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Abstract

Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent

years, advances in targeted therapy and immunotherapy have contributed to a remarkable

progress in the treatment of metastatic disease. However, intrinsic or acquired resistance

to such therapies remains a major obstacle in melanoma treatment. Melanoma disease

progression, beginning from tumor initiation and growth to acquisition of invasive pheno-

types and metastatic spread and acquisition of treatment resistance, has been associated

with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent

of the neural crest (NC)—the developmental structure which gives rise to melanocytes and

hence melanoma. This review summarizes the experimental evidence for the involvement

of NC stem cell (NCSC)-like cell states during melanoma progression and addresses novel

approaches to combat the emergence of stemness characteristics that have shown to be

linked with aggressive disease outcome and drug resistance.
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1 | INTRODUCTION

The neural crest (NC) is a transient and multipotent stem cell population

arising at the dorsal neural tube at early stages of vertebrate develop-

ment.1-3 Neural crest stem cells (NCSCs) disseminate into the embryo

to differentiate into an array of cell lineages with remarkably different

functions.4 Among the adult NC derivatives are cartilage and bone

structures in the head, the outflow tract of the heart, enteric nervous

system cells in the gut, neuronal and non-neuronal cells of the periph-

eral nervous system, melanocytes and others.5,6

While most of the NC progeny have acquired a fully differen-

tiated fate in the adult, cells with NCSC-like characteristics have

been isolated from several adult mouse tissues7 as well as human

skin8-12 and dental pulp.13 Even though the isolated cells

possessed multipotent capacities in vitro and could give rise

to different NC lineages, the question remains whether NCSC-

like cells derived from adult tissues really represent a maintained

embryonic stem cell niche or whether these cells reacquire

stem cell features due to isolation procedures and cultivation

in vitro.

The reemergence of NCSC-like cell states in vivo has been observed

and studied in the context of pathological and physiological conditions

such as carcinogenic transformations of NC-derived adult tissues or

wound healing, respectively. Murine tissue injury models revealed that

NC-derived Schwann cells (peripheral glia) dedifferentiate after injury and

reacquire a progenitor-like cell state by downregulating genes crucial for

the myelination machinery and upregulating NCSC-associated factors

such as the neurotrophin receptor CD271 (also p75NTR, NGFR).14,18

Injury-activated glial cells were further shown to crucially assist regenera-

tion of full-thickness skin wounds or amputated digit tips.17,18
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Furthermore, previous reports revealed that Schwann cell precursors

(SCPs) during embryonic development harbor NC cell features and are

able to generate a variety of neural and non-neural cell types.15,16 Like-

wise, carcinogenic lesions of adult NC-derived tissues such as melanoma

or neuroblastoma can both present with cells expressing NCSC-associ-

ated factors that are not normally expressed in the healthy adult tis-

sue.19-21 This review focuses on melanoma, wherein the aberrant

regulation or expression of developmental NCSC genes or pathways is

associated with different aspects of malignancy (Figure 1), such as tumor

initiation and sustained tumor growth,22-25 promotion of metastatic

spread,26 as well as resistance to therapies27-30 and immune evasion.31,32

2 | DEVELOPMENTAL NCSC GENES
REGULATE MELANOMA GROWTH AND
HOMEOSTASIS

Cutaneous malignant melanoma, the most aggressive skin cancer,33

can present with astonishing heterogeneity, ranging from cells

expressing typical melanocyte differentiation genes to gene sets typi-

cal for other NC-derived cell lineages like neurons or glia, among

others.34-36 The origin of such heterogeneous tumors has been

heavily debated and research was carried out on the expression of

factors reminiscent of stem cells, which equips melanoma cells with

renewal capacities in vitro and tumor formation potential

in vivo.22,37,38 For instance, the neurotrophin receptor CD271, which

has been used for isolation of rat NCSCs with multipotent capacities

in vitro,14 was found reexpressed in a subset of melanoma cells that

were able to initiate tumor formation when grafted into immunocom-

promised mice, while CD271-negative cells lacked such potential22

F IGURE 1 Reacquisition of neural crest stem cell (NCSC)-like characteristics in melanoma and its implications. Embryonic NCSCs (dark green)
arise at the developing dorsal neural tube and migrate into the whole embryo to form different tissues such as craniofacial bone and cartilage,
enteric and peripheral nervous system cells (light grey) and, amongst many others, also cells of the melanocyte lineage, specifically melanocyte
stem cells (MeSCs), melanoblasts and melanocytes (brown). Due to malignant transformations, those cells can progress into melanoma. Different
studies have shown that some melanoma cells (light green) can hijack embryonic NCSC programs, bestowing them with different advantageous
characteristics. Melanoma cells with reacquired NCSC features have been associated with the ability to form novel tumors and sustain growth,
increased cell invasiveness and metastasis formation, as well as the ability to resist different melanoma therapies and evade immune surveillance

Significance statement

This review summarizes the experimental evidence for

reemergence of neural crest stem cell (NCSC)-like cells in

melanoma, which hijack embryonic programs to acquire

advantages regarding tumor initiation and growth, meta-

static spread, and eventually therapy resistance. Further-

more, the authors discuss preclinical efforts to specifically

target NCSC-like melanoma cells to combat drug resistance,

which is a major goal in the field and will hopefully soon

improve melanoma therapy for patients.
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(Table 1). Furthermore, the tumors grown from single grafted

CD271high cells presented with the heterogeneity of the parental

tumor from which they were isolated, and not exclusively of

CD271-positive cells as grafted to generate the tumor, supporting the

idea that CD271high cells represent stem cell-like cells.22 Of impor-

tance, CD271 is expressed in few adult cell types64,65 and exerts

divergent functions depending on the tissue context, for instance in

melanocytes versus transformed malignant melanoma.66,67 While sig-

nal transduction networks related to melanocytic differentiation (such

as skin development, metabolic hormone processes or cell adhesion)

have been found enriched in CD271-positive human melanocytes, the

same pathways were significantly downregulated in CD271-positive

human melanoma cells,66 supporting the association of CD271high cell

states with dedifferentiation and stemness potential in melanoma.

The idea that stem cell-like cells exist in melanoma was further

strengthened by the finding that apart from CD271, the expression of

other genes reminiscent of NCSCs was reported in melanoma and

found to be essential for tumor initiation and maintained tumor

growth. The transcription factor (TF) SRY-related HMG-box

10 (SOX10), for instance, which regulates the melanocytic and glial

murine lineages derived from the NC,39,40 was found highly expressed

in melanocytic nevi and malignant melanoma.24,68,69 Upon depletion

of SOX10 in a transgenic NRASQ61K-mutant, Ink4a-deficient murine

melanoma model, tumor growth was diminished, and silencing of

SOX10 in human melanoma cells drastically reduced the number of

cells expressing CD271 and completely abolished tumor growth

in vivo24 (Table 1). Similar to SOX10, the TF Ying Yang 1 (YY1) was

found to regulate both murine NC development and melanoma forma-

tion in NRASQ61K-mutant, Ink4a-deficient mice25 (Table 1). The impor-

tance of reemerging NCSC-like cell states during melanoma initiation

was highlighted in yet another study, where in BRAFV600E-mutant,

p53-deficient melanoma-prone zebrafish, cells capable of melanoma

initiation activated a gene regulatory program characterized by the

activation of zebrafish embryonic NC regulators such as crestin23

(Table 1). Similarly, a recent study identified a set of genes expressed

in embryonic melanoblasts, which are downregulated in fully differen-

tiated melanocytes but partially reexpressed in human metastasis

samples, providing further evidence for melanoma cells reacquiring

progenitor-like cell states.70 Consequently, some of those genes like

KDELR3 indeed proved to be essential for the formation of experi-

mental metastasis in a model of tail vain-injected murine B16 cells.70

Nevertheless, the role of some genes involved in NC develop-

ment remains unclear and heavily debated. SOX2, a member of the

SRY TF family like SOX10, for instance, was shown to regulate NCSCs

and SCPs together with MITF, while SOX2 downregulation led to pre-

cursor differentiation into melanocytes,71 suggesting that the

upregulation of SOX2 in melanoma might orchestrate stem cell-like

traits. However, while some studies report that SOX2 promotes tumor

initiation of human cells grafted into immunocompromised mice,72,73

others have shown that it is dispensable for melanomagenesis in

genetically engineered mouse models.74,75

While some factors reminiscent of NC development regulate cell

cycle regulatory networks to allow tumor initiation and maintenance

of adult melanoma, other cellular processes enabling melanoma tumor

formation such as transcriptional regulation44,45 or metabolism25 have

been shown to be regulated by NCSC-associated factors. It was

shown, for instance, that dihydroorotate dehydrogenase (DHODH),

an enzyme involved in nucleotide biosynthesis, is essential for tran-

scriptional elongation of genes crucial for both NC development and

melanoma formation and that hence, inhibition of DHODH

suppressed proper NC development as well as melanoma formation,

especially when combined with BRAF inhibition44 (Table 1). Mechanis-

tically, DHODH inhibition-induced nucleotide stress has recently been

linked to the RNA helicase DDX21, which senses nucleotide shortage

in NCSCs as well as melanoma cells, upon which it stops transcrip-

tional elongation45 (Table 1). In addition, DDX21 was found to regu-

late transcription in melanocyte stem cells (McSCs) in the hair follicle

bulge to prevent differentiation into melanocytes.76

There has been much debate recently about whether the cell at

the origin of melanoma indeed represents a stem cell-like cell. In fact,

the above-mentioned studies somewhat stand in contrast to reports

claiming that instead of cells with stem cell features, fully differenti-

ated melanocytes can give rise to melanoma. For instance, it was

shown that BRAFV600E-mutant, Pten-deficient fully differentiated and

melanin-producing melanocytes could give rise to melanoma.77 Of

importance, Köhler et al77 state in their study that after a first radial

growth phase initiated by fully differentiated melanocytes, a subset of

melanoma cells also underwent a transcriptional dedifferentiation pro-

cess potentially reminiscent of the reemergence of NCSC-like pro-

grams reported by others.

Yet another theory on the origin of melanoma argues that McSCs

residing in the bulge of the hair follicle, rather than differentiated

melanocytes, could stand at the origin of melanoma primary tumor

formation.78,79 Moreover, given that adult Schwann cells have the

capacity of dedifferentiation in vivo18 and that SCPs are able to gen-

erate melanocytes,80 it is conceivable that some melanoma might

derive from the peripheral glial lineage.

Several animal models have allowed melanoma induction with

specific cues followed by in-depth analysis and lineage tracing to

understand disease initiation and progression. However, such analyses

remain challenging in the context of human disease. While single-cell

studies of patient-derived melanoma allow unprecedented insights

into heterogeneous disease evolution, an alternative approach to

tackle melanoma origin as such, could be the artificial induction of

melanoma in melanocyte lineage cells derived from human embryonic

stem cells followed by lineage tracing and single-cell characterization.

Yet, the mystery of how human melanoma arises in vivo remains to be

unraveled.

3 | NCSC-LIKE CELLS CAN INDUCE
INVASION AND METASTATIC SPREAD OF
MELANOMA

Apart from inducing or maintaining melanoma tumor growth, the

reacquisition of NCSC-like characteristics has also been associated
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TABLE 1 Literature overview of NCSC-associated factors regulating parts of melanomagenesis

Melanoma implication Factor (function) Detailed function in melanoma References NCSC function References

Tumor initiation/growth SOX10 (TF) Broadly expressed in human nevi

and melanomas. Depletion leads to

abolished tumor formation in a

NRASQ61K Ink4a-deficient mouse

model, associated with reduced

numbers of CD271+ cells.

24 Specifies murine NCSCs

and melanocytic and glial

lineages.

39,40

YY1 (TF) Haploinsufficiency is enough to

prevent melanoma initiation in a

NRASQ61K Ink4a-deficient mouse

model. Regulates shared metabolic

and translational pathways in neural

crest and melanoma.

25 Essential for early murine

NC development and the

adult melanocyte lineage.

25

CD271/NGFR/p75NTR

(receptor tyrosine kinase)

Single CD271+melanoma patient-

derived cells can form tumors

(with the heterogeneity of the

parental tumor) upon grafting into

immunocompromisedmice, while

CD271- cells cannot. Inhibition of

CD271 in humanmelanoma cells

reduces their tumor initiation potential.

22,41 Used to isolate

mammalian NCSCs that

were multipotent in vitro

14

EZH2 (histone methyl

transferase)

Upregulated in human malignant

melanoma compared to

melanocytes. Depletion in a

NRASQ61K Ink4a-deficient mouse

model inhibits melanoma growth.

42 Controls differentiation

of NC-derived

mesenchymal lineages

(bone and cartilage)

43

DHODH (pyrimidine

metabolism)

Transcriptional elongation of genes

crucial for melanomagenesis.

44 Transcriptional

elongation of neural crest

developmental genes.

44

DDX21 (RNA helicase) Controls transcriptional elongation

(after nucleotide shortage-induced

stress).

45 Controls transcriptional

elongation.

45

Crestin (unknown) Marks tumor-initiating cells in a

BRAFV600E p53-deficient zebrafish

melanoma model.

23 mRNA widely expressed

in zebrafish NCSCs

46

Phenotype switch/invasion MSX1 (TF) Induces phenotypic switching (E-

cadherinhigh, nonmigratory toward

ZEB1high, invasive) in melanoma.

Depletion reduces liver metastasis

after tail vain injection of human

melanoma cells into

immunocompromised mice.

47 NC induction in xenopus 48

Twist1/Zeb1 (TF) NRAS/BRAF activation in

melanocytes leads to upregulation

of EMT TFs including TWIST1 and

ZEB1, dedifferentiation and

neoplastic transformation of

melanocytes.

49 Twist1: NC specifier;

delamination of cranial

NC; cell fate decision

within cardiac NC

Zeb1: upregulated by

Zeb2, essential for

melanocyte migration

and differentiation.

50-52

FOXD3

PAX3

(TF)

FOXD3 and PAX3 drive CXCR4

expression in melanoma, which was

shown to promote melanoma

metastasis formation.

53,54,55 FOXD3: NC specifier

PAX3: expressed in

neural plate border

56,57

CD271 (receptor tyrosine

kinase)

Associated with increased

metastasis in patients. Transient

overexpression induces a reversible

phenotype switch in vitro and

increased metastatic potential of

human melanoma cells grafted onto

immunocompromised mice.

35,26

(Continues)
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with later stages of melanoma progression, such as invasiveness and

metastatic spread.22,26,35 To become invasive and disseminate from

the primary tumor, cancer cells are thought to undergo an epithelial to

mesenchymal transition (EMT), rendering them with decreased cell-

to-cell contacts, increased motility, and an increased potential to

remodel extracellular matrix components.81,82

Although, by definition, classical EMT is a process associated

with epithelial cancers, which is not the case for melanoma, mela-

noma cells can undergo an EMT-like process called “phenotype
switching,” where cells transform from a high proliferative/low

invasive to a low proliferative/high invasive phenotype.83,84 Even

though it has been reported that melanoma invasion and metasta-

sis can progress independently of the ‘classical’ phenotype

switching model,85 EMT-like phenotype switching is thought to be

a crucial driver of melanoma invasiveness and metastasis

formation.86

Migratory NCSCs delaminating from the neural tube to migrate

out into the embryo are a paradigm example for EMT during embry-

onic development.4,5,87 Intriguingly, regulatory genes responsible for

developmental NC EMT are reexpressed in adult malignant

melanoma,19,88 including members of the Snail, Zeb, and Twist fami-

lies49 (Table 1). Caramel et al49 showed that upon NRAS/BRAF activa-

tion in melanocytes, the EMT TFs TWIST1 and ZEB1 were

upregulated and induced dedifferentiation and neoplastic transforma-

tion. They also showed that this EMT-TF signature, when found in

late-stage melanoma patients, correlated with poor prognosis. Simi-

larly, transforming growth factor beta also acts as a potent inducer of

melanoma phenotype switching,84,89 while playing a crucial

TABLE 1 (Continued)

Melanoma implication Factor (function) Detailed function in melanoma References NCSC function References

EZH2 (histone methyl

transferase)

Depletion in a NRASQ61K Ink4a-

deficient mouse model leads to

abolished macro-metastasis

formation.

42

Drug Resistance FOXD3

(TF)

ERBB3

(receptor tyrosine kinase)

FOXD3 upregulates ERBB3, leading

to BRAFi resistance in vitro and in

vivo.

58 ERBB3: NC

differentiation and dev.

of sympathetic nervous

system

59

CD271 (receptor tyrosine

kinase)

NGFR+ AXL+ melanoma patient cells

represent a dormant, MAPKi-

resistant cell population. Long-term

(3 weeks) BRAFi treatment leads to

emergence of a drug-tolerant or

drug-resistant NC-like cell state in

vitro.

60,61

RXRG (nuclear receptor) Minimal residual disease in a BRAFi/

MEKi-tolerant PDX model

represents as dedifferentiated

melanoma (NGFR+ RXRG+ AQP1+

GFRA+).

28 Expressed in migrating

cranial chick NC cells.

62

Immune Evasion CD271 (receptor tyrosine

kinase)

TNFα induces dedifferentiation of

melanoma cells (NGFRhigh) and

resistance to adaptive T-cell therapy

in a murine model of adoptive cell

transfer therapy.

Long-term exposure of patient-

derived melanoma cells to antigen-

specific cytotoxic T cells leads to

enrichment of NGFRhigh cells, which

are refractory to T cells as well as to

BRAF/MEKi

32,31

EZH2 (histone methyl

transferase)

Intratumoral TNFα and T-cell

accumulation induce Ezh2 in

melanoma cells originating from

NRASQ61K Ink4a-loss or B16 F10

murine models, leading to loss of

immunogenicity.

63

Abbreviations: MEK, mitogen-activated extracellular signal-regulated kinase; NC, neural crest; NCSC, neural crest stem cell; SOX10, SRY-related HMG-box

10; TF, transcription factor; YY1, Ying Yang 1. Transgenic animal models: NRASQ61K Ink4a-deficient mouse model, Tyr:NrasQ61K Cdkn2a-/-; BRAFV600E p53-

deficient zebrafish, mitfa:BRAFV600E p53-/-.

526 DIENER AND SOMMER



physiological role in NC development by providing signaling cues for

migration and differentiation into several lineages.90-92

Apart from an invasive and migratory potential, epithelial cancer

cells undergoing EMT have been associated with the acquisition of

stem cell-like features.93,94 Similarly, melanoma phenotype switching

has been associated with the reemergence of signatures similar to

NCSC regulatory networks47 (Table 1). Expression of the NCSC-

associated factors CD271 and SOX1039,40 in human melanoma corre-

lates with high metastatic potential and worse patient prognosis35

(Table 1). Furthermore, Msh homeobox 1 (MSX1), which specifies the

NC at the neural border of zebrafish and xenopus,48 when

upregulated in melanoma, leads to dedifferentiation of melanoma

cells, which upregulate NCSC-associated factors such as CD271 and

induce a phenotype switch toward increased cell migration47

(Table 1). Vice versa, silencing of MSX1 reduces liver metastasis of tail

vein-injected human melanoma cells in mice.47 Also the zebrafish and

murine NC specifier FOXD3 together with PAX3, which is expressed

at the neural plate border,56,57 have been shown to induce human

melanoma invasiveness by directly regulating CXCR4,53 which in turn

regulates melanoma metastasis formation54,55 (Table 1). Finally, even

though a zebrafish study suggested otherwise,95 ectopic over-

expression of CD271 induces a phenotype switch in human mela-

noma cells, ultimately leading to an increased metastatic potential of

human melanoma cells grafted into immunocompromised mice26

(Table 1). These findings revealed a functional involvement of single

factors reminiscent of NCSCs in melanoma disease progression.

Whether, in general, the reemergence of a broader NCSC signature is

functionally implicated in melanoma metastasis formation remains to

be elucidated.

4 | DEDIFFERENTIATED MELANOMA
CELLS DISPLAY RESISTANCE TO DIFFERENT
THERAPIES

While traditionally the most common therapy for melanoma has been

surgical removal of primary tumors plus radiation and

chemotherapy,96 the advent of immune and targeted therapies signifi-

cantly improved the survival rate, especially of patients with meta-

static melanoma.33 Targeted therapies for melanoma are mostly

directed against the serine/threonine kinase BRAF or the mitogen-

activated extracellular signal-regulated kinase (MEK), leading to inhibi-

tion of the mitogen-activated protein kinase (MAPK) pathway, an

oncogenic pathway mutated and constitutively active in most melano-

mas.97,98 Immunotherapies on the other hand aim at boosting the

antitumoral activity of cytotoxic T lymphocytes (CTLs) to combat mel-

anoma.29 However, one of the major remaining challenges is the

acquisition or preexistence of melanoma cells resistant to such

therapies,99-103 which ultimately lead to relapse.

Resistance to different melanoma therapies has been associated

with cells undergoing phenotype switching and lacking pigmentation-

related differentiation genes while expressing genes reminiscent of

NC development.28-30,32,104,105 Specifically, MAPK pathway inhibition

was shown to promote the de novo generation or expansion of sub-

populations of melanoma cells expressing NCSC-associated factors

like CD27128,106 or the NC specifier gene FOXD3.58 In addition,

targeted therapy led to increased expression of genes linked to inva-

siveness like the receptor tyrosine kinase AXL106,107 (Table 1). NCSC-

like melanoma cell subpopulations were further reported to contribute

to minimal residual disease and, ultimately, to disease relapse.28,108

Conversely, another study showed that melanoma cells expressing

the melanocyte differentiation gene Dopachrome tautomerase (DCT,

also TYRP2) were intrinsically resistant to BRAF inhibition.109 How-

ever, increasing evidence supports the hypothesis that it is particularly

the dedifferentiated melanoma cell population, expressing genes remi-

niscent of NCSCs, that can resist different treatments, including

immunotherapies.

Along that line, a recent study showed that long-term expo-

sure of patient-derived melanoma cells to antigen-specific

(MART1) T cells led to an enrichment of CD271high melanoma

cells, which showed increased resistance to cytotoxic T cells

(which recognized differentiation and non-differentiation anti-

gens), as well as to BRAF and MEK inhibitors31 (Table 1). In line

with these findings, another study revealed that in a mouse

adoptive T cell therapy model, tumor necrosis factor alpha

(TNFα)-induced inflammation led to dedifferentiation of patient-

derived transplanted melanoma by upregulation of CD271 and

downregulation of melanocyte-specific antigens, which resulted

in reduced tumor recognition by infiltrating T cells32 (Table 1).

Furthermore, while Boshuizen et al31 interfered with CD271

upregulation to combat T cell resistance and relapse in their

preclinical model via an unspecific heat shock protein inhibitor,

another study developed a CD271-specific monoclonal human-

ized antibody to counteract CD271 function.110 The authors

showed that treatment of CD271-positive human melanoma

grafts in NOD/scid mice with this CD271 antibody in combina-

tion with natural killer or peripheral blood mononuclear effector

cells achieved a significant antitumor effect.110 Whether such a

CD271-specific antibody could combat therapy resistance of

melanoma tumors toward targeted or immune therapy remains

to be answered, but previous findings appear to support such

an approach.28,31,32

Immunotherapy-induced T-cell accumulation and TNFα have

also been shown to induce other factors reminiscent of NC

development in melanoma, such as the histone methyltransferase

Ezh2, which regulates mesenchymal fates during murine NC

development.43 Ezh2 upregulation in melanoma led to reduced

immunogenicity of B16 F10 or NrasQ61K-mutant Ink4a-deficient

murine tumors autologously grafted onto C57BL/6 mice, while

pharmacological inhibition of Ezh2 attenuated this effect and

synergized with anti-CTLA-4 and IL-2 immunotherapies in mice63

(Table 1).
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5 | TARGETING THE REEMERGENCE OF
NCSC-LIKE MELANOMA STATES

In line with NCSC-like cell states observed in melanoma during dis-

ease progression and treatment, increasing evidence supports

approaches targeting melanoma cells that have hijacked developmen-

tal programs. Indeed, several preclinical studies have succeeded in

targeting or inhibiting the emergence of dedifferentiated melanoma

cells to combat therapy resistance (Figure 2).

For instance, inhibiting CD271 in melanoma cells restored their

susceptibility to BRAF inhibitors.27 Likewise, suppressing the emer-

gence of dedifferentiated, NCSC-like melanoma cells upon MEK

and BRAF inhibition (MEKi and BRAFi) interfered with resistance

formation in vivo.28 Specifically, this elegant study showed that a

set of NCSCs genes, such as the Retinoid X receptor gamma

(RXRG), which is expressed in chicken NCSCs,62 was induced by

MEKi and BRAFi treatment, and that pharmacological inhibition of

RXRG prevented disease relapse of patient-derived melanoma in

immunocompromised mice28 (Figure 2). Yet another study used a

cytotoxic antibody approach to target AXLhigh melanoma cells resis-

tant to MEKi and BRAFi, which led to reduced tumor growth and

restored drug susceptibility107 (Figure 2). Of note, AXL has not

been identified as a regulator of the embryonic NC as such, how-

ever its expression has been associated with NCSC-reminiscent

factors such as CD271.60 Specifically the receptor tyrosine kinases

AXL and CD271 (together with EGFR and others) have been iden-

tified as marker genes for BRAF inhibitor resistance of human mel-

anoma cells in vitro,30 suggesting that targeting AXLhigh drug

resistant melanoma cells putatively affects cells with NCSC-

reminiscent features.

F IGURE 2 Interfering with dedifferentiated, neural crest stem cell (NCSC)-like melanoma cells to combat drug resistance. Different preclinical
studies successfully managed to circumvent therapy resistance of melanoma cells or patient-derived grafts in mice by targeting the reemergence
of NCSC-like melanoma states. Rambow et al28 were able to attenuate the accumulation of NCSC-like cells after BRAF/MEK inhibition by
treating patient-derived melanoma with an antagonist toward RXRG, a NCSC-associated gene strongly upregulated within their drug resistant
melanoma subpopulation. Similarly, Boshuizen et al107 successfully targeted tumor growth by combining MAPK inhibition with a cytotoxic
antibody against AXLhigh cells emerging as resistant cells after BRAF/MEK inhibition. AXL is associated with invasiveness and drug resistance in

melanoma60 but has also been associated with reemergence of NCSC states in melanoma.106 Also, Tsoi et al106 could show that MAPK inhibition
as well as pro-inflammatory signaling from immunotherapies promoted drug resistant, dedifferentiated melanoma cells, which were characterized
by increased sensitivity to ferroptosis. The authors subsequently co-treated melanoma cells with targeted therapy and the ferroptosis-inducing
drug Erastin, which led to decreased melanoma cell survival. Sáez-Ayala et al111 achieved to circumvent drug resistance by forced differentiation
of melanoma cells due to treatment with methotrexate (MTX), which induced the expression of the melanocyte differentiation marker MITF and
inhibited invasiveness. This drug was further combined with the cytotoxic prodrug TMECG, activated by tyrosinase (a target of MITF), which is
expressed in differentiated melanocytes
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Furthermore, targeted as well as immunotherapy have been

shown to induce drug resistance, along with acquisition of NCSC-like

gene expression programs, that lead to an increased sensitivity to

ferroptosis,106 a type of programmed cell death.112 The study authors

subsequently managed to inhibit melanoma dedifferentiation and

therapy resistance by addition of ferroptosis-inducing drugs106

(Figure 2).

The opposite approach of pushing melanoma into a fully differen-

tiated cell fate to circumvent resistance formation, has been achieved

in vitro through application of methotrexate (MTX), which activates

the expresison of microphthalmia-induced TF (MITF), a key regulator

of differentiated melanocytes113 . MTX treatment further increased

melanoma cell susceptibility to a cytotoxic prodrug (TMECG), acti-

vated by tyrosinase, a target of MITF and expressed by fully differen-

tiated melanocytes111 (Figure 2).

All in all, these studies have demonstrated that interference with

melanoma dedifferentiation or, vice versa, the promotion of a fully dif-

ferentiated melanoma state can yield increased drug susceptibility and

prevention of disease relapse in preclinical models, which make this a

highly promising approach for patient therapy.

6 | CONCLUDING REMARKS

Several approaches to target the reemergence of NCSC-like cell states

in treatment-resistant melanomas (Figure 2) have shown great prom-

ise in preclinical settings. However, further in-depth studies and

proper characterization of such NCSC-like melanoma cell states are

needed to unravel the exact nature of gene regulatory networks that

lead to the most therapy-resilient, and hence aggressive, tumors.

Unfortunately, inter-patient and intratumoral heterogeneity has

always posed a substantial challenge in melanoma treatment and also

complicates the identification of exact NCSC-like programs emerging

within melanoma patients.

Currently, most studies performed on NCSC-like cells in mela-

noma and cited within this review are preclinical studies114 per-

formed on human material in vitro30,106 or in murine models,

where NC-reminiscent factors were shown to be crucial for tumor

formation and disease progression in genetically engineered mela-

noma models24,25,63 as well as in patient-derived xenograft

models.22,26,28,47 However, extensive analyses of patient materials,

which are important to support the clinical relevance of the above

discussed findings, are often missing due to limited access to sam-

ples reflecting specific stages of melanoma progression. Also, some

of the first in-depth single-cell analyses of patient tissues have

been single case reports28 rather than studies involving big patient

cohorts. Therefore, the possibility remains that the reemergence of

aggressive, therapy-resistant NCSC-like cell states observed in pre-

clinical models does not or not always occur during disease pro-

gression in human melanoma patients and that metastatic disease

and therapy resistance could still be established by alternative

pathways.

Another remaining question concerns whether the mutational

landscape predisposes melanoma subtypes toward the potential for

dynamic remodeling into NCSC-like cell states. For now, it is unclear

whether some of the most frequent melanoma mutations, namely,

BRAFV600E and NRASQ61K, preferably favor the reemergence of NCSC-

like cell states. Work by Zon and colleagues has shown that in

zebrafish, BRAFV600E-mutated melanomas activate a NCSC progenitor

program essential for melanoma initiation,23 while in NRASQ61K-

mutated melanomas, such a NCSC signature did not emerge at early

stages of disease but only after transformation into malignant mela-

noma.115 Whether this discrepancy is reflective of the human disease

physiology remains unclear, since tumor initiation and onset of inva-

sion and metastatic spread cannot be properly monitored or modeled

in humans. Furthermore, most preclinical studies that have associated

NCSC-like melanoma subpopulations with resistance to therapy have

addressed BRAF inhibitor resistance and accordingly used mostly

BRAF-mutated melanoma material,28,31 leading to a bias toward BRAF-

vs NRAS-mutated material under investigation.

In conclusion, future studies including human material from big-

ger, more representative patient cohorts and collected at different

time points of disease progression, specifically also during response to

therapies, are needed to address the relevance of NCSC-like mela-

noma cell states in humans. Hopefully, further single-cell studies will

allow us to answer whether NCSC-reminiscent melanoma subpopula-

tions indeed emerge in patients and whether they substantially inter-

fere with melanoma treatment. This could open promising new

avenues for designing novel therapies.
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