that initiation and development of gullies are connected to the stream networks and gullying by streams 
are responsible where favorable conditions are available for their  development20. The slope instability of an area 
is causes by initiation of river and the associated toe erosion and fluctuations of groundwater level. Moreover, 
the degree of surface incision is highly dependent on the pattern of drainage network of an area. The develop-
ment and pattern of drainage of an area is directly related to the power of degree of surface  incision22. The road 
and undercutting construction work gradually increases the strain and stress of the slope which significantly 
influences slope disturbances and  failure20. The pattern and rate of surface runoff is mainly determined through 
road networks, and the concentrated surface runoff flow from one catchment area to another leads to steady 
increase in watershed size which is ultimately responsible for the process of  gullying20. The major finding of this 
research is that CDT-RF (AUSRC = 0.942, AUPRC = 0.945, accuracy = 0.869, specificity = 0.875, sensitivity = 0.864, 
RMSE = 0.488, F-score = 0.869 and Cohen’s Kappa = 0.305) was determined to be the finest model having superior 
accuracy than the rest of the hybrid models. The CDT-RF is followed by CDT-ADTree, CDT-BA, CDT-DA and 
CDT. This clearly shows that RF meta-classifier enhances the predictive performance of individual CDT model. 
It is also true in the case of other meta-classifiers, namely ADTree, BA and DA, which improves the forecast 
accuracy of the base classifier. The higher performance of RF can be due to utilization of the feature abstraction 
method to augment the learning groups for calibrating the base classifiers.

The low predictive accuracy of CDT can be owing to the subset in that the sub-dataset formed is dissimilar 
from a particular issue field which generates fairly diverse  trees64. It should also be noted that RF is a powerful 
MLA that is derived from random forest algorithm. He et al.65 also showed that RF increases the predictive ability 
CDT than any other meta-classifiers such as BA and multiBoostAB (ABM). Nguyen et al.66 also determined that 
different meta-classifiers ABM and radial basis function network (RBFN) increases the forecast ability of CDT. 
Similarly, both Pham et al.67 and Nguyen et al.68 demonstrated that meta-classifier helps base classifier CDT in 
improving the predictive performance in modelling landslide and flash flood vulnerability. From the present 
study, it is evident that combining meta-classifier such as RF, ADTree, BA and DA with the base-classifier such 
as CDT would increase its performance in accurately predicting GES. The general advantage of meta-classifiers 

Figure 6.  Values of seed cell area index (SCAI) in the susceptibility classes.
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is that it enhances the predictive accuracy of the MLAs, whereas individual CDF performs well even in noisy 
datasets. The benefit of utilizing BA is that it is most suitable for classifiers with dipping learning curve and it 
improves the classification accuracy through the creation of different classifications together. The DA also has 
the capability in reducing the noise. The reason for lower performance of individual CDT may be attributed 
to the generation of varying trees, which could be owing to the difference in the sub-dataset constructed for a 
provided issue domain. The integration of RF with CDT could help the base classifier in decreasing the noise 
and bias which would eventually result in the higher accuracy of the ensemble. However, there are certain limita-
tions in these models such as use of various predictor variables with diverse values which need to be addressed 
in future studies.

Concluding remarks
Identifying precise and robust algorithms for decreasing inaccuracies in GESM and demarcating GES zones is 
crucial. This research employed four novel hybrid ensemble models (CDT-RF, CDT-ADTree, CDT-BA and CDT-
DA) for predicting GES with the aid of fourteen GECFs and 293 gully locations. Various validation measures 
including SRC, PRC, specificity, sensitivity, Cohen’s Kappa, F-score, accuracy, RMSE and odd ratio were employed 
for assessing the model outcome using both calibration as well as testing dataset. The outcome of cross-checking 
revealed that all the employed models had excellent predictive accuracy, among which CDT-RF is identified to 
be the most robust model. In addition, the outcome of SCAI also suggests the better performance of the models 
in predicting GES. Our study reveals that meta-classifiers increase the predictive efficacy of base classifiers in 
modelling GES. The models used in this research can be also applied in other study areas. The GESM generated 
by CDT-RF model for Bastam sedimentary plain of Northern Iran can therefore be utilized in controlling the 
occurrence of future gullies and sustainable management of soil resources.

Methods
Description of the study area. The Bastam sedimentary plain is one of the most GE prone watersheds 
located in the Semnan Province of Northern Iran (Fig.  7). It extends between 36° 25′ 53″ N–36° 45′ 43″ N 
latitudes and 54° 43′ 34″ E–55° 10′ 58″ E longitudes and spreads over an area of about 505.06  km2. The average 
elevation of Bastam sedimentary plain is 1577 m.a.s.l (meters above sea level) where the high and low eleva-
tion ranges between 1357 and 2249 m.a.s.l. The high, low and average slope of the study area are 57.96°, 0° and 
2.71°, respectively. The annual average precipitation and temperature of this sedimentary plain is 249.5 mm and 
14.3 °C, respectively with an arid  climate69. Different types of land use/land cover (LU/LC) such as rangeland, 
agriculture, forest, woodland, rock and urban occur in the study area that covers nearly 53%, 44.06%, 2%, 0.49%, 
0.66%, 0.185% and 0.72%, respectively of the total area in Bastam sedimentary plain. Rangeland is the dominant 
vegetation in the study area. The Qal comprising of stream channel, braided channel and flood plain deposits 
accounts for more than 90% of study area’s  lithology70 (Table 5). The area is characterized by rock outcrops/
entisols, entisols/inceptisols, inceptisols, aridisols and mollisols, covering about 14.77%, 57.11%, 1.61%, 26.33% 
and 0.14% of the area,  respectively71,72. Among the several soil types found in the present study area, aridisols 
cover the maximum portion, constituting the dominant soil type. The evaluation of gullies has indicated that 
this area is highly susceptible to gully erosion as nearly 10.34% of the study area is affected by ephemeral gully 
erosion. The low slope area is found to be highly susceptible for gully erosion, with the south-central part more 
prone to gully erosion as this region is dominated by low slope zone. On the other side, steep slope zone with 
rocky outcrops in the northern portion of the study area is conquered by a small number of gullies. Morphomet-
ric analysis of gullies indicates that the length of gullies ranges from few meters to several hundred meters. The 

Figure 7.  Location of study area in Iran. The map was generated using ArcGIS 10.5 software (https ://deskt 
op.arcgi s.com/en/).

https://desktop.arcgis.com/en/
https://desktop.arcgis.com/en/
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width also varies from few centimeters to several meters and depths can be as much as several meters. The length 
of the gullies ranges from 364 m (maximum) to 0.95 m (minimum) and depths vary from 6.3 to 0.63 m. Our field 
survey also reveals that northern part of the study area is dominated by V-shaped cross-section of gullies as this 
area is characterized by rocky outcrops and steep slope. However, the central and southern parts are dominated 
by U-shaped gullies, as this area is low slope zone with coverage of more erodible soils and more concentrated 
runoff and associated erosional activities.

Methodology
The mapping of GES with the help of novel ensemble models, including CDT-BA, CDT-DA, CDT-RF and CDT-
NBT was executed based on the four following phases (Fig. 8). (1) Initially, the spatial distribution of existing 
gullies (dependent variable) and GECFs (predictor variables) were prepared for GESM. (2) This was followed by 
the assessment of multi-collinearity among GECFs. This evaluation is implemented to eliminate noisy GECFs 
and to confirm that there is no correlation among the predictor variables that could affect the prediction of GE. 
(3) With the aid of calibration dataset, GESM is generated based on the five models (CDT, CDT-BA, CDT-DA, 
CDT-RF and CDT-ADTree). The generation of GESMs is followed by the assessment of each independent factor’s 
influence in predicting the GES using random forest model. 4) Using testing dataset, various validation measures 

Table 5.  Lithology of study area.

Unit Description Area  (km2) Area (%)

DCkh Yellowish, thin to thick—bedded, fossiliferous argillaceous limestone, dark grey limestone, greenish 
marl and shale, locally including gypsum 0.37 0.07

Ea.bvs Andesitic to basaltic volcanosediment 8.94 1.77

Ea.bv Andesitic and basaltic volcanics 0.03 0.01

K2m, l Marl, shale and impure limestone 19.67 3.89

Mc Red conglomerate and sandstone 1.51 0.30

Osh Greenish—grey siltstone and shale with intercalations of flaggy limestone 18.09 3.58

P Undifferentiated Permian rocks 454.91 90.07

Qal Stream channel, braided channel and flood plain deposits 1.55 0.31

TRe2 Thick bedded dolomite 0.37 0.07

Figure 8.  Flowchart of the methodology adopted in the current study.
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such as the area under receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, root 
mean square error (RMSE), F-score, odd ratio, Cohen Kappa and seed cell area index (SCAI) were applied for 
cross-checking the predictive ability of the GESM.

Preparation of gully inventory map. Mapping the extent in the location of gullies in the study area is 
indispensable for predicting the  GES13. This is because the susceptibility to most of the natural hazards, includ-
ing GE is spatially modelled based on the presumption that gullies that occur in future may follow the identical 
conditions that triggered the existing  ones61. Thus, understanding the association between the conditioning 
factors and previously existing gullies are  essential61. We carried out detailed field investigations using the global 
positioning system for the preparation of gully inventory map (Fig. 9). A total of 293 gullies were identified in 
the Bastam sedimentary plain. These were arbitrarily split into 70% (206 gullies) and 30% (87 gullies) for model 
calibration and testing the predictive ability of the  model13. In addition, an identical number of non-gully loca-
tions were also identified for the processes of model training and validation.

Preparation of gully erosion conditioning factors. GE is an intricate process which is controlled by 
numerous  factors13,61 although there are no universally accepted factors that are crucial for  GESM17. Hence, we 
carefully selected 14 GECFs from literature review (Fig. 10) namely (a) elevation, (b) slope, (c)TWI, (d)TRI, 
(e) distance to stream, (f) drainage density, (g) distance to road, (h) content of clay, (i) content of silt, (j) bulk 
density, (k) NDVI, (l) rainfall, (m) lithology, (n) LU/LC. The GECFs utilized in this research are selected based 
on the previous investigations, local geo-environmental circumstances and availability of  data11,61,63. All the 14 
GECFs employed in this study were created using ArcGIS 10.5. The primary and secondary topographic factors 
including elevation, slope degree, TWI and TRI were acquired from ALOS DEM having a spatial resolution 
of 12.5 m. The stream network and roads were derived from topographical map with a scale of 1:50,000. The 
30 years of rainfall data from 9 stations were utilized for the interpolation of rainfall map using Inverse Distance 
 Weighting63. Inverse spatial mapping of soil was performed for the areas occupied by gully headcut (GH) mor-
phology. Around 395 soil samples were obtained from the inlets and outlets of GH by digging profile pits rang-
ing between 0 and 2 m in size. While conducting the field investigation, 2 kg of each sample was collected and 
transported to the lab, where these were air-dried, followed by soil particle size analyses based on the hydrometer 
 technique71,72, without eliminating the carbonates, organic matter, and secondary oxides. Secondly, the core 
 approach73 was utilized for estimating the bulk density. Following this, the techniques proposed by Walkley and 
Black (1934)74 and Van  Bavel75 were employed in measuring the organic matter content and stability of the soil. 
Ultimately, the prepared soil layers were added individually to ArcGIS 10.5 and were processed to the scale of 
12.5 m × 12.5 m for additional examination. The foremost soil properties, i.e., bulk density, percentages of silt, 
and clay content were estimated employing approved petrological techniques and mapped in the GIS.

The lithological units were extracted from maps generated by 1:100,000 (Table 5). The LU/LC of the study area 
is acquired from Landsat-8 data. Elevation is considered to be a significant factor that influences the occurrence 
of  gullies13. It controls the processes of GE owing to its association with various factors such as precipitation, soil 
texture, run-off, vegetation type and  cover13. The elevation of Bastam sedimentary plain ranges between 1359 
and 2249 m. As slope angle influences runoff and drainage density, it is one of the many important factors that 
govern gully  formation24. The slope angle varies from 0 to 57.96%. The TWI is generally applied for assessing 
the impact of topography on the infusion of water into the saturated zones of runoff  generation24. TWI is also an 
effective factor that is essential for GESM owing to its association with soil  erosion11, and is computed as  follows24:

where Ds and μ denote the upslope contributing region and slope incline, respectively. It also aids in assess-
ing the water content present in the soil owing to upstream catchment area and  slope24. TWI of the Bastam 

(1)TWI = ln

(

Ds

tanµ

)

Figure 9.  Representative field photographs of the mapped gullies in the study area. (a) Lat: 4072920.7; Long 
869988.1 (b) Lat: 4045271.7; Long 846437.7.
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Figure 10.  Gully erosion conditioning factors. (a) Elevation, (b) slope, (c) topography wetness index, (d) 
terrain rugged index (TRI), (e) distance to stream, (f) drainage density, (g) distance to road, (h) content of clay, 
(i) content of silt, (j) bulk density, (k) normalized difference vegetation index (NDVI), (l) rainfall, (m) lithology, 
(n) land use/land cover (LU/LC). The map was generated using ArcGIS 10.5 software (https ://deskt op.arcgi 
s.com/en/).

https://desktop.arcgis.com/en/
https://desktop.arcgis.com/en/
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sedimentary plain ranges from 1.728 to 21.04. TRI reflects the terrain morphology and has a considerable effect 
on surface  runoff24. TRI values range between 0 and 35.45. Since gully initiation is closely associated with stream 
 networks61, the distance to stream plays a major role in gully formation. The maximum and minimum distance 
to stream was 1050 and 0 m. Drainage density is another important factor to be considered while modelling 
GES as most of the previous studies have revealed that drainage density is the most influential factor in gully 
 formation8. The drainage density of the Bastam sedimentary plain ranges from 0.37 and 3.63 km/km2. Building 
of roads increases the rigidity of gradients, which also leads to gully  formation11. The minimum and maximum 
distance to roads are 0 and 9021.57 m.  Couper76 showed that increase in the content of silt and content of clay 
would lead to vertical incising of soil, which eventually results in the formation of gullies. The content of clay 
varies between 32 and 14%, whereas content of silt ranges from 12 to 43%. The increase in the bulk density of 
soil decreases the potential of plants to reduce the soil erosion. The maximum and minimum bulk density ranges 
between 1622 and 1491 g cm−3. The rainfall is also a significant factor that controls surface flow and  erosivity11. 
The high and low rainfall ranges between 381.12 and 159.20 mm. Vegetation cover has an inverse association 
with soil  erosion8. In this study, the red band (b4) and infra-red band (b5) from Landsat 8 data were used for 
the computation of NDVI as  follows8:

The value of NDVI ranges from -1 to 1, where values < 0.2 indicates non-vegetation and > 0.2 denotes vegeta-
tion presence. The NDVI of the study area ranges between 0.15 and − 0.55. The wearing down of bare lithological 
structures also impacts  GE17. Table 1 and Fig. 10m provide information of the lithological units existing in the 
Bastam sedimentary plain. LU/LC is also an important factor considered for  GESM5. Six types of LU/LC are 
witnessed in the Bastam sedimentary plain.

Evaluation of multi-collinearity. It is vital to assess the dependency among the GSCFs before employing 
these for GESM as the presence of any correlation would impact the consistency and understanding of model 
 outcome11. There are numerous techniques including Pearson correlation, variance inflation factors (VIF), ridge 
regression, the least absolute shrinkage and selection operator (LASSO), conditional index, elastic net, tolerance 
(tol), and jack-knife tests using which multi-collinearity is evaluated. However, commonly, all multi-collinearity 
evaluation technique would estimate the dependence between the predictor  factors63. In this study, we adopted 
VIF and tol approach for assessing the linear dependency among the GECFs. The expressions of VIF and tol are 
as follows:

where r2i  is attained by reversing all remaining variables in a multivariate  regression11. Since there has been no 
approved values of VIF and tol for denoting the collinearity among predictor variables, commonly established 
values: tol ≤ 0.1 and VIF ≥ 5 indicates that there is dependency among the independent  variables11.

Credal decision tree (CDT). Abellan and Moral (2003)77 introduced CDT for n classification issues 
through the application of credal  sets78. It utilizes a unique partitioning condition which was created with the 
help of uncertainty computation along with inexact  possibilities78. To circumvent the intricate decision tree 
(DT) generation while constructing CDT, an innovative idea was developed, which administered to suspend the 
categorization process from growing the cumulative uncertainty owing to the consequence of DT  branching78. 
A modernized approach was developed with the help of the Dempster and Shafe theory, which is utilized for the 
quantification of overall uncertainty from credal  sets79. The aforementioned approach is expressed as follows:

where, n denotes a credal set; CU signifies the complete uncertainty value; and NC and RC are functions that 
refers to the common non-specificity and common randomness, respectively. The creators of CDT obtained 
series of outcomes and successes compared to CU measurement, and furthermore, the computation method of 
CU and its attributes are explained orderly in related  sources79. The inexact possibility  method78 was selected to 
investigate the possibility of interims of discrete  variables79. Assuming ‘W’ as a variable whose values are denoted 
with the help of wj, and the identical possibility order p(wj) meets the following  expression79:

where,  mwj refers to the total number of incidence (W = wj); M represents the sample size and h denotes the 
hyperparameter (value: 1 or 2)79.

Bagging (BA). The BA, also popularly known as bootstrap aggregating, enhances the predictive capabilities 
of  MLAs80. Recent studies show that BA has been successfully employed for precise forecasting of susceptibil-
ity to various natural  hazards80. Even a minute variation in the calibration data could create a great difference 
in the model  outcome80. BA involves the following stages: (a) arbitrary and independently choosing data from 
calibration dataset; (b) formation of several classifier models (CMs) with the help of subgroup datasets and (c) 

(2)NDVI = (b5− b4)/(b5+ b4)

(3)tol = 1− r2i

(4)VIF =
1

tol

(5)CU(n) = NC(n)+ RC(n)

(6)p(wj) ∈

(

mwj

M + h
,
mwj + h

M + h

)
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model generation through the accumulation of every single  CMs81. Integrating the rule of base classifiers has 
been confirmed to have a distinguished impact on BA predicting  capability81.

Assume C (ai, bi) as a subset of calibration data which is arbitrarily chosen repetitively from a Calibration 
dataset (ai, bi), where ai represents gully presence and bi refers to gully absence. Multiple CMs are generated 
based on all subset where Vi(a) represents the created CM. Then finally, every individual classifier (Fi) is com-
bined to form the model outcome (F′). The final prediction of F′ is performed based on the following  expression81.

Dagging (DA). The DA is widely used as an ensemble method that is frequently employed for the creation 
of meta-classifiers82. There are numerous variations between DA and other techniques such as boosting and BA, 
where boosting flexibly alters the calibration dataset according to distribution while the BA adjust the calibration 
dataset speculatively and raises bases according to the efficiency of all classifiers as a weight for  choosing82. In 
DA, the prediction of a model is carried out based on the top  vote82. The algorithm utilizes the maximum vote 
concept for integrating several classifiers in order to enhance the forecast preciseness of the base classifier. DA 
can be employed in case of base classifiers that are a worst case in timely  performance82.

Rotation forest (RF). The RF is an established integration method which aids weak classifiers in perform-
ing  better1,31. It was introduced by Rodríguez et al.83. It is employed in advancing the variation and precision of 
base classifiers according to the feature  transformation83. Random forest algorithm serves as the base for the 
development of RF, still, RF has the improved capability in handling both multi-dimensional and small  dataset83. 
The classification possibility of RF algorithm is assessed with the help of the following  expressions83:

where, a refers to a classification sample; D represents common groups; l indicates the overall quantity of base 
classifiers and Sbj  specifies the rotation matrix.

Alternative decision tree (ADTree). ADTree was proposed by Freund and Mason (1999) and is by far 
the highly effective decision tree model which is rooted upon the principle of boosting and is widely applied for 
modelling  purposes19. ADT was hardly employed for GESM in previous studies. It provides good accuracy and 
consistency for categorization and forecast  issues19. ADTree comprises of two nodes, namely forecast nodes and 
judgement  nodes19. The components of a calibration dataset are partitioned into forecast nodes through separa-
tion tests, and the equivalent extrapolative values of forecast nodes are acquired. Moreover, through the repeti-
tive estimation, producing and clipping, the ADTree meta-classifier is created that has the affirmative capability 
to handle intricate and large datasets. The following expression defines the partition testing of forecast  node19:

where, V + (b) and V − (b) refers to the complete weight of the calibration data which fulfils the circumstance of 
c; V′ denotes the overall weight of the dataset which does not fit for the forecast node, and c represents partition 
testing. The optimal partition testing is attained by determining the least value of T. The appropriate repetitive 
split test is assessed based on a top to bottom approach in ADTree, and the pruning method applied in this 
approach is given as  follows19:

where, Tpure refers to the lowest threshold of T that is employed for pruning the estimation of few forecast nodes.

Relative importance assessment of GECFs using random forest. Random forest is a popular non-
parametric MLA which comprises a horde of classification and regression  trees61. Several studies have employed 
random forest for the evaluation of the significance of predictive  variables84. RF competently handles vague-
ness and unknown data and has the exceptional operational ability even with massive and extremely complex 
 datasets84. RF comprises two major internal stages. Firstly, it builds several bootstrap samples that are considered 
to be calibration sets and then constructs classification rules for every tree. In this process, a few datasets that 
were not employed are leftover; these are known as out-of-bag trials (OOB). OOBs are used to evaluate the inac-
curacies in the categorization and to approximate the precision of the  prediction61.

Validation measures. Evaluation of the prediction exactness of a model is essential for concluding the 
technical importance of an  investigation85. In this study, both training and testing data of GIM is utilized for the 
cross-checking of the model  outcome1,39. There are two types of validation metrics, i.e. cut-off-independent and 
 dependent86. The computation of validation metrics stated above is executed with the help of contingency table 
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which comprises of four components namely TP (true positive), TN (true negative), FN (false negative), and FP 
(false positive)87. Apart from these measures, SCAI has also been employed in this study to assess the prediction 
accurateness of the calibrated model.

Cut-off-independent metrics. The AUROC curve is an extensively utilized metric in various branches 
of science for accuracy and efficacy evaluation of predictive model  outcomes88,89. It plots the sensitivity on the 
Y-axis and 1- specificity on the X-axis90. The value of AUROC varies between 0 and 1, where the value equiva-
lent to unity signifies perfect predictive  capability87. In this research, assessment of success rate curve (SRC) and 
prediction rate curve (PRC) were carried out using the calibration and testing data of GIM, where the former is 
employed to estimate the learning ability of the algorithm whereas the latter is applied to determine the forecast 
 capability90. The only difference between PRC and SRC is that testing data is replaced with calibration data in 
 PRC89.

Cut-off-dependent metrics. The measures such as accuracy, sensitivity, specificity, F-score, odd ratio and 
Cohen Kappa belongs to the cut-off dependent  approach89. The sensitivity refers to the possibility of predicting 
the gullies precisely as witnessed in actuality, whereas the specificity targets to approximate the likelihood of 
predicting non-gullies as perceived in  actuality20. The accuracy represents the efficacy of the model as it reveals 
the complete success of the forecast model. The F-score is defined as the harmonic average of precision and 
recall. The values of F-score varies between 0 and 1 where value near 1 represents high precision and recall. Odd 
ratio estimates the chances that an outcome will appear provided a selective display, related to the chances of the 
outcome happening in the nonexistence of that  display30. Cohen’s Kappa tests the robustness of the model and 
aids the modeller to completely comprehend the actual model  outcome32. These cut-off-dependent approaches 
were utilized for assessing both the training as well as the testing performance of the models used in this study. 
The following expressions are employed for the computation of cut-off-dependent  metrics20:

Seed cell area index (SCAI). Süzen and  Doyuran91 introduced the SCAI method which is known as the 
proportion between the total amount of pixels of the particular GES category and the total amount of pixels of 
prevailing gullies in that particular GES  category86. Numerous studies have employed SCAI for assessing the per-
formance of the forecast  models20. The very high value of SCAI for very high susceptibility class and low value of 
SCAI for low susceptibility class indicates a perfect model and any contrary outcome of this values denotes the 
poor predictive performance of the model.

Statistical measures. The RMSE is employed in this study for the validating the model’s calibration as 
well as testing performance. The RMSE of 0.7 and below indicates better predictive ability while a value greater 
than 0.7 signifies the poor predictive performance of the  model20,32. The RMSE is assessed using the following 
expression:

where, Vp refers to the value present in calibration or testing data; Va represents the forecast values produced 
for the GESMs and z indicates the total number of calibration or testing data.
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