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In this paper, we studied a delayed rumor spreading model with discontinuous threshold control. First, 
we studied the existence of equilibria of the subsystem. Regarding the delay as bifurcating parameter, the 
local asymptotic stability and Hopf bifurcation of the positive equilibrium are discussed by analyzing the 
corresponding characteristic equations of linearized systems. Then, we studied the existence of the sliding mode 
and analyzed the existence of the tangent equilibria, boundary equilibria, regular equilibria, and the stability of 
the pseudo-equilibrium. Finally, we provide some numerical simulations to verify the theoretical results.
1. Introduction

Since the dawn of human civilization, rumors have consistently 
played a vital part in the social life of people, and they are a phe-

nomenon that cannot be ignored. In essence, rumors are unsubstanti-

ated stories or reports that circulate within a community, typically by 
word of mouth or social media, and are accepted as facts, despite the 
fact that their original source may be unknown. As information technol-

ogy continues to advance, there has been a rise in interest in discussing 
social networks as a new medium for communication and social bond-

ing. Currently, rumors are spreading more quickly than at any other 
time in history. People experience psychological panic as a result of it, 
and they suffer significant economic losses [1, 2]. For instance, when 
there was a nuclear leakage disaster in Japan, thousands of Chinese 
people made the error of thinking that buying iodized salt would pro-

tect them from nuclear radiation. This led to social panics and a lack of 
availability of table salt. It is therefore extremely important to conduct 
a comprehensive investigation into the rule of rumor propagation, in 
order to reduce rumor propagation while maintaining societal stability 
and security.

Understanding the characteristics of rumor dissemination and how 
it spreads can lead to more effective measures to preventing the spread 
of rumor. For this reason, the mathematical model, and in particular the 
epidemic model, is commonly utilized in the research of rumor dissem-

ination in social networks. The mechanism by which rumors propagate 
on the web is strikingly similar to that by which infectious diseases 
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spread. [3, 4, 5, 6, 7]. Daley and Kendall [8] first presented the DK 
model of rumor propagation. Moreno et al. studied [9] the stochastic 
version of the MK model on scale-free networks, by means of Monte 
Carlo simulations. Borge-Holthoefer et al. [10] introduced two mecha-

nisms with the aim of filling the gap between theoretical and experi-

mental results.

Undoubtedly, understanding how to effectively stop the spread of 
rumors is a crucial skill for preserving social harmony. Therefore, ex-

ternal controls on rumor spreading have been increasingly studied by 
academics, as have the norms of information distribution. Zhu [11] 
looked into how to stop rumors from spreading in online social net-

works. Zhao et al. [12] introduced a propagation force into the analy-

sis of rumor propagation and discussed rumor control strategies. Zhu 
et al. [13] introduced a new delayed SIR (susceptible-propagating-

recovery) epidemic-like rumor transmission model, which can be used 
in either a homogeneous or a heterogeneous network, and a forced 
silence function was introduced to discuss the control of the model. 
Zhu and Wang [14] studied a SAIR (susceptible-indifferent-propagating-

recovery) rumor spreading model. We refer readers to refs. [15, 16, 17, 
18] as some other related works on rumor models with control strate-

gies.

It is noted that the control function of most models is applied at 
𝑡 = 0. We point out that setting the beginning of control at 𝑡 = 0 is a very 
unrealistic assumption. With this in mind, a threshold control policy 
may be a better control strategy, which has been applied in an endemic 
model and a predator–prey model (see [19, 20, 21, 22]).
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Fig. 1. Organizational framework for the diffusion of rumors.

The following is the structure of the paper: In Section 3, some pre-

liminaries are given. In Section 4, we conduct an analysis of the char-

acteristic equations that correspond to each variable and explore the 
local stability as well as Hopf bifurcation. In Section 5, we talk about 
whether or not the system has a sliding domain. In Section 6, we will 
explain the main theoretical results through the use of numerical simu-

lations that we will do. After then, the final portion of Section 7, which 
is a discussion, is presented.

2. Rumor spreading model formulation

We consider the threshold policy in a rumor spreading model. We 
divide the total people into three classes: the rumor-susceptible indi-

viduals 𝑆(𝑡), who represent those unaware of the rumor; the rumor-

propagating individuals 𝐼(𝑡), who stand for those who believe and 
spread the rumor; the rumor-recovery individuals 𝑅(𝑡), representing 
those who know the rumor but have ceased communicating it after 
meeting somebody already informed.

In the model, we assume that Λ is the constant rate of immigra-

tion of the rumor-susceptible individuals, and 𝛽 is the contact rate of 
the rumor-susceptible individuals and the rumor-propagating individ-

uals, 𝜇 is the removal rate of the system, 𝛼 is the contact rate of the 
rumor-propagating peoples and the rumor-recovery peoples, that is, if 
the rumor-propagating peoples will become the rumor-recovery indi-

viduals after contacting with a rumor-recovery individual who tell the 
truth of the rumor. 𝜏 is the time delay from the rumor-propagating in-

dividuals to the rumor-recovery individuals.

In addition, we consider the threshold policy in the model: if the 
proportion of the rumor-propagating peoples is below the critical level 
𝐼𝑡ℎ, the control is not applied, whereas, once the ratio of the rumor-

propagating peoples increases and reaches a certain level 𝐼𝑡ℎ, the con-

trol strategy is implemented.

All the above parameters are all assumed positive. Fig. 1 depicts the 
model for the rumor spreading process based on the above facts.

In light of the above, the dynamics are governed by the system of 
nonlinear ordinary differential equations shown below.

⎧⎪⎨⎪⎩
d𝑆
dt = Λ − 𝛽𝑆𝐼 − 𝜇𝑆,
d𝐼
dt = 𝛽𝑆𝐼 − 𝛼𝐼𝑅(𝑡− 𝜏) − 𝜇𝐼 − 𝑇 (𝐼),
d𝑅
dt = 𝛼𝐼𝑅(𝑡− 𝜏) − 𝜇𝑅+ 𝑇 (𝐼),

(1)

where 𝑇 (𝐼) is a government control function, which is a threshold con-

trol as follows

𝑇 (𝐼) =
{

0, 𝐼 < 𝐼𝑡ℎ,

𝑞𝐼, 𝐼 > 𝐼𝑡ℎ,

where 𝐼𝑡ℎ is a threshold value. This means that only when 𝐼 > 𝐼𝑡ℎ will 
the control be applied.

To best our knowledge, few researchers have examined a model of 
delayed rumor propagation with discontinuous threshold control. We 
shall examine the existence of the equilibria, its stability and bifurcation 
in this paper.
2

3. Preliminaries

First, we introduce some helpful attributes and definitions for Filip-

pov systems [23].

Letting 𝐻(𝑍) = 𝐼 − 𝐼𝑡ℎ with vector 𝑍 = (𝑆, 𝐼, 𝑅)𝑇 , and

𝐹𝐺1 (𝑍) = (Λ − 𝛽𝑆𝐼 − 𝜇𝑆,𝛽𝑆𝐼 − 𝛼𝐼𝑅(𝑡− 𝜏) − 𝜇𝐼, 𝛼𝐼𝑅(𝑡− 𝜏) − 𝜇𝑅))𝑇 ,

𝐹𝐺2 (𝑍) = (Λ − 𝛽𝑆𝐼 − 𝜇𝑆,𝛽𝑆𝐼 − 𝛼𝐼𝑅(𝑡− 𝜏) − 𝑞𝐼, 𝛼𝐼𝑅(𝑡− 𝜏) − 𝜇𝑅+ 𝑞𝐼))𝑇 .

Consequently, system (1) can be expressed as the Filippov system

𝜕𝑍

𝜕𝑡
=
{

𝐹𝐺1 (𝑍), 𝑍 ∈𝐺1 ∶= {𝑍|𝐻(𝑍) < 0},
𝐹𝐺2 (𝑍), 𝑍 ∈𝐺2 ∶== {𝑍|𝐻(𝑍)> 0}. (2)

In addition, Σ𝑠 = {𝑍|𝐻(𝑍) = 0} describes the discontinuity border di-

viding the two regions 𝐺1 and 𝐺2. The Filippov system (2) defined in 
𝐺1 is called 𝑆1 while that defined in 𝐺2 is called 𝑆2.

Let

𝜎(𝑍) = ⟨𝐻𝑍 (𝑍), 𝐹𝐺1
(𝑍)⟩⟨𝐻𝑍 (𝑍), 𝐹𝐺2

(𝑍)⟩,
where ⟨⋅⟩ represents the conventional scalar product. Following, we 
shall employ the notation 𝐹𝐺𝑖

⋅𝐻(𝑧) = ⟨𝐻𝑍 (𝑍), 𝐹𝐺𝑖
(𝑍)⟩ for 𝑖 = 1, 2. Thus, 

the sliding mode domain can be defined as

Σ𝑆 = {𝑍 ∈ Σ|𝜎(𝑍) < 0}.

Throughout the study, all forms of Filippov equilibria are defined as 
the following [24, 25, 26].

Definition 3.1. If 𝐹𝐺1 (𝑍∗) = 0, 𝐻(𝑍∗) < 0 or 𝐹𝐺2 (𝑍∗) = 0, 𝐻(𝑍∗) > 0, 
then 𝑍∗ is called a regular equilibrium of system (2), and if 𝐹𝐺1 (𝑍∗) =
0, 𝐻(𝑍∗) > 0 or 𝐹𝐺2 (𝑍∗) = 0, 𝐻(𝑍∗) < 0, then 𝑍∗ is called a virtual 
equilibrium of system (2).

Definition 3.2. A point 𝑍∗ is called a pseudo-equilibrium if it is an 
equilibrium of the sliding mode of system (2), that is, (1 − 𝜆)𝐹𝐺1

(𝑍∗) +
𝜆𝐹𝐺2

(𝑍∗) = 0, 𝐻(𝑍∗) = 0, and 0 < 𝜆 < 1, where

𝜆 =
⟨𝐻𝑍 (𝑍), 𝐹𝐺1

(𝑍)⟩⟨𝐻𝑍 (𝑍), 𝐹𝐺1
(𝑍) − 𝐹𝐺2

(𝑍)⟩ .
Definition 3.3. The tangent equilibrium 𝑍∗ of system (2) is that 𝑍∗ ∈
Σ𝑠 and ⟨𝐻𝑍 (𝑍∗), 𝐹𝐺1

(𝑍∗)⟩ = 0 or ⟨𝐻𝑍 (𝑍∗), 𝐹𝐺2
(𝑍∗)⟩ = 0.

Definition 3.4. The boundary equilibrium 𝑍∗ of system (2) is that 
𝐹𝐺1

(𝑍∗) = 0, 𝐻𝑍 (𝑍∗) = 0 or 𝐹𝐺2
(𝑍∗) = 0, 𝐻𝑍 (𝑍∗) = 0.

4. Dynamics of subsystem

4.1. Dynamics of subsystem 𝑆1

For subsystem 𝑆1, the equilibria satisfy

⎧⎪⎨⎪⎩
Λ− 𝛽𝑆𝐼 − 𝜇𝑆 = 0,
𝛽𝑆𝐼 − 𝛼𝐼𝑅− 𝜇𝐼 = 0,
𝛼𝐼𝑅− 𝜇𝑅 = 0.

(3)

Obviously, subsystem 𝑆1 has a equilibrium 𝑃 1
𝑆1

= (𝐴
𝜇
, 0, 0), which is al-

ways a regular equilibrium, and it implies that both rumor-propagating 
individuals and rumor-recovery individuals are extinct.

If 𝑅 = 0, from the second equation of (3), we can obtain that 
𝑆 = 𝜇

𝛽
. Then substitute it into the first equation of (3), we have 

𝐼 = Λ𝛽−𝜇2

𝛽𝜇
. Therefore, if 𝜇2 < Λ𝛽, then the system has a equilibrium 

𝑃 2
𝑆1

= ( 𝜇
𝛽
, Λ𝛽−𝜇2

𝛽𝜇
, 0), which implies that the rumor-recovery individuals 

are extinct.
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For the positive equilibrium, from the third equation of (3), we 
have 𝐼 = 𝜇

𝛼
. Substitute it into the first equation of (3), one obtains 

that 𝑆 = Λ𝛼

𝜇(𝛼+𝛽) . Then according to the second equation of (3), we have 

𝑅 = 𝛽Λ𝛼−𝜇2(𝛼+𝛽)
𝛼𝜇(𝛼+𝛽) . Hence, if 𝛽Λ𝛼 − 𝜇2(𝛼 + 𝛽) > 0, then subsystem 𝑆1 has a 

positive equilibrium 𝑃 3
𝑆1

= (𝑆∗
𝑆1

, 𝐼∗
𝑆1

, 𝑅∗
𝑆1
) = ( Λ𝛼

𝜇(𝛼+𝛽) , 
𝜇

𝛼
, 𝛽Λ𝛼−𝜇2(𝛼+𝛽)

𝛼𝜇(𝛼+𝛽) ).

Theorem 4.1. For system 𝑆1, we have

(i) when Λ𝛽 < 𝜇2, system 𝑆1 has only an equilibrium 𝑃 1
𝑆1

= (𝐴
𝜇
, 0, 0)

which is locally asymptotically stable for any 𝜏 ≥ 0;

(ii) when 𝜇2 <Λ𝛽 < 𝜇2 + 𝜇2𝛽
𝛼

, the equilibrium 𝑃 1
𝑆1

= (𝐴
𝜇
, 0, 0) is unstable 

and the equilibrium 𝑃 2
𝑆1

= ( 𝜇
𝛽
, Λ𝛽−𝜇2

𝛽𝜇
, 0) is locally asymptotically stable for 

any 𝜏 ≥ 0;

(iii) When Λ𝛽 > 𝜇2 + 𝜇2𝛽
𝛼

, the equilibria 𝑃 1
𝑆1

and 𝑃 2
𝑆1

are both unsta-

ble, and system has a unique positive equilibrium 𝑃 3
𝑆1

= (𝑆∗
𝑆1

, 𝐼∗
𝑆1

, 𝑅∗
𝑆1
) =

( Λ𝛼

𝜇(𝛼+𝛽) , 
𝜇

𝛼
, 𝛽Λ𝛼−𝜇2(𝛼+𝛽)

𝛼𝜇(𝛼+𝛽) ), which is locally asymptotically stable with 𝜏 = 0.

Proof. (i) For the equilibrium 𝑃 1
𝑆1

= ( Λ
𝜇
, 0, 0), 𝐽( Λ

𝜇
,0,0) =⎛⎜⎜⎜⎝

−𝜇 − 𝛽Λ
𝜇

0
0 𝛽Λ

𝜇
− 𝜇 0

0 0 −𝜇

⎞⎟⎟⎟⎠. If Λ𝛽 < 𝜇2, then 𝜆2 =
𝛽Λ
𝜇

− 𝜇 < 0, and 𝜆1 = −𝜇 < 0, 

𝜆3 = −𝜇 < 0, so 𝑃 1
𝑆1

is locally asymptotically stable for any 𝜏 ≥ 0, which 
means that rumor is wiped out in the social.

(ii) For the equilibrium 𝑃 2
𝑆1

= ( 𝜇
𝛽
, Λ𝛽−𝜇2

𝛽𝜇
, 0),

𝐽
( 𝜇
𝛽
,
Λ𝛽−𝜇2

𝛽𝜇
,0)

=

⎛⎜⎜⎜⎜⎝
−Λ𝛽−𝜇2

𝜇
−𝜇 0

−Λ𝛽−𝜇2

𝜇
0 −𝛼

Λ𝛽−𝜇2

𝛽𝜇

0 0 𝛼
Λ𝛽−𝜇2

𝛽𝜇
− 𝜇

⎞⎟⎟⎟⎟⎠
,

and the corresponding characteristic equation is

(𝜆− 𝛼
Λ𝛽 − 𝜇2

𝛽𝜇
+ 𝜇)(𝜆2 + Λ𝛽 − 𝜇2

𝜇
𝜆+Λ𝛽 − 𝜇2) = 0. (4)

Obviously, all roots of Eq. (4) are negative. Therefore, 𝑃 2
𝑆1

is locally 
asymptotically stable.

(iii) When Λ𝛽 > 𝜇2 + 𝜇2𝛽
𝛼

, for the equilibrium 𝑃 3
𝑆1

= (𝑆∗
𝑆1

, 𝐼∗
𝑆1

, 𝑅∗
𝑆1
)

the corresponding characteristic equation is

𝜆3 +𝐴1𝜆
2 +𝐴2𝜆+𝐴3 + (𝐴4𝜆

2 +𝐴5𝜆+𝐴6)𝑒−𝜆𝜏 = 0, (5)

where

𝐴1 = 2𝜇 + 𝛽𝐼∗
𝑆1

,𝐴2 = 𝜇(𝛽𝐼∗
𝑆1

+ 𝜇) + 𝐼∗
𝑆1

𝑆∗
𝑆1

𝛽2,

𝐴3 = 𝛽2𝑆∗
𝑆1

𝐼∗
𝑆1

𝜇,𝐴4 = −𝛼𝐼∗
𝑆1

,

𝐴5 = 𝛼2𝑅∗
𝑆1

𝐼∗
𝑆1

− 𝛼𝐼∗
𝑆1
(𝛽𝐼∗

𝑆1
+ 𝜇),

𝐴6 = (𝛽𝐼∗
𝑆1

+ 𝜇)𝛼2𝑅∗
𝑆1

𝐼∗
𝑆1

− 𝛽2𝛼𝑆∗
𝑆1

𝐼∗2
𝑆1

.

When 𝜏 = 0, the characteristic equation reduces to

𝜆3 + (𝐴1 +𝐴4)𝜆2 + (𝐴2 +𝐴5)𝜆+𝐴3 +𝐴6 = 0.

By a direction calculation, we obtain

𝐴1 +𝐴4 = 𝛽𝐼∗
𝑆1

+ 2𝜇 − 𝛼𝐼∗
𝑆1

= 𝛼𝜇 + 𝛽𝜇

𝛼
> 0,

𝐴3 +𝐴6 = −𝛼𝜇3 + 𝛽𝜇3 − Λ𝛼𝛽𝜇

𝛼
> 0,

(𝐴1 +𝐴4)(𝐴2 +𝐴5) − (𝐴3 +𝐴6) =
Λ𝛽2𝜇

𝛼
> 0.

Therefore, when 𝜏 = 0 all the roots of Eq. (5) have a negative real part. 
According to the Routh-Hurwitz criterion, the equilibrium 𝑃 3

𝑆1
is locally 

asymptotically stable when 𝜏 = 0. □
3

Remark 4.1. 𝑃 1
𝑆1

is stable implying that rumor does not spread, and 
rumor-propagating and rumor-recovery peoples are both extinct. 𝑃 2

𝑆1
and 𝑃 3

𝑆1
are stable implying that rumor always exists and maintain at a 

constant rate.

When 𝜏 > 0, let 𝜆 = 𝑖𝜔(𝜔 > 0) be a solution of Eq. (5). Separating real 
and imaginary parts, we have{

−𝜔3 +𝐴2𝜔 = (−𝐴4𝜔
2 +𝐴6) sin𝜔𝜏 −𝐴5𝜔 cos 𝜏,

−𝐴1𝜔
2 +𝐴3 = −𝐴5𝜔 sin𝜔𝜏 − (−𝐴4𝜔

2 +𝐴6) cos𝜔𝜏,
(6)

which leads to

𝜔6 +𝐵1𝜔
4 +𝐵2𝜔

2 +𝐵3 = 0, (7)

where

𝐵1 =𝐴2
1 − 2𝐴2 −𝐴2

4,

𝐵2 =𝐴2
2 − 2𝐴1𝐴3 + 2𝐴4𝐴6 −𝐴2

5,

𝐵3 =𝐴2
3 −𝐴2

6.

Let 𝑣 = 𝜔2, we have

𝑣3 +𝐵1𝑣
2 +𝐵2𝑣+𝐵3 = 0.

Denote

ℎ(𝑣) = 𝑣3 +𝐵1𝑣
2 +𝐵2𝑣+𝐵3. (8)

Obviously, we have

ℎ′(𝑣) = 3𝑣2 + 2𝐵1𝑣+𝐵2.

Denote

Δ= 4𝐵2
1 − 12𝐵2.

For the roots of (8), we have the following results.

Lemma 4.1. (i) Eq. (8) doesn’t have positive root if Δ ≤ 0, 𝐵3 ≥ 0, or Δ > 0, 
𝑣∗ = −2𝐵1+

√
Δ

6 < 0, 𝐵3 > 0, or Δ > 0, 𝑣∗ > 0 𝐵3 ≥ 0, ℎ(𝑣∗) > 0.

(ii) Eq. (8) doesn’t have positive root if Δ > 0, 𝑣∗ > 0, 𝐵3 ≥ 0, ℎ(𝑣∗) < 0
or 𝐵3 < 0.

Suppose that Eq. (7) has one positive root 𝜔10 =
√

𝑣0. From (6), we 
have

cos𝜔𝜏 =
(−𝐴4𝜔

2
10 +𝐴6)(−𝐴1𝜔

2
10 +𝐴3) +𝐴5𝜔10(−𝜔3

10 +𝐴2𝜔10)

(−𝐴4𝜔
2
10 +𝐴6)2 +𝐴2

5𝜔
2
10

.

Therefore, the delay’s critical value is

𝜏𝑗 =
1

𝜔10

(
𝑎𝑟𝑐𝑐𝑜𝑠

(−𝐴4𝜔
2
10 +𝐴6)(−𝐴1𝜔

2
10 +𝐴3) +𝐴5𝜔10(−𝜔3

10 +𝐴2𝜔10)

(−𝐴4𝜔
2
10 +𝐴6)2 +𝐴2

5𝜔
2
10

+ 2𝑗𝜋
)

, 𝑗 = 0,1,2,⋯ . (9)

It should be noted that the roots of Eq. (5) with 𝜏 = 𝜏0 are ±𝑖𝜔10. As a 
result of doing a first-order derivative of Eq. (5) with respect to 𝜏 , we 
have(
𝑑𝜆

𝑑𝜏

)−1
=

3𝜆2 + 2𝐴1𝜆+𝐴2
𝜆4 +𝐴1𝜆

3 +𝐴2𝜆
2 +𝐴3𝜆

+
2𝐴4𝜆+𝐴5

𝐴4𝜆
3 +𝐴5𝜆

2 +𝐴6𝜆
− 𝜏

𝜆
,

which yields to

𝑅𝑒

(
𝑑𝜆

𝑑𝜏

)−1 |||𝜆=𝑖𝜔10
=

3𝜔4
0 + (2𝐴2

1 − 4𝐴2 − 2𝐴2
4)𝜔

2
10

(𝐴4𝜔
2
10 −𝐴6)2 +𝐴2

5𝜔
2
10

+
𝐴2
2 + 2𝐴4𝐴6 − 2𝐴1𝐴3 −𝐴2

5

(𝐴 𝜔2 −𝐴 )2 +𝐴2𝜔2

4 10 6 5 10
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=
ℎ′(𝜔2

10)

(𝐴4𝜔
2
10 −𝐴6)2 +𝐴2

5𝜔
2
10

.

Based on the above discussions, we have the following conclusion.

Theorem 4.2. If Λ𝛽 > 𝜇2 + 𝜇2𝛽
𝛼

holds, then these conclusions hold.

(1) If Eq. (7) has no positive real root, then 𝑃 3
𝑆1

is locally asymptotically 
stable for all 𝜏 > 0;

(2) If Eq. (7) has a positive root, then 𝑃 3
𝑆1

is locally asymptotically stable 
when 𝜏 ∈ [0, 𝜏0) and unstable when 𝜏 ∈ (𝜏0, +∞), which means that system 
𝑆1 has a Hopf bifurcation at 𝑃 3

𝑆1
when 𝜏 = 𝜏0.

4.2. Dynamics of subsystem 𝑆2

Theorem 4.3. For system 𝑆2, we have

(i) when Λ𝛽 < 𝜇2+𝑞𝜇, system 𝑆2 has only an equilibrium 𝑃 1
𝑆2

= (𝐴
𝜇
, 0, 0), 

which is always a virtual equilibrium for 𝐼𝑡ℎ > 0;

(ii) when Λ𝛽 > 𝜇2 + 𝑞𝜇 system 𝑆2 has a unique positive equilibrium 

𝑃 2
𝑆2

= (𝑆∗
𝑆2

, 𝐼∗
𝑆2

, 𝑅∗
𝑆2
) with 𝑆∗

𝑆2
=

𝛼𝑅∗
𝑆2

+𝜇+𝑞

𝛽
, 𝐼∗

𝑆2
=

𝜇𝑅∗
𝑆2

𝛼𝑅∗
𝑆2

+𝑞
, where

𝑅∗ =
−𝐶2 +

√
𝐶2
2 − 4𝐶1𝐶2

2𝐶1
,

and

𝐶1 = 𝜇𝛼(𝛼 + 𝛽),

𝐶2 = 𝛼𝜇2 + 𝛽𝜇2 − Λ𝛼𝛽 + 2𝛼𝜇𝑞 + 𝛽𝜇𝑞,

𝐶3 = 𝑞(𝜇2 + 𝑞𝜇 −Λ𝛽).

Proof. For system 𝑆2, 𝑃 1
𝑆2

= (𝐴
𝜇
, 0, 0) is obvious a virtual equilibrium, 

and 𝑆∗
𝑆2

, 𝐼∗
𝑆2

, and 𝑅∗
𝑆2

satisfy

⎧⎪⎨⎪⎩
Λ− 𝛽𝑆𝐼 − 𝜇𝑆 = 0,
𝛽𝑆 − 𝛼𝑅− 𝜇 − 𝑞 = 0,
𝛼𝐼𝑅− 𝜇𝑅+ 𝑞𝐼 = 0.

(10)

From the second equation of Eq. (10), we have

𝑆 = 𝛼𝑅+ 𝜇 + 𝑞

𝛽
. (11)

According to the third equation of Eq. (10), we have

𝐼 = 𝜇𝑅

𝛼𝑅+ 𝑞
. (12)

Then, substituting (11) and (12) into the third equation of (10), we get

𝐶1𝑅
2 +𝐶2𝑅+𝐶3 = 0. (13)

When Λ𝛽 > 𝜇2 + 𝑞𝜇, 𝐶3 = 𝑞(𝜇2 + 𝑞𝜇 − Λ𝛽) < 0. Therefore, Eq. (13)

has a unique positive root 𝑅∗
𝑆2

. Then, by the third equation of (10), 

we have 𝐼∗
𝑆2

=
𝜇𝑅∗

𝑆2
𝛼𝑅∗

𝑆2
+𝑞

, and by the second equation of (10), 𝑆∗
𝑆2

=

𝜇+𝑞+𝛼𝑅∗
𝑆2

𝛽
. Consequently, system 𝑆2 has a unique positive equilibrium 

𝑃 2
𝑆2

= (𝑆∗
𝑆2

, 𝐼∗
𝑆2

, 𝑅∗
𝑆2
). □

Remark 4.2. In addition, we have

𝐼∗
𝑆2

=
𝜇𝑅∗

𝑆2

𝛼𝑅∗
𝑆2

+ 𝑞
<

𝜇

𝛼
= 𝐼∗

𝑆1
.

At 𝑃 2
𝑆2

= (𝑆∗
𝑆2

, 𝐼∗
𝑆2

, 𝑅∗
𝑆2
), the characteristic equation is

𝜆3 +𝐷1𝜆
2 +𝐷2𝜆+𝐷3 + (𝐷4𝜆

2 +𝐷5𝜆+𝐷6)𝑒−𝜆𝜏 = 0, (14)

where
4

𝐷1 = 2𝜇 + 𝛽𝐼∗
𝑆2

,𝐷2 = 𝛽2𝑆∗
𝑆2

𝐼∗
𝑆2

+ 𝛽𝜇𝐼∗
𝑆2

+ 𝜇2,

𝐷3 = 𝛽2𝜇𝑆∗
𝑆2

𝐼∗
𝑆2

,𝐷4 = −𝛼𝐼∗
𝑆2

,

𝐷5 = 𝛼𝐼∗
𝑆2
(−𝐼∗

𝑆2
𝛽 + 𝛼𝑅∗

𝑆2
− 𝜇 + 𝑞),

𝐷6 = (𝛼𝑅∗
𝑆2

+ 𝑞)(𝛽𝐼∗
𝑆2

+ 𝜇) − 𝛽2𝑆∗
𝑆2

𝐼∗
𝑆2

.

(15)

When 𝜏 = 0, the characteristic equation reduces to

𝜆3 + (𝐷1 +𝐷4)𝜆2 + (𝐷2 +𝐷5)𝜆+𝐷3 +𝐷6 = 0.

According to (15), by a direct calculation, we have

𝐷3 +𝐷6 = 𝛽2𝜇𝑆∗
𝑆2

𝐼∗
𝑆2

+ 𝛼𝐼∗
𝑆2
(𝛼𝑅∗

𝑆2
+ 𝑞)(𝛽𝐼∗

𝑆2
+ 𝜇) − 𝛼𝛽2𝑆∗

𝑆2
𝐼∗2
𝑆2

= 𝜇2

(𝑞 +𝑅∗
𝑆2

𝛼)2
(𝑅∗3

𝑆2
𝛼3 + 𝛽𝑅∗3

𝑆2
𝛼2 + 2𝑅∗2

𝑆2
𝛼2𝑞 + 2𝛽𝑅∗2

𝑆2
𝛼𝑞 +𝑅∗

𝑆2
𝛼𝑞2

+ 𝛽𝑅∗
𝑆2

𝜇𝑞 + 𝛽𝑅∗
𝑆2

𝑞2) > 0,

(𝐷1 +𝐷4)(𝐷2 +𝐷5) − (𝐷3 +𝐷6) =
𝜇2(𝑞 +𝑅∗

𝑆2
𝛽)

(𝑞 +𝑅∗
𝑆2

𝛼)3
(𝑅∗3

𝑆2
𝛼3 + 𝛽∗3

𝑆2
𝛼2 + 2∗2

𝑆2
𝛼2𝑞

+ 𝜇𝑅∗2
𝑆2

𝛼2 + 2𝛽𝑅∗2
𝑆2

𝛼𝑞 + 𝛽𝜇𝑅∗2
𝑆2

𝛼 +𝑅∗
𝑆2

𝛼𝑞2 + 3𝜇𝑅∗
𝑆2

𝛼𝑞 + 𝛽𝑅∗
𝑆2

𝑞2

+ 2𝛽𝜇𝑅∗
𝑆2

𝑞 + 2𝜇𝑞2) > 0.

(16)

Therefore, all the roots of Eq. (14) have a negative real part. Then, 
according to the Routh-Hurwitz criterion, the equilibrium 𝑃 2

𝑆2
is locally 

asymptotically stable when 𝜏 = 0.

Following is a discussion of 𝜏 ’s effects. Assume 𝜆 = 𝑖𝜔(𝜔 > 0) is a 
root of (14). Then, by separating the real and imagined components, 
we obtain{

−𝜔3 +𝐷2𝜔 = (−𝐷4𝜔
2 +𝐷6) sin𝜔𝜏 −𝐷5𝜔 cos 𝜏,

−𝐷1𝜔
2 +𝐷3 = −𝐷5𝜔 sin𝜔𝜏 − (−𝐷4𝜔

2 +𝐷6) cos𝜔𝜏,
(17)

which leads to

𝜔6 + (𝐷2
1 − 2𝐷2 −𝐷2

4)𝜔
4 + (𝐷2

2 − 2𝐷1𝐷3 + 2𝐷4𝐷6 −𝐷2
5)𝜔

2 +𝐷2
3 −𝐷2

6 = 0.

(18)

Let 𝑣1 = 𝜔2, we have

𝑣31 + (𝐷2
1 − 2𝐷2 −𝐷2

4)𝑣
2
1 + (𝐷2

2 − 2𝐷1𝐷3 + 2𝐷4𝐷6 −𝐷2
5)𝑣1 +𝐷2

3 −𝐷2
6 = 0.

Denote

ℎ1(𝑣1) = 𝑣31 +(𝐷2
1 −2𝐷2 −𝐷2

4)𝑣
2
1 +(𝐷2

2 −2𝐷1𝐷3 +2𝐷4𝐷6 −𝐷2
5)𝑣1 +𝐷2

3 −𝐷2
6 .

Obviously, we have

ℎ′
1(𝑣1) = 3𝑣21 + 2(𝐷2

1 − 2𝐷2 −𝐷2
4)𝑣1 + (𝐷2

2 − 2𝐷1𝐷3 + 2𝐷4𝐷6 −𝐷2
5).

Lemma 4.2. If 𝛼 < 𝛽 holds, then Eq. (18) has at least a positive root.

Proof. From (16), we know 𝐷3 +𝐷6 > 0. Under the condition 𝛼 < 𝛽, we 
have

𝐷3 −𝐷6 = (𝛼 − 𝛽)(𝑅3𝛼2𝜇2 + 2𝑅2𝛼𝜇2𝑞 +𝑅𝜇2𝑞2) − 𝛽𝑅𝜇2𝑞(𝜇 + 𝑞) < 0.

Therefore, we obtain 𝐷2
3 −𝐷2

6 < 0. Obviously, lim
𝑣1→+∞

ℎ1(𝑣1) = +∞. Hence, 
there is at least 𝑣∗1 ∈ (0, ∞) such that ℎ1(𝑣∗1) = 0, which means that Eq.

(18) has at least a positive root. □

Assume that Eq. (18) has one positive root 𝜔20 =
√

𝑣∗1 . From (17), 
we have

cos𝜔𝜏 =
(−𝐷4𝜔

2
0 +𝐷6)(−𝐷1𝜔

2
0 +𝐷3) +𝐷5𝜔0(−𝜔3

0 +𝐷2𝜔0)

(−𝐷4𝜔
2
0 +𝐷6)2 +𝐷2

5𝜔
2
0

.

Therefore, the delay’s crucial value is
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Fig. 2. Bifurcation set for system (2) with respect to 𝛼 and 𝐼𝑡ℎ. The parameters are fixed as follows: 𝛽 = 0.2, Λ = 0.8, 𝜇 = 0.05, and 𝑞 = 0.2.
𝜏
𝑗

2 =
1

𝜔20

(
𝑎𝑟𝑐𝑐𝑜𝑠

(−𝐷4𝜔
2
20 +𝐷6)(−𝐷1𝜔

2
20 +𝐷3) +𝐷5𝜔20(−𝜔3

20 +𝐷2𝜔20)

(−𝐷4𝜔
2
20 +𝐷6)2 +𝐷2

5𝜔
2
20

+ 2𝑗𝜋

)
, 𝑗 = 0,1,2,⋯ .

(19)

Differentiating Eq. (14) with regard to 𝜏 yields(
𝑑𝜆

𝑑𝜏

)−1
=

3𝜆2 + 2𝐷1𝜆+𝐷2
𝜆4 +𝐷1𝜆

3 +𝐷2𝜆
2 +𝐷3𝜆

+
2𝐷4𝜆+𝐷5

𝐷4𝜆
3 +𝐷5𝜆

2 +𝐷6𝜆
− 𝜏

𝜆
,

which yields to

𝑅𝑒

(
𝑑𝜆

𝑑𝜏

)−1 |||𝜆=𝑖𝜔20
=

3𝜔4
20 + (2𝐷2

1 − 4𝐷2 − 2𝐴2
4)𝜔

2
20

(𝐷4𝜔
2
20 −𝐷6)2 +𝐷2

5𝜔
2
20

+
𝐷2

2 + 2𝐷4𝐷6 − 2𝐷1𝐷3 −𝐷2
5

(𝐷4𝜔
2
0 −𝐴6)2 +𝐴2

5𝜔
2
20

=
ℎ′
1(𝜔

2
20)

(𝐷4𝜔
2
20 −𝐷6)2 +𝐷2

5𝜔
2
20

.

(20)

Based on the above discussions, we have the following result.

Theorem 4.4. If Λ𝛽 > 𝜇2 + 𝑞𝜇 and 𝛼 < 𝛽 hold, then the following conclu-

sions are true.

(i) The equilibrium 𝑃 2
𝑆2

is locally asymptotically stable for 𝜏 ∈ [0, 𝜏02 );
(ii) System 𝑆2 has a Hopf bifurcation at 𝑃 2

𝑆2
when 𝜏 = 𝜏02 .

Remark 4.3. Under the conditions of Theorem 4.2 and Theorem 4.4, a 
stability switch may occur at the positive equilibria 𝑃 3

𝑆1
or 𝑃 2

𝑆2
. We left 

it out and are only studying the Hopf bifurcation phenomenon here.

Remark 4.4. The system has a Hopf bifurcation implying that rumor 
spreads in a cyclically oscillating manner, which is harmful to the sta-

bility of the social realm.

5. Sliding domain and its dynamics

5.1. Equilibria of system (2)

In Definition 3.1-3.4, it is shown that the equilibria of the Filippov 
system (2) can be classified into several categories. We will abbreviate 
these equilibria as 𝐸𝑅, 𝐸𝑉 , 𝐸𝑃 , 𝐸𝐵 , and 𝐸𝑇 for clarity.

Tangent equilibrium: By Definition 3.3, the tangent equilibrium 
𝐸𝑇 satisfies equation
5

Fig. 3. 𝑃 1
𝑆1

is locally asymptotically stable.

Fig. 4. 𝑃 2
𝑆1

is locally asymptotically stable.

{
𝛽𝑆𝐼 − 𝛼𝐼𝑅− 𝜇𝐼 − 𝜀𝑞𝐼 = 0,
𝐼 = 𝐼𝑡ℎ.

Therefore, the tangent equilibria can be shown as

𝐸𝑇 = {((𝑆,𝐼,𝑅)|𝐼 = 𝐼𝑡ℎ, 𝛽𝑆 − 𝛼𝑅 = 𝜇 + 𝜀𝑞}.

Boundary equilibrium: By Definition 3.4, to find the boundary 
equilibrium, set
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Fig. 5. The dynamics of system (2) with different 𝐼𝑡ℎ . (a) 𝐼𝑡ℎ = 0.4; (b) 𝐼𝑡ℎ = 0.2; (c) 𝐼𝑡ℎ = 0.1.
⎧⎪⎪⎨⎪⎪⎩
Λ− 𝛽𝑆𝐼 − 𝜇𝑆 = 0,
𝛽𝑆 − 𝛼𝑅− 𝜇 − 𝜀𝑞 = 0,
𝛼𝐼𝑅− 𝜇𝑅+ 𝜀𝑞𝐼 = 0,
𝐼 = 𝐼𝑡ℎ.

(21)

When 𝜀 = 0, we have that if

Λ
𝛽𝐼𝑡ℎ + 𝜇

= 𝜇

𝛽

holds, then there exists a boundary equilibrium 𝐸1
𝑏
=
( 𝜇

𝛽
, 𝐼𝑡ℎ, 0

)
. Other-

wise, if 𝜇
𝛼
= 𝐼𝑡ℎ, then the system has another boundary equilibrium

𝐸2
𝑏
=
(

Λ
𝛽𝐼𝑡ℎ + 𝜇

, 𝐼𝑡ℎ,
𝛽Λ− 𝜇(𝛽𝐼𝑡ℎ + 𝜇)

𝛼(𝛽𝐼𝑡ℎ + 𝜇)

)
.

When 𝜀 = 1, from the first equation of Eq. (21) we have

𝑆 = Λ
𝛽𝐼𝑡ℎ + 𝜇

. (22)

Substitute (22) into the second of (21), we obtain

𝑅 =
𝛽Λ− (𝜇 + 𝑞)(𝛽𝐼𝑡ℎ + 𝜇)

𝛼(𝛽𝐼𝑡ℎ + 𝜇)
.

From the third equation of Eq. (21), we get
6

𝑅 =
𝑞𝐼𝑡ℎ

𝜇 − 𝛼𝐼𝑡ℎ
.

Therefore, if the following conditions hold,

𝜇 > 𝛼𝐼𝑡ℎ, 𝛽Λ > (𝜇 + 𝑞)(𝛽𝐼𝑡ℎ + 𝜇),
𝛽Λ− (𝜇 + 𝑞)(𝛽𝐼𝑡ℎ + 𝜇)

𝛼(𝛽𝐼𝑡ℎ + 𝜇)
=

𝑞𝐼𝑡ℎ

𝜇 − 𝛼𝐼𝑡ℎ
,

then system (2) has a boundary equilibrium

𝐸2
𝑏
=
(

Λ
𝛽𝐼𝑡ℎ + 𝜇

, 𝐼𝑡ℎ,
𝑞𝐼𝑡ℎ

𝜇 − 𝛼𝐼𝑡ℎ

)
.

Regular equilibrium: To evaluate the regular and virtual equilibria 
of Filippov system (2), it is important to examine all of the subsystem 
𝑆1 and 𝑆2 equilibria.

According to the above discussions, system 𝑆1 has three equilibria, 
where 𝑃 1

𝑆1
= (𝐴

𝜇
, 0, 0) is always a regular equilibrium. The internal equi-

libria are 𝑃 2
𝑆1

and 𝑃 3
𝑆1

, and they can be classified as follows.

(i) If 0 < Λ𝛽−𝜇2

𝛽𝜇
< min

{
𝜇

𝛼
, 𝐼𝑡ℎ

}
, then 𝑃 2

𝑆1
is a regular equilibrium, 

while 𝑃 3
𝑆1

does not exist;

(ii) if 𝐼𝑡ℎ <
Λ𝛽−𝜇2

𝛽𝜇
<

𝜇

𝛼
, then 𝑃 2

𝑆1
is a virtual equilibrium, while 𝑃 3

𝑆1
does not exist;

(iii) if 𝜇

𝛼
<

Λ𝛽−𝜇2

𝛽𝜇
< 𝐼𝑡ℎ, then 𝑃 2

𝑆1
and 𝑃 3

𝑆1
are both regular equilib-

rium;
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Fig. 6. Time history with varying time delay 𝜏 with 𝐼𝑡ℎ = 0.4. (a) 𝜏 = 1; (b) 𝜏 = 3; (c) 𝜏 = 4; (d) 𝜏 = 15; (e) 𝜏 = 23.4; (f) 𝜏 = 50.
(iv) if 𝜇

𝛼
< 𝐼𝑡ℎ <

Λ𝛽−𝜇2

𝛽𝜇
, then 𝑃 2

𝑆1
is a virtual equilibrium, while 𝑃 3

𝑆1
is a regular equilibrium;

(vi) if 𝐼𝑡ℎ <
𝜇

𝛼
<

Λ𝛽−𝜇2

𝛽𝜇
, then 𝑃 2

𝑆1
and 𝑃 3

𝑆1
are both virtual equilibria.

For subsystem 𝑆2, 𝑃 1
𝑆2

is always a virtual equilibrium. It only con-

tains a unique internal equilibrium 𝑃 2
𝑆2

= (𝑆∗
𝑆2

, 𝐼∗
𝑆2

, 𝑅∗
𝑆2
), and it can be 

classified as follows.

(i) If 𝐼∗
𝑆2

< 𝐼𝑡ℎ, then 𝑃 2
𝑆2

is a virtual equilibrium;

(ii) if 𝐼∗
𝑆2

> 𝐼𝑡ℎ, then 𝑃 2
𝑆2

is a regular equilibrium.

Remark 5.1. From Remark 4.2, one obtains that 𝑃 3
𝑆1

and 𝑃 2
𝑆2

cannot 
be the regular equilibria at the same time. Therefore, for the positive 
equilibria 𝑃 3

𝑆1
and 𝑃 3

𝑆2
, we have the following conclusions.

(i) If 𝐼𝑡ℎ < 𝐼∗
𝑆2

< 𝐼∗
𝑆1

, then 𝑃 3
𝑆1

is a virtual equilibrium, while 𝑃 2
𝑆2

is a 
regular equilibrium;

(ii) if 𝐼∗ < 𝐼𝑡ℎ < 𝐼∗ , then 𝑃 3 and 𝑃 2 are both virtual equilibria;

𝑆2 𝑆1 𝑆1 𝑆2

7

(iii) if 𝐼∗
𝑆2

< 𝐼∗
𝑆1

< 𝐼𝑡ℎ, then 𝑃 3
𝑆1

is a regular equilibrium, while 𝑃 2
𝑆3

is a 
virtual equilibrium.

All the cases listed above can be viewed in Fig. 2, where we define 
two curves

𝐿1 =
{
(𝛼, 𝐼𝑡ℎ)

|||𝐼∗
𝑆2

= 𝜇

𝛼

}
,𝐿2 =

{
(𝑎, 𝐼𝑡ℎ)

|||𝐼∗
𝑆2

=
𝜇𝑅∗

𝑆2

𝛼𝑅∗
𝑆2

+ 𝑞

}
.

Fig. 2 shows that with different the threshold value of 𝐼𝑡ℎ and the 
parameter 𝛼, the equilibria 𝑃 3

𝑆1
and 𝑃 2

𝑆2
can switch between the reg-

ular and the virtual equilibrium. Furthermore, it shows that the ru-

mor spreading equilibrium constantly decreases as the parameter 𝛼
increases.

5.2. Existence of a sliding domain

It is well known that if two subsystems of the system (2) are oriented 
toward each other in Σ𝑠, a sliding domain may occur. Next, the sliding 
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Fig. 7. Time history with varying time delay 𝜏 with 𝐼𝑡ℎ = 0.4. (a) 𝜏 = 0.8; (b) 𝜏 = 1.2.
mode dynamics of the Filippov system (2) will be derived using the 
equivalent control method [27].

The following is a sufficient requirement for the existence of a slid-

ing mode on a discontinuous surface

𝐻(𝑧) 𝜕𝐻
𝜕𝑧

d𝑧
d𝑡

< 0.

From system (1), we obtain

𝐻(𝑧) 𝜕𝐻
𝜕𝑧

d𝑧
d𝑡

= (𝐼 − 𝐼𝑡ℎ)
(
0 1 0

) ⎛⎜⎜⎝
Λ− 𝛽𝑆𝐼 − 𝜇𝑆

𝛽𝑆𝐼 − 𝛼𝐼𝑅− 𝜇𝐼 − 𝜀𝑞𝐼

𝛼𝐼𝑅− 𝜇𝑅+ 𝜀𝑞𝐼

⎞⎟⎟⎠
= (𝐼 − 𝐼𝑡ℎ)(𝛽𝑆𝐼 − 𝛼𝐼𝑅− 𝜇𝐼 − 𝜀𝑞𝐼).

When 𝜀 = 0, 𝐼 − 𝐼𝑡ℎ < 0, there must be 𝛽𝑆𝐼 − 𝛼𝐼𝑅 − 𝜇𝐼 > 0 in order that 
𝐻(𝑧) 𝜕𝐻

𝜕𝑡
< 0. As a result, we have 𝛽𝑆 − 𝛼𝑅 > 𝜇. When 𝜀 = 1, there must 

be 𝛽𝑆𝐼 −𝛼𝐼𝑅 −𝜇𝐼 − 𝑞𝐼 < 0. So, 𝛽𝑆 −𝛼𝑅 < 𝜇+ 𝑞. So, the sliding segment 
of Filippov system (2) can be written as

Σ𝑆 =

{
(𝑆,𝐼,𝑅)𝑇 ∈𝑅3

+

|||||𝐼 = 𝐼𝑡ℎ, 𝜇 ≤ 𝛽𝑆 − 𝛼𝑅 ≤ 𝜇 + 𝑞

}

5.3. Sliding mode dynamics

Using the Utkin equivalent control method [27], we can derive the 
dynamics of the Filippov system (2) on the boundary Σ𝑠.

More specifically, 𝐻(𝑧) = 0 and

𝜕𝐻

𝜕𝑡
= 𝛽𝑆𝐼 − 𝛼𝐼𝑅− 𝜇𝐼 − 𝜀𝑞𝐼 = 0 with 𝐼 = 𝐼𝑡ℎ.

Therefore, we obtain

𝜀 = 𝛽𝑆 − 𝛼𝑅− 𝜇

𝑞
.

Putting 𝜀 into the second equation of system (1) gives us{ d𝑆
dt = Λ − 𝛽𝑆𝐼𝑡ℎ − 𝜇𝑆,
d𝑅
dt = 𝐼𝑡ℎ𝛽𝑆 − 𝜇𝑅(𝑡− 𝜏) − 𝜇𝐼𝑡ℎ.

(23)

System (23), which has a unique pseudo-equilibrium 𝐸𝑃 (𝑆𝑝, 𝐼𝑡ℎ, 𝑅𝑝), can 
be used to figure out the dynamics of Σ𝑆 , where

𝑆𝑝 =
Λ

𝛽𝐼𝑡ℎ + 𝜇
,𝑅𝑝 =

Λ𝛽𝐼𝑡ℎ − 𝜇𝐼𝑡ℎ(𝛽𝐼𝑡ℎ + 𝜇)
𝜇(𝛽𝐼𝑡ℎ + 𝜇)

.

Theorem 5.1. If the pseudo-equilibrium 𝐸𝑃 exists, then it is locally asymp-

totically stable.
8

Proof. Linearizing system (23) at the pseudo-equilibrium 𝐸𝑝, we obtain 
the characteristic equation as follows

(𝜆+ 𝛽𝐼𝑡ℎ + 𝜇)(𝜆+ 𝜇𝑒−𝜆𝜏 ) = 0.

Obviously, 𝜆 = −𝛽𝐼𝑡ℎ − 𝜇 < 0. Obviously, all roots of 𝜆 + 𝜇𝑒−𝜆𝜏 = 0 have 
negative real parts. Therefore, the pseudo-equilibrium 𝐸𝑝 is locally 
asymptotically stable with all 𝜏 ≥ 0. □

Remark 5.2. The existence of sliding mode is very important for dis-

continuous control. We can make the system converge to any point in 
sliding domain Σ𝑆 by selecting some value of 𝐼𝑡ℎ. From the realistic 
perspective, it implies that we can control the rumor spread in a small 
range by selecting the value of 𝐼𝑡ℎ.

6. Numerical simulations

In this part, we demonstrate our theoretical results using numerical 
simulations of a few situations.

6.1. The stability of 𝑃 1
𝑆1

and 𝑃 2
𝑆1

We choose the parameters as follows.

𝛼 = 0.4, 𝛽 = 0.3,Λ = 0.5, 𝜇 = 0.5, 𝑞 = 0.6.

It is easily obtained that Λ𝛽 < 𝜇2, according to Theorem 4.1, the equi-

librium 𝑃 1
𝑆1

= ( Λ
𝜇
, 0, 0) is locally asymptotically stable (Fig. 3), meaning 

that rumor is wiped out in the social realm.

If we change 𝛽 from 0.3 to 0.6, then 𝜇2 <Λ𝛽 < 𝜇2 + 𝜇2𝛽
𝛼

, according to 
Theorem 4.1, the equilibrium 𝑃 1

𝑆1
= (𝐴

𝜇
, 0, 0) is unstable, and the equi-

librium 𝑃 2
𝑆1

= ( 𝜇
𝛽
, Λ𝛽−𝜇2

𝛽𝜇
, 0) is locally asymptotically stable for any 𝜏 ≥ 0

(Fig. 4). It suggests that rumors propagate steadily in the social domain.

From the above, we can obtain that 𝛽 has a great impact on the dy-

namics of system (1), and it has a threshold value 𝛽𝑐 . If 𝛽 < 𝛽𝑐 , then 
rumor cannot spread. While, if 𝛽 > 𝛽𝑐 , then rumors were spread. This 
indicates that when the link between rumor-susceptible and rumor-

spreading persons grows, it becomes easier for rumors to spread. In 
this context, the spread of rumors poses a significant threat to social 
stability.

6.2. The existence of the sliding domain

We assume the parameter values as follows.

𝛼 = 0.4, 𝛽 = 0.6,Λ = 0.7, 𝜇 = 0.1, 𝑞 = 0.6.
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Fig. 8. The change in the rumor-propagating individuals with different 𝐼𝑡ℎ and 
𝜏 = 1. (a) 𝐼𝑡ℎ = 0.1; (b) 𝐼𝑡ℎ = 0.2; (c) 𝐼𝑡ℎ = 0.4.

Therefore, we obtain that 𝑃 3
𝑆1

= (2.8000, 0.2500, 3.9500), and 𝑃 2
𝑆2

=
(3.4306, 0.1734, 3.3960).

First, we let the parameter 𝐼𝑡ℎ = 0.4, the equilibrium 𝑃 3
𝑆1

is locally 
asymptotically stable, and 𝑃 2

𝑆2
is a virtual equilibrium, see Fig. 5(a).

Then, we change the parameter 𝐼𝑡ℎ to 0.2, which satisfies 0.1734 <
𝐼𝑡ℎ < 0.2500. Therefore, the equilibria 𝑃 3

𝑆1
and 𝑃 2

𝑆2
are both virtual equi-

libria, and system (2) has a pseudo-equilibrium 𝐸𝑃 = (3.1818, 0.2, 3.9168), 
which is stable, see Fig. 5(b). In fact, for all 0.1734 < 𝐼𝑡ℎ < 0.2500, the 
system has a pseudo-equilibrium 𝐸𝑝 = (𝑆𝑝, 𝐼𝑝, 𝑅𝑝), where

𝑆𝑝 =
Λ

𝛽𝐼𝑡ℎ + 𝜇
, 𝐼𝑝 = 𝐼𝑡ℎ,𝑅𝑝 =

Λ𝛽𝐼𝑡ℎ − 𝜇𝐼𝑡ℎ(𝛽𝐼𝑡ℎ + 𝜇)
𝜇(𝛽𝐼𝑡ℎ + 𝜇)

.

From Theorem 5.1, we know that it is locally asymptotically stable if it 
exists.

Furthermore, we let 𝐼𝑡ℎ = 0.4, the equilibrium 𝑃 3
𝑆1

is a virtual equi-

librium, while 𝑃 2
𝑆2

is a regular equilibrium, which is stable, see Fig. 5(c).

From a realistic perspective, we choose some 𝐼𝑡ℎ such that we can 
keep the spread of rumors in a small range through the discontinuous 
control.
9

Fig. 9. The change in the rumor-propagating individuals with different 𝐼𝑡ℎ and 
𝜏 = 25. (a) 𝐼𝑡ℎ = 0.1; (b) 𝐼𝑡ℎ = 0.2; (c) 𝐼𝑡ℎ = 0.4.

6.3. The effect of delay 𝜏

In the following, we discuss the effect of 𝜏 . We let the parameters 
be same as the above. By a direction calculation, we obtain that Eq. (7)

has two positive roots: 𝜔1 = 0.5610 and 𝜔2 = 0.3699. Substituting the 
system parameters into (9) yields the critical values of time delays 𝜏 as 
the following:

𝜏
𝑗

1 = 1.3845,12.5853,23.7860,34.9868,46.1875,⋯ ,

and

𝜏
𝑗

2 = 5.9800,22.9664,39.9528,56.9391,73.9255,⋯ .

In addition, from (20), we obtain

𝑑
Re𝜆(𝜏)

𝑑𝜏

||||𝜏=𝜏
(𝑗)
1 ,𝜆=𝑖𝜔1

= 147.1872 > 0, 𝑑 Re𝜆(𝜏)
𝑑𝜏

||||𝜏=𝜏
(𝑗)
2 ,𝜆=𝑖𝜔2

= −14.3336 < 0.

When 𝜏 = 𝜏
𝑗

1 , a pair of eigenvalues crosses the imaginary axis 
from left to right. Fig. 6 shows the delay time histories from differ-
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Fig. 10. The change in the rumor-propagating individuals with different 𝐼𝑡ℎ and 
𝜏 = 1.3. (a) 𝐼𝑡ℎ = 0.1; (b) 𝐼𝑡ℎ = 0.2; (c) 𝐼𝑡ℎ = 0.4.

ent locations with 𝐼𝑡ℎ = 0.4, indicating that 𝑃 3
𝑆1

is a regular equilib-

rium. When 𝜏 ∈ [0, 𝜏11 ) 
⋃
(𝜏12 , 𝜏

2
1 ) 
⋃
(𝜏22 , 𝜏

3
1 ), the equilibrium of the sys-

tem (2) is asymptotically stable, but it becomes unstable when 𝜏 ∈
(𝜏11 , 𝜏

1
2 ) 
⋃
(𝜏21 , 𝜏

2
2 ) 
⋃
(𝜏31 , +∞). In other words, time delay causes the sys-

tem (2) to display the phenomena of many switching events, where the 
state of the system changes from stable to unstable and back again. The 
system (2) is ultimately unstable at the equilibrium position 𝑃 3

𝑆1
.

Fig. 6(a), (c), (e) show that the rumor-propagating individuals con-

verge to a positive number, implying that rumors spread in the social 
realm in a stable state. Fig. 6(b), (d) show that the rumor-propagating 
individuals maintain a fluctuating state, which means that the rumor 
continues to break out in stages. Fig. 6(f) shows that the rumor in the 
system (1) will continue to erupt periodically.

Similarly, for subsystem 𝑆2, Eq. (18) has only a positive root 𝜔 =
0.8167. So, according to (19), we have 𝜏02 = 1.0994. Therefore, when 
𝜏 = 0.8 ∈ [0, 1.0994) the equilibrium 𝑃 2

𝑆2
is locally asymptotically stable 

(Fig. 7(a)), and when 𝜏 = 1.2 ∈ (1.0994, +∞), see Fig. 7(b), where 𝐼𝑡ℎ =
10
Fig. 11. Dynamics of system (1) without any control strategies, with the satu-

rated control and with the discontinuous control with 𝐼𝑡ℎ = 0.145 and 𝜏 = 0.

0.1. That is, above the critical value 𝜏 = 1.2, rumors will continue to 
erupt periodically.

From Fig. 6 and Fig. 7, it is easily obtained that we can control the 
rumor in a certain range by choosing the value of 𝐼𝑡ℎ. We show these in 
Fig. 8-Fig. 10, where 𝐼𝑡ℎ = 0.1 (Fig. 8(a), Fig. 9(a), Fig. 10(a)), 𝐼𝑡ℎ = 0.2
(Fig. 8(b), Fig. 9(b), Fig. 10(b)) and 𝐼𝑡ℎ = 0.4 (Fig. 8(c), Fig. 9(c), 
Fig. 10(c)). They show that with the increase in 𝐼𝑡ℎ, the maximum value 
of the rumor-propagating individuals becomes larger. That is to say, we 
can control the rumor in a smaller range by choosing 𝐼𝑡ℎ. From Fig. 9

and Fig. 10, we also obtain that the threshold value 𝐼𝑡ℎ can change the 
stability of system (1). In addition, Fig. 8(b), Fig. 9(b), and Fig. 10(b) 
show that the system converges to the equilibrium in finite time. In-

deed, this is a unique property of a discontinuous system that a smooth 
ODE system can not have, and using this feature, we can quickly and 
effectively control the spread of rumors.

6.4. Some comparison results

To demonstrate the significance of the discontinuous control strat-

egy in system (1), we compare it to Ref. [18], which has a similar system 
to system (1) but with a saturated control function 𝛽1𝐼

1+𝛼1𝐼
.

We choose the following parameters

𝛼 = 0.4, 𝛽 = 0.5,Λ = 0.6, 𝜇 = 0.1, 𝛼1 = 0.4, 𝛽1 = 0.7, 𝜏 = 0,

which are selected in Ref. [18]. Then, dynamics of system (1) without 
control strategies, with the saturated control and with the discontinuous 
control are shown in Fig. 11. From it, we obtain that by the effect of 
controller, the number of people spreading rumors has decreased, and 
the rumor spreaders are stable to a lower level under the discontinuous 
control. In addition, we also observed that when compared to saturation 
control, the system converges to equilibrium faster with discontinuous 
control. It demonstrates that by using a discontinuous controller, we 
can control the spread of rumors more quickly.

Now we let 𝜏 > 0, from Ref. [18] we know that when 𝜏 above a 
threshold value system will be in a state of periodic oscillation, which 
makes it hard to stop the spread of the rumors. However, with a discon-

tinuous control we can adjust the value of 𝐼𝑡ℎ to control rumor quickly. 
Fig. 12 (a) shows that when 𝜏 = 2, system is in a periodic oscillation. 
With the saturation control system is still in the periodic oscillation 
(see Fig. 12(b)), which means that saturation control fails to effectively 
control the spread of rumors. However, Fig. 12(c) shows that rumors 
were quickly brought under control with discontinuous control.
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Fig. 12. Dynamics of system (1) without control strategies, with the saturated 
control and with the discontinuous control when 𝜏 = 2, 𝐼𝑡ℎ = 0.15. (a) Without 
any control; (b) With the saturation control; (c) With the discontinuous control.

7. Conclusions

In this study, we examine a model for the spread of rumors that 
involves a threshold that can be set arbitrarily high or low. We first 
performed a dynamic analysis of the two parts of the system and derived 
the necessary conditions for the local stability of the equilibrium states. 
Hopf bifurcation at the stable equilibrium was investigated with 𝜏 as 
the bifurcation parameter. Theoretical results and simulations showed 
that 𝜏 is what causes the model to switch between stable and unstable 
states, and Hopf bifurcation happens when 𝜏 goes above a threshold.

We also studied the sliding domain and its dynamics, including the 
existence of the tangent equilibrium, boundary equilibrium, regular 
equilibrium, and the stability of the pseudo-equilibrium.

Indeed, the situation of people in the social world may become more 
complicated when rumors break out, and this can influence the rumor’s 
spread. We plan to further explore and improve the model of rumor 
spread and to provide more practical control techniques in the future. 
In addition, we mentioned how the complex network theory became 
11
more frequently used in the research of rumor spread thanks to Watts’s 
WS small world network model [28] and Barabasi’s BA scale-free model. 
It, we’ll think about how to stop rumors from spreading on social media 
and analyze the techniques that people use to do so.
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