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Abstract

Body weight is substantially determined by eating behaviors, which are themselves driven

by biological factors interacting with the environment. Previous studies in young children

suggest that genetic influences on dopamine function may confer differential susceptibility

to the environment in such a way that increases behavioral obesity risk in a lower socioeco-

nomic status (SES) environment but decreases it in a higher SES environment. We aimed

to test if this pattern of effect could also be observed in adolescence, another critical period

for development in brain and behavior, using a novel measure of predicted expression of the

dopamine receptor 4 (DRD4) gene in prefrontal cortex. In a sample of 76 adolescents (37

boys and 39 girls from Baltimore, Maryland/US, aged 14-18y), we estimated individual lev-

els of DRD4 gene expression (PredDRD4) in prefrontal cortex from individual genomic data

using PrediXcan, and tested interactions with a composite SES score derived from their

annual household income, maternal education, food insecurity, perceived resource avail-

ability, and receipt of public assistance. Primary outcomes were snack intake during a multi-

item ad libitum meal test, and food-related impulsivity assessed using a food-adapted go/

no-go task. A linear regression model adjusted for sex, BMI z-score, and genetic ethnicity

demonstrated a PredDRD4 by composite SES score interaction for snack intake (p =

0.009), such that adolescents who had lower PredDRD4 levels exhibited greater snack
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intake in the lower SES group, but lesser snack intake in the higher SES group. Exploratory

analysis revealed a similar pattern for scores on the Perceived Stress Scale (p = 0.001)

such that the low PredDRD4 group reported higher stress in the lower SES group, but less

stress in the higher SES group, suggesting that PredDRD4 may act in part by affecting per-

ceptions of the environment. These results are consistent with a differential susceptibility

model in which genes influencing environmental responsiveness interact with environments

varying in obesogenicity to confer behavioral obesity risk in a less favorable environment,

but behavioral obesity protection in a favorable one.

Introduction

We are amidst an obesity epidemic [1] but not everyone becomes obese [2]. Part of this vari-

ability is attributable to environmental factors. For example, we know that individuals with

lower socioeconomic status (SES), are generally more prone to obesity [3, 4], but there is still

great heterogeneity in how individuals respond to the distinct environmental conditions that

promote obesity. Some of this variation is likely due to genetic and related downstream biolog-

ical factors that influence behavioral responses to the food environment [5–8]. A potential bio-

logical moderator of environmental influences is the mesocorticolimbic dopamine system.

Dopamine is known to play a role in modulating general perceptual sensitivity, where exten-

sive dopaminergic innervation of brain regulatory systems in ascending limbic-frontal circuits

as well as descending and reciprocal striatal-thalamocortical circuits [9], may be especially sen-

sitive to environmental changes [10].

In studies of young children, we have found evidence suggesting that genes influencing

brain dopamine function may moderate environmental responses. For example, we previously

demonstrated that 4-year old girls who were carriers of a hypofunctional polymorphism of the

Dopamine Receptor 4 (7 tandem repeat of 48-base-pair region, in the third exon of the DRD4
gene, or DRD47R)[11] showed greater sensitivity to environmental conditions such that they

had a higher preference for fat when living in a low SES environment, but a diminished prefer-

ence when living in a high SES environment as compared to non-carriers of the 7-repeat poly-

morphism[12]. In line with this finding, we have shown that carriers of this variant had

increased likelihood of developing obesity at 4 years of age if exposed to lower levels of mater-

nal sensitivity as toddlers [6]. Recently we have demonstrated that genetically regulated expres-

sion of the DRD4 gene (predDRD4) in prefrontal cortex interacts with the postnatal

environment to predict emotional eating in 4yo, and desire to drink in 5yo children in two

independent cohorts[13]. The above results may be thought of as an extension of Belsky’s Dif-

ferential Susceptibility Hypothesis [14, 15] into the obesity realm, helping to explain individual

differences in food preferences and food choices in response to different environments[5].

According to the Differential Susceptibility Hypothesis, genes previously thought of as “vul-

nerability” genes are in fact developmental plasticity genes that promote greater individual

responsiveness to both positive (e.g. healthy fetal environment, warm/sensitive maternal care,

high socioeconomic status) and negative (e.g. altered fetal environment, low maternal sensitiv-

ity, low socioeconomic status) environmental contexts [15].

Adolescence is a critical period for obesity development [16–18], and for the development

of brain systems serving reward seeking behaviors and cognitive control [19]–processes that

may underpin excessive consumption of palatable high fat and high sugar “junk” foods. Con-

sistent with the Differential Susceptibility Hypothesis, candidate plasticity genes (such as
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DAT1, DRD2, DRD4 5HTTLPR, COMT and MAOA) have been shown to moderate the link

between parenting quality and male adolescent self-regulation and impulsivity [15]. However,

the Differential Susceptibility Hypothesis has yet to be tested within a male and female adoles-

cent population in the context of obesity and associated behavioral factors, the latter of which

may be most informative for targeted prevention.

Traditional candidate gene and genome-wide association studies probing human brain and

behavior responses to environment have been very useful to understand gene-environment

relationships relevant to many complex behaviors. However, since genetic data reflects code

that is present in all cells of an organism, it conveys limited information regarding the geneti-

cally-driven biological mechanisms that influence each cell, tissue and system and ultimately

determine phenotypes of interest[20]. This organ/tissue specificity is especially important for

the study of phenotypes resulting from the functions of specific brain areas. Therefore, the aim

of this study was to use a novel genomic approach that imputes the gene expression of DRD4
in prefrontal cortex using individual level genomic information[21] to evaluate how geneti-

cally-influenced prefrontal brain dopamine function interacts with environmental obesity risk

(captured by SES) to influence indices of behavioral (multi-item ad libitum meal intake) and

neurobehavioral (food go no go task performance) obesity risk in adolescents. Also, because

eating behavior and adiposity can be influenced by stress [22, 23], and because plasticity genes

may indirectly impact eating behavior by altering the general perception of the environment,

we conducted an exploratory analysis of differential susceptibility using perceptions of envi-

ronmental stress as a secondary outcome.

Methods

Participants and procedures

Participants were part of a larger study investigating the neurobehavioral basis of obesity and

familial obesity risk. Adolescents and their mothers were recruited via flyers posted at the

Johns Hopkins Hospital in Baltimore, MD and online advertisements. For adolescents, exclu-

sion criteria included being outside our target age range of 14–18 years old, current diagnosis

of a significant health problem (e.g. eating disorder, learning disability), use of medication

affecting appetite and body weight (e.g. stimulants, anti-depressants), participation in a struc-

tured weight loss program, medical contraindications to MRI (e.g. metal implants), and food

allergies. For mothers, exclusion criteria included current pregnancy, and excessive smoking,

recreational drug use or alcohol intake. Adolescent-mother dyads were required to speak

English fluently. The sample was balanced based on current weight status and familial obesity

risk of the adolescents, resulting in 3 groups: i) a lean low-risk group (adolescent <85th BMI

centile, mother BMI <25), ii) a lean high-risk group (adolescent <85th BMI centile, mother

BMI>25), and iii) an overweight/obese group (adolescent >85th BMI centile, no requirement

for maternal weight group).

Potential participants completed an initial telephone screening and eligible participants

were then tested in a fed and fasted condition (counterbalanced across subjects). For the fed

condition, participants consumed 474 ml/480 kcal Boost c.3.30pm, completed an MRI scan

c.4pm, then underwent a multi-item ad libitum buffet meal test c. 5pm. For the fasted condi-

tion, participants consumed 474 ml/0 kcal water before the MRI scan and meal test. During

the initial consultation, a total of 98 adolescents were consented/assented (parental consent

and child assent for<18 y, self-consent for 18y or over). Fifteen completed neither test day

and were excluded from further analysis. Of the remaining 83 participants, we excluded ado-

lescent-mother pairs with incomplete socioeconomic information or missing meal intake

data, resulting in a final sample of 76 adolescent-mother pairs who completed the initial
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consultation and at least one of the test days (no data were imputed). Baseline characteristics

are given in Table 1. Demographic characteristics (child age, child sex, child race, child BMI z-

score, and household income) were similar between the entire consented (n = 98) and final

(n = 76) samples. However, maternal education was significantly lower in the entire sample

(n = 98) compared to the final sample (p = 0.015), i.e. 14.4% had less than high school educa-

tion in the entire sample vs. 11.8% in the final sample. This study was approved by the Johns

Hopkins University School of Medicine Institutional Review Board.

Measures

Anthropometric measures. Body weight and fat percentage were assessed at the initial

consultation using a SC-331S Total Body Composition Analyzer (TANITA Corp., Tokyo),

which measures body weight and estimates fat percentage via Bio-Impedance Analysis. Height

was assessed using a wall-mounted stadiometer after shoe removal. BMI values (kg/m2) were

calculated, and BMI z scores and percentiles were derived for adolescents, based on Center for

Disease Control (CDC) growth charts from 2000 [24]. For adolescents, those under the 85th

percentile were classified as normal-weight, those between the 85th and 95th percentiles as

overweight, and those at the 95th percentile or above as obese.

Table 1. Sample baseline characteristics (N = 76).

Mean (or N) SD (or %)

Age (years) 16.1 (1.2)

Female 39 (51.3)

BMI 24.2 (6.3)

BMI z-score 0.54 (1.23)

BMI percentile 63.1 (33.3)

Weight Group

Lean 45 (59.2)

Overweight 13 (17.1)

Obese 18 (23.7)

Familial Risk Group

Lean-LR 22 (28.9)

Lean-HR 23 (30.3)

Overweight 31 (40.8)

Race

White 42 (55.3)

Black/African-American 25 (32.9)

Asian 2 (2.6)

More than one race 6 (7.9)

Other/Unknown 1 (1.3)

Annual Household Income

0–49,999 26 (34.2)

50,000–79,999 20 (26.3)

80,000 or more 30 (39.5)

Maternal Education Level

High school graduate or less 9 (11.8)

College or equivalent training 42 (55.3)

Post graduate 25 (32.9)

Food Security

Yes 58 (76.3)

https://doi.org/10.1371/journal.pone.0234601.t001
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Food go/no-go task. To assess food-related impulsivity, a food go/no go task was admin-

istered. This task was adapted from an existing simple go/no go task[25]. Participants were

instructed to press a button as quickly as possible in response to a picture of a low energy-den-

sity food (broccoli; ‘go’ trial) but to inhibit pressing the button in response to a picture of a

high energy-density food (French fries or ice cream, depending on preference as stated on day

of testing; ‘no-go’ trial). Stimuli were presented for 300 ms, followed by a fixation cross (1,500

ms). The task was divided into two 4-min 7 sec runs, each with 78 go and 26 no-go trials. ‘Go’

trials were presented in consecutive groups of 1–6, while ‘no-go’ trials never appeared more

than twice in a row. Thus, ‘no-go’ stimuli were effectively jittered, with a varying number of

preceding go stimuli. Each run began and ended with a 10-s rest period; four 10-s rest periods

also occurred at irregular intervals during each run. Reaction times (RTs) were recorded dur-

ing the entire trial length.

Multi-item ad-libitum buffet meal. To assess eating behavior in response to an environ-

mental challenge, a multi-item ad libitum buffet meal was administered. Adolescents were

brought into a room in which they were presented with an ad-libitum buffet meal, including

three 12” pizzas cut in 12 slices [plain cheese (c. 790 g, 2009 kcal), vegetable (c. 940 g, 2050

kcal), pepperoni (c. 825 g, 2199 kcal)], hummus (c. 283 g, 700 kcal), ranch dressing (c. 224 g,

880 kcal), vanilla ice cream (c. 250 g, 530 kcal), chocolate chip cookies (c. 200 g, 970 kcal),

fudge brownies (c. 350 g, 1200 kcal), M&Ms (c. 200 g, 1000 kcal), Ruffles potato chips (c. 200 g,

1143 kcal), Cheetos (c. 250 g, 1339 kcal), baby carrots (c. 250 g, 103 kcal), cherry tomatoes (c.

300 g, 55 kcal), celery sticks (c. 200 g, 32 kcal), grapes (c. 600 g, 414 kcal), water (20 fl oz, 0

kcal), regular Coke (20 fl oz, 240 kcal) and diet Coke (20 fl oz, 11 kcal). Adolescents were

instructed to eat as much as they wanted. They were informed that they would be left alone for

30 minutes to eat but they could step out of the room if they were finished sooner or could

request for extra time. To encourage ad libitum eating, participants were asked to “imagine

this meal is your regular dinner” and “imagine not eating for 4–5 hours following this meal”.

Each food was weighed separately prior to and following the meal (out of sight of the partici-

pant) to determine amount consumed. The ad libitum meal was preceded and followed by ver-

bal appetite and stress ratings (e.g. hunger, fullness, stress) on 0–100 VAS scale.

For the purposes of the current report we focus on task and meal data from the fed condi-

tion only. Our rationale was that fasting could mask gene-by-environment interactions by

inducing a homeostatic hunger state across all participants, thus reducing individual variation

in dependent variables of interest. The neuroimaging data are the subject of a separate investi-

gation and will be reported elsewhere.

SES composite score. To assess socioeconomic environment, we used a combination of

variables collected as part of the larger study. Mothers completed a demographic questionnaire

in which they reported their education level (Less than high school, High school graduate or

GED, Post high school training other than college, Some college, Graduated from college, Post

graduate), annual household income (10 categories between $0–19,000 and $100,000 or

more), and their own and their child’s ethnicity. They also completed the Household Food

Security Survey [26], a questionnaire assessing perceived resource availability [27], and the

Project F-EAT survey, which contained a question assessing whether families receive public

assistance [28]. Variables used for the composite score were: annual household income, mater-

nal education, food insecurity, perceived resource availability, and receipt of public assistance

(see below for details). These variables were selected a priori and represented the entirety of

the variables assessing socioeconomic status in our sample.

Perceived stress. The Perceived Stress Scale (PSS) [29], a widely used psychological

instrument assessing the degree to which situations in one’s life are perceived as stressful, was

administered. The PSS is a 10-item questionnaire using 5-point ratings (0 = Never, 1 = Almost
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Never, 2 = Sometimes, 3 = Fairly Often, 4 = Very Often). Responses across the 10 PSS items

were summed to create a total score such that higher values indicated more perceived stress in

daily life (Cronbach’s alpha = 0.868).

Predicted prefrontal DRD4 expression. DNA for the adolescents was extracted from

saliva samples, obtained using Oragene OG500 (DNAGenotek, Ottawa, Canada) saliva collec-

tion kits. Expression of DRD4 in prefrontal brain regions was computed using a machine

learning prediction method (PrediXcan) [21] that estimates tissue-specific gene expression

based on individual-level genotype data. Genotyping for this cohort was conducted using the

genome-wide Illumina Infinium Multi-Ethnic Global Array (MEGA), with clusters for the

SNPs being defined using GenomeStudio version 2011.1 and GenTrain 1.0. Quality control on

the genotyping calls has been previously described [30]. SNPs were verified for a genotyping

rate�95% and no deviation from Hardy–Weinberg equilibrium (P< 0.001), and minor allele

frequency�0.05, using PLINK [31, 32]. After quality control procedures and imputation,

1,767,525 SNPs were available for use in PrediXcan. Details on how the PrediXcan method cre-

ates prediction models of gene expression can be found elsewhere [33]. In brief, PrediXcan

uses a machine learning approach to generate algorithms to estimate the genetically deter-

mined component of gene expression in specific brain regions at the individual level from the

subject’s genotype. The algorithm was built using a reference dataset from deceased human

brain donors, being therefore tissue-specific. This reference dataset is composed of data from

the GTEx project (version 7) [34], GEUVADIS [35] and DGN [36] containing both genotype

and gene expression levels. The PrediXcan method was executed according to methods avail-

able in [21], and using GTEX version 7 frontal cortex eQTL model [34].

Statistical analysis

Food go/no-go. Guidelines for exclusions as described in Patros et al [37] were followed.

No participants needed to be excluded due to the proportion of go trials with RTs <200 ms

exceeding .30, or omission error rate exceeding .50 (n = 0), indicating adequate attention dur-

ing task presentation. Our primary outcome measure was number of commission errors for

no-go stimuli (fGNG commission error), which reflects inhibitory control, with larger number

of errors indicating poorer inhibitory control. Variables of interest were computed in

MATLAB version 7.1 (The Mathworks, Inc., Natick, MA).

Multi-item ad-libitum buffet meal. For the analysis of meal intake, we created three pri-

mary variables: snack intake (included vanilla ice cream, chocolate chip cookies, fudge brown-

ies, M&Ms, Ruffles potato chips, and Cheetos), pizza intake (included cheese, vegetable, and

pepperoni pizzas), and fruit and vegetable intake (included baby carrots, cherry tomatoes, cel-

ery, and grapes) by summing the weights of each of the foods consumed within each group. In

addition, nutrition facts labels for each food item were used to calculate total macronutrient

(carbohydrate, sugar, fat, protein) intake for each participant.

SES composite score. To ensure that the 5 socioeconomic variables described above

reflected the same underlying theoretical structure (SES) and to derive a composite score

reflecting multiple dimensions of SES, we conducted a principal component analysis (PCA)

[38–40] with Promax rotation. All variables loaded on a single component with loadings rang-

ing from 0.678 to 0.891, supporting our choice to create a composite score. This component

explained 59.1% of variance. Each of the socioeconomic variables was standardized and

weighted by its factor loading to create an SES composite score in which a higher score indi-

cates higher SES. A detailed description of the variables and PCA factor loadings is given in

Table 2.
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General statistical methods and differential susceptibility analysis

To test for differential susceptibility, linear regression models using continuous DRD4 predicted

gene expression values for the prefrontal cortex (Z variable), SES composite score (X variable)

and the interaction term between these two variables (X�Z) were run for ad libitum intake

(kcal) of snacks, pizza, and fruit and vegetables (primary outcomes), and ad libitum intake

(grams) of carbohydrates, sugar, fat, and protein. To ensure that differences in ad libitum intake

were not driven by differences in key demographic and anthropometric variables, the models

were adjusted for BMI z-score, age, sex, and two principal components reflecting population

stratification (PC1, PC2). These components were used as covariates to account for differences

in ancestry and geographic origins in place of self-reported race, which can be inaccurate for

genetic studies [41]. Following Roisman et al’s recommendations [42], to ensure that any

observed differential susceptibility effects are not an artifact of imposing a linear model on non-

linear relationships, additional linear regression models, including X2 and Z�X2 as predictors,

were created to verify that neither of these two terms were statistically significant. This step was

performed only for models with a significant X�Z interaction term. Post hoc analysis for the

interaction terms included analysis of Proportion of Interaction (PoI) (i.e. the proportion of the

total area represented in the interaction plots uniquely attributable to differential susceptibility),

and proportion affected (PA) (i.e. the proportion of the population that is differentially affected

by the moderator–Z variable) [42]. The regions of significance (RoS) analyses were conducted

using a Web-based program developed by Fraley (http://www.yourpersonality.net/interaction).

Preliminary analysis showed no interaction with sex, therefore in the main analysis boys and

girls were analyzed together. Data were analyzed using the Statistical Package for the Social Sci-

ences (SPSS) version 25.0 software (SPSS Inc., Chicago, IL, USA) and R software [43–45]. Sig-

nificance levels for all results were set at p< 0.05. Results were corrected for multiple

comparisons across all the linear regression models with False Discovery Rate (FDR) correction,

using the Benjamini–Hochberg method (threshold set at q = 0.15) [46].

Confirming differential susceptibility. Following Roisman et al. [42], to verify differen-

tial susceptibility, when the RoS analyses are performed to determine whether the moderator

(Z variable) and the outcome variable are correlated at the low and high ends of the distribu-

tion of the predictor (X variable), results should be considered significant only within a certain

range of interest that is ±2SD of the observed predictor variable. Additionally, the PoI index

should be roughly within 0.40 and 0.60 and the PA index should be close to 0.50.

Results

Descriptive statistics for baseline characteristics can be found in Table 1. Linear regression

beta coefficients and significance levels for the effect of the predictor variables ([DRD4

Table 2. Detailed variable description for SES composite score and PCA factor loadings.

Type Mean (SD) Component 1 Loading

Annual Household Income Ordinal 6.2 (3.2) 0.891

Maternal Education Level Ordinal 4.6 (1.4) 0.772

Receiving Public Assistance (positive direction) Dichotomous 0.8 (0.4) 0.793

Food Security Dichotomous 0.8 (0.4) 0.690

Perceived Resource Availability Continuous 12.1 (5.3) 0.678

KMO Measure of Sampling Adequacy = 0.796.

Bartlett’s Test of Sphericity: p<0.001.

https://doi.org/10.1371/journal.pone.0234601.t002
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predicted gene expression], [SES composite score], [DRD4 predicted gene expression�SES

composite score]) on the outcome variables, caloric intake and macronutrient intake, are dis-

played in Tables 3 and 4. DRD4 predicted gene expression and the SES composite score had

no significant main effects on the outcome variables when investigated separately from their

interaction term, with the exception of the ad-libitum fat intake, where low SES composite

score was associated with increased fat intake (β = -0.258, p = 0.040) (see S1 Data).

DRD4 predicted gene expression moderated the relationship between the SES composite

score and ad-libitum snack intake (β = 0.407, p = 0.009). Furthermore, RoS analysis for the

DRD4 predicted gene expression effect revealed lower and upper bounds of significance within

the observed predictor variable (for lower bound: SES composite score = -1.696; for higher

bound: SES composite score = 0.736; simple slopes were significant outside this region).

Finally, the proportion of interaction and the proportion affected/percentage above indices

Table 3. Linear regression analyses results for caloric intake.

Variables Snack Intake Pizza Intake Fruits & Vegetables Intake

R2 (p-ANOVA) 0.241 (p = 0.017) 0.226 (p = 0.027) 0.229 (p = 0.885)

β P PFDR β P PFDR β P PFDR

DRD4 predicted expression (Z) 0.049 0.680 0.868 -0.029 0.810 0.868 0.097 0.463 0.847

SES composite score (X) 0.125 0.438 0.847 -0.037 0.818 0.868 0.004 0.981 0.981

Z�X 0.407¶ 0.009 0.083 0.051 0.739 0.868 0.077 0.653 0.868

Age -0.118 0.303 0.747 0.171 0.142 0.506 -0.052 0.682 0.868

Sex -0.297 0.011 0.089 -0.456 <0.001 0.003 0.043 0.737 0.868

BMI z-score 0.058 0.606 0.868 0.192 0.092 0.391 0.059 0.638 0.868

PC1 0.186 0.163 0.533 -0.053 0.693 0.868 -0.144 0.332 0.747

PC2 -0.129 0.258 0.743 -0.046 0.685 0.868 -0.126 0.322 0.747

PC1: Principal Component 1 for population stratification; PC2: Principal Component 2 for population stratification.
¶ Effect size attributable to interaction, R-Square change = 0.084 (p=0.009 for R-Square change). FDR threshold set at q=0.15

https://doi.org/10.1371/journal.pone.0234601.t003

Table 4. Linear regression analyses results for macronutrient intake (grams).

Variables Carbohydrates Sugar Fat Protein

R2 (p-ANOVA) 0.300 (p=0.002) 0.236 (p=0.020) 0.313 (p=0.001) 0.248 (p=0.013)

β P PFDR β P PFDR β P PFDR β P PFDR

DRD4 predicted expression (Z) -0.005 0.967 0. -0.037 0.756 0.868 0. 0. 0.868 0.028 0.811 0.868

SES composite score (X) 0.088 0.569 0.868 0.176 0. 0.747 -0.097 0.529 0.868 -0.024 0.882 0.907

Z�X 0.295 0.047a 0.251 0.318¶ 0.041 0.251 0.249 0.089 0.391 0.087 0.567 0.868

Age 0.035 0.751 0.868 -0.019 0.868 0.906 0.061 0.576 0.868 0.173 0.131 0.506

Sex -0.499 <0.001 0.001 -0.388 0.001 0.014 -0.487 <0.001 0.001 -0.479 <0.001 0.002

BMI z-score 0.218 0.046 0.251 0.166 0.142 0.506 0.206 0.056 0.268 0.222 0.049 0.251

PC1 0.103 0.418 0.837 0.193 0.148 0.506 0.038 0.764 0.868 -0. 0. 0.868

PC2 -0.101 0.352 0.768 -0.083 0.468 0.847 -0. 0.307 0.747 -0.082 0. 0.868

PC1: Principal Component 1 for population stratification; PC2: Principal Component 2 for population stratification. ¶ Effect size attributable to interaction, R-Square

change = 0.084 (p=0.009 for R-Square change). FDR threshold set at q=0.15

PC1: Principal Component 1 for population stratification; PC2: Principal Component 2 for population stratification;

a: Significance level drops to 0.906, when both nonlinear terms X2, Z�X2 are included in the model (X2: p=0.090, Z�X2: p=0.026), indicating a nonlinear relationship

between the predictor (carbohydrate intake) and SES composite score.
¶ Effect size attributable to interaction, R-Square change = 0.091 (p=0.041 for R-Square change). FDR threshold set at q=0.15

https://doi.org/10.1371/journal.pone.0234601.t004
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(PoI = 0.59, PA = 0.563) complied with a differential susceptibility model. Post hoc analysis for

simple slopes for higher and lower predicted prefrontal DRD4 gene expression levels (mean

split) showed statistical significance only for the lower group (simple slope at Z = 0: -99.09, t

(65) = 2.59, p = 0.012; simple slope at Z = 1: 52.25, t(65) = 1.21, p = 0.229), suggesting that only

the low DRD4 predicted expression group showed plasticity to the environmental conditions,

such that lower SES composite score was associated with greater ad-libitum snack intake.

Results can be seen in Fig 1.

Additionally, DRD4 predicted gene expression levels moderated the relationship between

the SES composite score and ad-libitum sugar intake (β = 0.318, p = 0.041). However, the RoS

analysis for DRD4 predicted gene expression revealed lower and upper bounds of significance

outside the observed predictor variable meaning that the significance of the difference can

only be observed in extreme values of SES, beyond the observed values as shown in Fig 2 (for

lower bound: SES composite score = -2.690; for higher bound: SES composite score = 4.113)

and the proportion of interaction and the proportion affected/percentage above indices

(PoI = 0.43; PA = 0.439) were not compatible with a differential susceptibility effect. Results

can be seen in Fig 2.

DRD4 predicted gene expression level did not moderate the relationship of the SES com-

posite score with the other intake variables, or with commission errors on the food go/no go

task (β = 0.130, p = 0.403).

Using a sub-sample of adolescents with available data (n = 71), we also conducted an

exploratory analysis using Perceived Stress Scale scores. For initial exploration of relationships

between stress and eating behavior, we used the SES composite score median to split our sam-

ple in two groups (higher SES with n = 36; lower SES with n = 35). Pearson’s correlations indi-

cated that in the lower SES group, total PSS score positively correlated with ad-libitum sugar

intake in the fed condition (r = 0.399, p = 0.022) and showed a positive trend with ad-libitum

snack intake (r = 0.304, p = 0.086). In the higher SES group, total PSS score did not correlate

with either sugar or snack intake (r = -0.081, p = 0.637; r = -0.047, p = 0.785, respectively).

Subsequently, using the differential susceptibility framework method described above, we

found that DRD4 predicted gene expression moderated the relationship between SES compos-

ite score and PSS score (β = 0.552, p = 0.001). As for the eating behavior results described

above, RoS for DRD4 predicted gene expression revealed lower and upper bounds of

Fig 1. Effects of interaction between SES Composite Score and DRD4 predicted gene expression on Ad-Libitum

Snack Intake (kcal). The vertical lines depict the region of significance. The interaction occurs within the regions of

significance providing evidence of differential susceptibility, such that lower predicted prefrontal (PFC) DRD4
expression is associated with greater ad-libitum snack intake in adolescents with lower socioeconomic (SES) composite

score.

https://doi.org/10.1371/journal.pone.0234601.g001
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significance within the observed predictor variable (for lower bound: SES composite score =

-1.024; for higher bound: SES composite score = 0.397; simple slopes were significant outside

this region), and the proportion of interaction and the proportion affected/percentage above

indices (PoI = 0.60, PA = 0.578) complied with prototypical differential susceptibility. Post hoc

analysis for simple slopes for the higher and lower predicted prefrontal DRD4 gene expression

levels showed statistical significance for the lower group only (simple slope at Z = 0: -3.15, t

(62) = 2.79, p = 0.007; simple slope at Z = 1: 1.61, t(62) = 1.30, p = 0.200), suggesting that only

the low DRD4 group demonstrated plasticity to the environmental conditions, such that lower

SES composite score was associated with greater PSS score. Results can be seen in Table 5 and

Fig 3. Supporting the differential susceptibility framework, DRD4 predicted gene expression

and SES composite score had no main effect on PSS score when investigated separately from

their interaction term (see S1 Data).

Fig 2. Effects of interaction between SES Composite Score and DRD4 predicted gene expression on Ad-Libitum

Sugar Intake (grams). The vertical lines depict the region of significance. Given that the vertical lines are outside the

range of possible values for the SES composite score (range: [–2,2]), there is not sufficient evidence of differential

susceptibility.

https://doi.org/10.1371/journal.pone.0234601.g002

Table 5. Linear regression analysis results for Perceived Stress Scale (PSS) score.

Variables PSS

R2 (p-ANOVA) 0.219 (p=0.042)

β P PFDR

DRD4 predicted expression (Z) 0.084 0.492 0.863

SES composite score (X) 0.207 0.206 0.617

Z�X 0.552¶ 0.001 0.009

Age 0.035 0.768 0.868

Sex 0.064 0.588 0.868

BMI z-score 0.037 0.752 0.868

PC1 -0.135 0.324 0.747

PC2 -0.054 0.649 0.868

PC1: Principal Component 1 for population stratification; PC2: Principal Component 2 for population stratification.
¶ Effect size attributable to interaction, R-Square change = 0.164 (p=0.001 for R-Square change). FDR threshold set at

q=0.15

https://doi.org/10.1371/journal.pone.0234601.t005
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Discussion

In the current study, we describe the moderating effect of genetically predicted prefrontal

DRD4 gene expression on responses to the environment such that low frontal cortex expres-

sion of DRD4 was associated with a higher environmental response, whereas a higher expres-

sion of DRD4 was associated with no significative response to the environment. This effect of

differential plasticity in response to environmental variation was observed across two different

domains, with one outcome representing an actual eating behavior relevant to obesity develop-

ment (snack intake in a buffet meal challenge), and the other a subjective rating of how stress-

ful an individual perceives situations in his or her life to be. Importantly, our findings pertain

to adolescence. This life period is crucial for investigation, since adolescents with obesity are

more likely to maintain this phenotype through to adulthood than adolescents of normal

weight [47]. Adolescence is a period especially vulnerable to psychological comorbidity in rela-

tion to obesity [48, 49]. Adolescence is also a critical period for prefrontal cortex development,

including its dopamine innervation [19, 50–52], making it a sensitive window for the effects

we observed here.

Specifically, in terms of eating behavior, adolescents with lower predicted prefrontal DRD4
expression showed greater snack intake at an ad libitum meal test if they were of lower socio-

economic status (SES). Neighborhoods inhabited by lower SES populations have been shown

to exhibit higher availability of calorie-dense food choices and associated food cues[53, 54],

and such environmental forces have been associated with the rising trends in overconsump-

tion and associated obesity over recent decades [55, 56]. SES also serves as a more general

proxy of the quality of the surrounding environment, capturing factors including stress expo-

sure [57] and lower opportunities for physical activity [58], as well as poorer access to nutri-

tional foods [59]. Our results are therefore consistent with a differential susceptibility model

whereby individual variations in dopamine-mediated openness to the environment affect the

likelihood of unfavorable responses (i.e. snack intake) to unfavorable conditions (i.e. low SES),

and might therefore also determine responses to improvements in such conditions [60].

This study also confirms findings on environmental plasticity from our previous research

using the same genomic methodology (predicted prefrontal DRD4 expression). In that paper,

Fig 3. Effects of interaction between SES Composite Score and DRD4 predicted gene expression on total PSS

score. The vertical lines depict the region of significance. The interaction occurs within the regions of significance

providing evidence of differential susceptibility, such that lower predicted prefrontal (PFC) DRD4 expression is

associated with greater Perceived Stress Scale (PSS) score in adolescents with lower socioeconomic (SES) composite

score.

https://doi.org/10.1371/journal.pone.0234601.g003
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Barth et al [13] demonstrated differential susceptibility effects on eating behavior in two ethni-

cally distinct cohorts of children [13]. The present study extends these findings to an older age

group, and provides support for perceived stress as an additional feature showing modulation

by this gene by environment interaction.

Notably, analysis of macronutrients consumed during the meal test revealed a tendency

toward a similar interaction effect for sugar calories consumed, although this variable did not

show a formal differential susceptibility effect. Nevertheless, this pattern of results provides

further support for the possibility that that prefrontal dopamine function may be specifically

affecting behaviors towards palatable food. This is in accordance with a wealth of literature

implicating the dopamine system in addictive like eating behavior [61], behavioral risk for obe-

sity [62] and obesity itself [63].

The modulation of environmental responsiveness by DRD4 gene expression that we

observed here is consistent with well-established general functions of DRD4. DRD4 function-

ally produces inhibitory effects, and is expressed in brain regions playing a role in planning,

executive function and reward [64]. The DRD4 exon III VNTR polymorphism (hypofunc-

tional polymorphism), for instance, has been implicated in both planning/executive function

effects and in heightened susceptibility to environmental influences [15], as well as with

reduced inhibitory effects on postsynaptic neurons [65–67]. Such effects could be due to differ-

ential modulation of signal-to-noise ratio in subpopulations of mPFC neurons [68–71]. For

example, afferent signals may be amplified relative to spontaneous basal firing (noise), thus

affecting the signal to noise ratio and therefore consequent behavioral responses [69].

Our findings also build on previous literature demonstrating the role of dopamine function

on responsiveness to food cues. For example, functional magnetic resonance (fMRI) imaging

in response to imagined intake of palatable foods shows that future increases in body mass can

be predicted by weaker brain activation of specific brain areas, particularly in individuals car-

rying low functioning variants of dopamine receptor genes, such as the DRD2 TaqIA A1 allele

or the DRD47R allele [72, 73]. The DRD47R polymorphism has been associated with markedly

decreased affinity for dopamine and impaired intracellular signaling in comparison to other

exon III alleles [74]. Our group has studied the DRD47R allele in several disorders character-

ized by increased eating that are most prevalent in females [7, 75, 76]. DRD47R carriers also

report significantly more craving for food in a cue-elicited food-craving test [77].

Both cortical and subcortical brain regions control cognitive and behavioral responses to

food cues, and food intake [78–81]. The balance between involuntary stimulus-driven pro-

cesses (bottom-up, in response to stimulus exposure) and reflective goal-driven processes

(top-down, related to information processing and cognition) determine cognitive representa-

tions of the reward value of food cues, attentional responses to such cues, and impulsive behav-

iors [81, 82], with combined perturbation of these processes likely to underlie the

predisposition to overeat [83]. Moreover, adolescence is a period associated with poor inhibi-

tory control resulting from ongoing maturation of neural systems subserving these functions

[50, 84]. Therefore, the extent to which people show enhanced selective attention to food cues

in tasks such as a food go/no go (i.e. attentional bias) provides a neurobehaviorally-informed

index of individual differences in reactivity to food reward, as determined by this integrated

system. In the present study, we did not find any association or interaction between predicted

prefrontal DRD4 expression and SES composite score on food go/no go performance. This

negative finding contrasts with predictions based on other studies which have shown that

alterations of dopaminergic pathways can impact both sensitivity to reward and impulsivity

[85–87], that can lead to poor decision-making processes and maladaptive behaviors such as

altered eating behavior and addiction [88–90]. Impulsive subjects show an inability to refrain

from a stimulus-driven action, as measured by response inhibition paradigms such as the go/
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no-go task[91] and impulsivity has been associated with functional polymorphisms of dopa-

mine-related genes [92]. These negative results suggest that, in this sample, behavioral inhibi-

tory control did not play a critical role in the response to environment [93–95].

In addition to effects on food intake, we here demonstrated that predicted prefrontal DRD4
gene expression moderated the effects of SES on stress perception. Only the low DRD4 group

reported higher perceived stress. In contrast there was no effect of low SES on perceived stress

in those with higher expression of DRD4, suggesting that higher expression may confer a

higher resilience or what could be called a higher “internal buffering capacity” to environmen-

tal conditions [96]. We also demonstrated greater intake with higher perceived stress within

lower SES participants. This exploratory result requires replication but is consistent with an

overall alteration in environmental perception among individuals with blunted dopamine

function with potential impacts on eating behavior, rather than a specific effect on eating

behavior responses to the food environment. Our finding is consistent with literature in

healthy adults demonstrating that dopamine function is associated with perceptual experiences

including sensitivity to pain [97] and responsivity to acute psychosocial stressors [98]. Also, in

accordance with our finding, pre-clinical studies have demonstrated that diminished presyn-

aptic dopamine regulation and function in DRD4 deficient mice can produce increased sensi-

tivity to aversive [99] as well as reward cues [100]. Further, human studies also found that

diminished dopamine inhibitory feedback in DRD47R carriers is linked to weaker physiologi-

cal dopamine signaling compared to non-carriers [101]. Human imaging studies have also

suggested that DRD47R variations might impact neural reactivity to both aversive as well as

rewarding cues, with alcohol cue-triggered reactivity in the OFC, anterior cingulate cortex

(ACC), and striatum being greater in DRD47R carriers [102], and DRD47R carriers showed

greater neural responsivity to unpleasant images [103].

Limitations

This study contained only a small proportion of very low-income individuals in this study

sample. Nevertheless, we were able to observe interactions with SES here, arguing for the exis-

tence of effects even at higher income ranges. This is consistent with other research demon-

strating health effects of SES that are not restricted to conditions of poverty but distributed

across a whole range of wealth [104]. A further cause for caution in interpreting these results is

that the generalizability of the PrediXcan method to non-Caucasian populations is unclear

[105], necessitating further validation and replication work, although we were able to find sim-

ilar effects using the same methodology in a cohort of predominantly Asian individuals[13,

105]. PrediXcan is an imputation technique with some limitations inherent to its method,

which aims to predict only the genomic-related proportion of gene expression, not real expres-

sion or associated protein levels or functional activity. The real expression of DRD4, and its

biological function, could still be subject to variation between subjects due to gene-environ-

ment interactions. Indeed the actual differential susceptibility phenotype could even be caus-

ally related to other indirect mechanisms, such as network polygenic effects, where DRD4

could work as a hub gene, or relate to genes adjacent to DRD4. The association between the

predicted DRD4 and differential susceptibility phenotype we show here is, though, in line with

findings in two different cohorts with heterogeneous populations in terms of age and ethnic

background [13], and findings on the DRD4-7R polymorphism from previous literature[6, 12,

106–111]. Notwithstanding the limitations described, the results we present here are consistent

with a nonlinear moderating effect of dopamine function on neural responses [112, 113], such

that low predicted DRD4 expression in prefrontal cortex was associated with a more plastic
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phenotype, conferring obesity risk in more adverse environments, and obesity protection in

predominantly favorable environments.
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