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1 | INTRODUC TION

Temperate saltmarshes and tropical mangrove swamps (mangals) are 
important marine-influenced wetlands whose primary producers are 
overwhelmingly angiosperms of terrestrial origin. These highly pro-
ductive ecosystems at the transition between land and sea enrich 
nearby marine habitats with nutrients and facilitate colonization of 
lineages from land to sea or vice versa. Both marine and terrestrial 
animals have become specialized for life on or under mangroves and 
saltmarsh vegetation.

Although comprehensive descriptions of these ecosystems have 
long been available (Chapman, 1960; Greb et al., 2006; Macnae, 1968; 
Saintilan, 2009; Visser et al., 2019; Walsh, 1974), and numerous tax-
onomic and ecological studies of resident taxa have been published, 
differences in the times of origin between mangals and saltmarshes 
have gone unnoticed. These are nonetheless important because they 
might indicate that temperate gains in productivity in coastal vegeta-
tions are much more recent than those in tropical mangals.

Mangals and saltmarshes have in common that both thrive on 
and create muddy or sandy soils in wave-sheltered tidal environ-
ments. Nevertheless, their taxonomic compositions differ strikingly, 
potentially reflecting contrasting times and places of origin. Here, 
I propose the hypothesis that saltmarshes are much younger than 
mangals, that the plant inhabitants of saltmarshes derive from lin-
eages almost entirely different from the lineages of mangrove spe-
cies, and that specialization of molluscs to mangrove swamps and 
saltmarshes mirror these contrasting histories.

2  |  MATERIAL S AND METHODS

Plants were considered to be adapted to mangals or saltmarshes if 
they are regularly or occasionally inundated by seawater. Molluscs 
were considered to be specialized to mangroves or saltmarshes 
if they either routinely climb on vegetation or are attached to 
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vegetation. Many species live on the sediment beneath vegetation 
or are found on hard surfaces in addition to the vegetation; these 
were not considered to be specialized mangal or saltmarsh species.

Phylogenetic and fossil evidence for times of origin were gleaned 
from the published literature. I searched for relevant phylogenetic 
and paleobotanical papers for each family of angiosperms with rep-
resentatives in saltmarshes and then consulted the reference list in 
the papers as well as the papers that cited those I found. Search 
terms other than family names were judged inadequate or too gen-
eral to be useful. Divergence times were accepted as inferred in the 
studies cited. Given their consistency among papers, variations in 
the protocols used should have a little effect on the interpretations 
made herein.

3  |  RESULTS

3.1  |  Plants

At the family level, there is almost no overlap between plant line-
ages in mangals and those in saltmarshes. Among angiosperms, 15 
families have representatives in mangals: Acanthaceae, Arecaceae, 
Combretaceae, Euphorbiaceae, Lythraceae, Malvaceae, Meliaceae, 
Myrsinaceae, Myrtaceae, Plumbaginaceae, Rhizophoraceae, 
Rubiaceae, Sapotaceae, Stercullaceae, and Tetrameristaceae. 
There are 11 families with species restricted to saltmarshes: 
Amaranthaceae, Asteraceae, Batidaceae, Caryophyllaceae, 
Frankeniaceae, Juncaceae, Juncaginaceae, Plantaginaceae, 
Plumbaginaceae, Poaceae (Chloridoideae and Pooideae), and 
Primulaceae. Specialization to these saline coastal environments has 
occurred more than once in most of these families (Bennett et al., 
2013; Dassanayake & Larkin, 2017; Ellison et al., 1999; Flowers et al., 
2010; Ricklefs & Latham, 1993; Sahu et al., 2016). Only one fam-
ily (Plumbaginaceae) includes representatives in both habitats, but 
mangal and saltmarsh species belong to separate lineages. There 
is no genus-level overlap between mangrove and saltmarsh plants. 
Three seagrass families, all belonging to Alismatales (Larkum et al., 
2017; Les et al., 1997) contain no species in mangals or saltmarshes. 
In addition to angiosperms, the fern genus Acrostichum (Pteridaceae) 
has adapted to mangals (Wei et al., 2020), and several mosses tol-
erate or even have become restricted to saltmarshes (Adam, 1976; 
Callaghan & Farr, 2018; Garbary et al., 2008). Altogether, then, at 
least 26 family-level groups of vascular plants occur in mangals or 
saltmarsh vegetation.

With the possible exception of the chloridoid grass genera 
Distichils and Sporobolus, which have warm-temperate saltmarsh 
representatives but are otherwise tropical in distribution, saltmarsh 
plant lineages have temperate origins. Moreover, many prominent 
saltmarsh genera contain species or populations that live in other 
habitats, including inland saline areas as well as fully terrestrial set-
tings. Examples include Artemisia and Aster (Asteraceae), Juncus 
(Juncaceae), Plantago (Plantaglnaceae), Puccinellla (Pooideae), 
Spartina (Chlorldoideae), Spergularia (Caryophyllaceae), and Triglochin 

(Juncaginaceae) (Gillespie et al., 2008; von Mering & Kadereit, 2015; 
Pimentel et al., 2017). All saltmarsh plants are low-growing and have 
ancestors in open, non-forested areas. Mangrove genera, by con-
trast, comprise mangal specialists and are trees with tropical-forest 
origins (Sahu et al., 2016).

A second striking contrast between angiosperm-dominated 
mangals and saltmarshes is the time of origin of these ecosystems. 
Mangals are first documented for the Maastrichtian (late Cretaceous) 
with the appearance of Nypa (Arecaceae), Palaeowetherellia 
(Euphorbiaceae), and the fern Welchselia reticulate (Greb et al., 2006; 
Ricklefs & Latham, 1993; Sahu et al., 2016; Shinaq & Bandel, 1998). 
Rhizophora (Rhizophoraceae) and Pelliciera (Tetrameristaceae) are 
known from the Paleocene, followed by Acrostichum and Avicennia 
(Acanthaceae) in the Early Eocene and Lumnitzera (Combretaceae) 
in the Middle Eocene, Sonneratia (Lythraceae) and Camptostemon 
(Malvaceae) in the Early Miocene, and Excoecaria (Euphorbiaceae) 
in the Middle Miocene (Ricklefs & Latham, 1993; Sahu et al., 2016). 
Mangal ecosystems have expanded and contracted throughout the 
Cenozoic in all parts of the tropics, but their highest diversity of 
plant species is achieved in the inner Indo-West Pacific region of 
southeast Asia (Ellison et al., 1999; Guo et al., 2017; Walsh, 1974; 
Woodroffe & Grindrod, 1991).

The history of saltmarsh lineages is less well known, but diver-
gence times inferred from molecular sequences indicate that salt-
marshes are no older than the latest Eocene to earliest Oligocene 
(35–30  Ma). The grass subfamily Chloridoideae, which have C4 
photosynthesis, is estimated to have originated about 35  Ma 
(Bouchenak-Khelladi et al., 2014). Saltmarsh members of chloridoid 
genera such as Distichlls, Spartina, and Sporobolus, therefore cannot 
be older and are likely much younger, dating to the Middle or Late 
Miocene (Bouchenak-Khelladi et al., 2014; Greb et al., 2006). The 
Salicornioideae (Amaranthaceae), with about 100 saltmarsh species 
worldwide, is estimated to have evolved in the Late Oligocene to 
Early Miocene (25–20 Ma) (Piirainen et al., 2017). This clade belongs 
to the order Caryophyllales, a clade with mid to late Cretaceous or-
igins (Yao et al., 2019) and to which several other saltmarsh groups 
(Caryophyllaceae, Frankeniaceae, and Plumbaginaceae) belong. In 
the Asteraceae, another major clade with late Cretaceous origins 
(Mandel et al., 2019), tribes with representatives in saltmarshes 
began diversifying in the latest Eocene (36 Ma), indicating that this 
is a maximum age of saltmarsh members of the family (Mandel et al., 
2019). The C3-photosynthesizing grass subfamily Pooideae, which 
includes saltmarsh species of Puccinellia, also originated in the Late 
Eocene and diversified explosively in the Oligocene and Miocene 
(Pimentel et al., 2017). A similar scenario has been proposed for 
Triglochin (Juncaginaceae), which originated about 36  Ma. The 
saltmarsh T. bublosa and T. marltlma complexes have a crown age 
of 10 Ma (Late Miocene) (von Mering & Kadereit, 2015). In short, 
estimates of divergence times all point to a maximum age of latest 
Eocene for saltmarsh lineages, with most taxa likely being much 
younger. If these inferences are correct, the origin of a terrestrially 
derived saltmarsh vegetation would postdate the origin of mangal 
vegetation by at least 34 m.y. The latest Eocene origin coincides 
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with the earliest Antarctic glaciation and with high-latitude cooling 
in both hemispheres.

3.2  |  Marine molluscs

Animals of marine origin are highly diverse in mangals, especially in 
the Indo-West Pacific. Among tree-climbing gastropods, they in-
clude members of Cerithiidae (Clypeomorus pellucida), Littorinidae 
(Littoraria, Littorinopsis, and related genera), Muricidae (species of 
Indothais and Thaisella), Neritidae (Ilynerita and some Cymostyla), 
and Potamididae (Cerithidea and Terebralia) (Claremont et al., 2013; 
Reid et al., 2008, 2010; Vermeij, 1973). Many additional gastro-
pods live on the soil beneath mangroves. Likewise, although many 
bivalves occur in mangrove swamps, most live on a variety of sub-
strata. The only bivalves that appear to be specialized for attach-
ment to mangroves belong to Anomiidae (Enigmonia aenigmatica, on 
leaves) and Isognomonidae (several species of Isognomon) (Tëmkin & 
Printrakoon, 2016; Yonge, 1957).

Species in at least 10  gastropod families live on or under 
vegetation in saltmarshes, but only one species, the northwest 
Atlantic Littoraria irrorata, occurs on saltmarsh plants (Reid et al., 
2010). Many gastropods have populations in both mangals and 
saltmarshes, but again, most of these do not climb on vegetation. 
Plant-climbing species of Palustorina (Littorinidae) in China and 
Littorinopsis in Australia live in saltmarshes but are primarily as-
sociated with tropical mangroves (Dong et al., 2015; Reid, 1986). 
No saltmarsh gastropods that can climb plants have temperate or-
igins. Northern-hemisphere populations of Littorina occur in salt-
marshes, but they belong to species with very broad ecological 
distributions including wave-swept rocky shores (Reid, 1996). The 
only bivalve that appears to be specialized for life in saltmarshes 
is the byssate semi-infaunal mytilid mussel genus Geukensia, with 
two allopatric northwest Atlantic species (Sarver et al., 1992). 
Geukensia in the sister group of the tropical and warm-temperate 
western Atlantic genus Ischadium in the subfamily Brachidontinae, 
which occurs widely in mangals and on other hard substrata in-
cluding oysters (Trovant et al., 2015).

Mangrove-associated littorinids and potamidids date to the Early 
Eocene (Dominici & Kowalke, 2014; Reid et al., 2008, 2010), but the 
tree-climbing potamidid Cerithidea, Clypeomorus (Cerithiidae), and 
muricids are no older than the Miocene (see also Claremont et al., 
2013; Houbrick, 1985). The saltmarsh-specialized Littoraria irrorata 
is a known fossil from the Late Miocene and Pliocene and diverged 
from its sister species L. varia at about this time (Reid et al., 2010). The 
littorinids with well-established saltmarsh populations in the North 
Atlantic (Littorina littorea and L. saxatilis) arrived from the North Pacific 
during the Pliocene (Reid, 1996). There is no pre-Pleistocene record 
for the mussel genus Geukensia. The meager record of saltmarsh mol-
luscs is therefore consistent with the hypothesis that saltmarsh eco-
systems are much younger than mangals and that specialization to 
saltmarshes is much less common than that to mangroves.

4  |  GENER AL DISCUSSION

If the hypothesis that angiosperm-dominated saltmarshes are much 
younger than mangals is correct, as phylogenetic and fossil evidence 
from plants and molluscs indicate, it would have far-reaching impli-
cations for ecological and evolutionary connections between terres-
trial and nearby coastal marine ecosystems. Both saltmarshes and 
mangals are highly productive ecosystems that facilitate nutrients 
exchange by mobile animals between land and sea. Pre-angiosperm 
halophytes may have existed as well, but these were likely less 
productive and less diverse. Successions of mangal-like communi-
ties might have existed during the Carboniferous, but the evidence 
for specialized tidal saline vegetation during the Paleozoic is sus-
pect (Falcon-Lang, 2005; Greb et al., 2006). The peculiar lycophyte 
Pleuromeia from the Early and Middle Triassic appears to be halo-
phytic (Krassilove & Zakharov, 1975; Retallack, 1975), as are some 
conifers of the Middle Jurassic and Early Cretaceous in the family 
Cheirolepidiaceae, the Middle Jurassic conifer Brachyphyllus, and 
the Late Jurassic fern Pachypteris (Alvin, 1982). The taxonomic af-
finities of these taxa indicate low productivity in comparison with 
angiosperms. Before angiosperm mangroves evolved in the Late 
Cretaceous, sheltered shores in warm regions would have been less 
hospitable to both marine and terrestrial animals. Once these en-
vironments were vegetated by angiosperms, the transitional tidal 
systems accommodated more animal life and physically less harsh 
conditions. Low-diversity mangrove assemblages extended north to 
Arctic latitudes during the warmest phases of the Eocene, but man-
groves retreated southward (or northward, depending on the hemi-
sphere) as climates cooled thereafter (Popescu et al., 2021), leaving 
temperate mudflats potentially unvegetated.

High-latitude cooling began about 35 Ma and intensified about 
13  Ma during the middle Miocene. Habitats available for coloni-
zation by saltmarsh plants therefore expanded from non-forested 
temperate regions. Unlike the plants, the small number of saltmarsh-
specialized molluscs has tropical origins. Molluscs with broad habi-
tat distributions have opportunistically colonized saltmarshes from 
either tropical or temperate populations.

The hypothesis proposed here can be further tested and elab-
orated by considering other animal groups that have become spe-
cialized to live on mangrove trees or in saltmarshes. These groups 
especially include brachyuran crabs as well as herbivorous insects 
and some terrestrially derived vertebrates. Geographical differences 
in specialization and in diversity of mangal and saltmarsh specialists 
could illuminate aspects of evolution in these habitats. For example, 
Indo-West Pacific mangrove plants, molluscs, and crustaceans are 
more than 10 times richer in species than their Atlantic-East Pacific 
counterparts (Ellison et al., 1999; Vermeij, 1973; Walsh, 1974), per-
haps reflecting the geographical extents of suitable habitats in the 
past (Ricklefs & Latham, 1993). Differences in saltmarsh specializa-
tion between regions have not been investigated, but the northwest 
Atlantic and perhaps Australia appear to harbor more specialists 
than other parts of the world.
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These historical and comparative aspects of ecology can be 
fruitfully applied to other ecosystems as well, especially systems 
that develop at major transitions among terrestrial, freshwater, and 
marine environments. Although such studies may not have imme-
diate practical applications, they offer an important historical per-
spective with long-term implications for the health and sustenance 
of systems that have been strongly affected.
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