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Abstract

Genetic variants in CACNA1C (calcium voltage-gated channel subunit alpha1 C) are associ-

ated with bipolar disorder and schizophrenia where sleep disturbances are common. In an

experimental model, Cacna1c has been found to modulate the electrophysiological architec-

ture of sleep. There are strong genetic influences for consolidation of sleep in infancy, but

only a few studies have thus far researched the genetic factors underlying the process. We

hypothesized that genetic variants in CACNA1C affect the regulation of sleep in early devel-

opment. Seven variants that were earlier associated (genome-wide significantly) with psy-

chiatric disorders at CACNA1C were selected for analyses. The study sample consists of

1086 infants (520 girls and 566 boys) from the Finnish CHILD-SLEEP birth cohort (geno-

typed by Illumina Infinium PsychArray BeadChip). Sleep length, latency, and nightly awa-

kenings were reported by the parents of the infants with a home-delivered questionnaire at

8 months of age. The genetic influence of CACNA1C variants on sleep in infants was exam-

ined by using PLINK software. Three of the examined CACNA1C variants, rs4765913,

rs4765914, and rs2239063, were associated with sleep latency (permuted P<0.05). There

was no significant association between studied variants and night awakenings or sleep

duration. CACNA1C variants for psychiatric disorders were found to be associated with long

sleep latency among 8-month-old infants. It remains to be clarified whether the findings refer

to defective regulation of sleep, or to distractibility of sleep under external influences.
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Introduction

CACNA1C encodes the alpha subunit of the L-type voltage-dependent calcium channel

Cav1.2, which is highly expressed in hippocampus, cerebral cortex, and cerebellum [1]. Until

now, genome-wide association studies have detected seven variants at CACNA1C which are

associated with psychiatric disorders. The Psychiatric GWAS Consortium Bipolar Disorder

Working Group [2] reported genome-wide, significant association between CACNA1C variant

rs4765913 and bipolar disorder. They also showed, together with the Psychiatric Genomic

Consortium (PGC), that association was stronger between rs4765913 and a combined sample

of schizophrenia and bipolar disorder than with schizophrenia alone [2]. The Schizophrenia

Psychiatric Genome-Wide Association Study (GWAS) Consortium [3] conducted a mega-

analysis of samples consisting of schizophrenia and bipolar disorder which reached a genome-

wide significant association with variant rs4765905. This association was replicated in two

studies [4,5].

The Cross-Disorder Group of the Psychiatric Genomics Consortium [6] performed GWAS

for samples of schizophrenia, bipolar disorder, ASD, attention deficit-hyperactivity disorder

(ADHD), and major depressive disorder (MDD). Variant rs1024582 at CACNA1C was associ-

ated with cross-disorder at the genome-wide significance level when all five disorders were

included. In model selection analyses, variant rs4765914 was associated with sample consisting

of bipolar disorder, MDD and schizophrenia [6]. The Schizophrenia Working Group of the

Psychiatric Genomics Consortium [7] combined all available schizophrenia samples and iden-

tified 108 loci that met genome-wide significance in schizophrenia. One of the loci was at

CACNA1C, with significant association of variants rs2007044 and rs2239063. Another studies

observed genome-wide significant association between variant rs1006737 and schizophrenia

[8] and a combined sample of bipolar disorder and schizophrenia [9]. The studies of human

brain imaging have suggested that rs1006737 may affect structures and functions of brain in

schizophrenia, such as cortical white matter integrity [10–12]. Allelic variation of rs1006737

also has an impact on regional gray matter volume in healthy individuals [13]. Furthermore

risk allele AA for schizophrenia increases L-type voltage-gated calcium channel current den-

sity and levels of CACNA1C mRNA in induced human neurons [14].

Studies in adults have resolved that variants in CACNA1C are associated with sleep disorder

and sleep traits, including narcolepsy [15], sleep latency [16], and sleep quality [16,17]. Most

of the associated variants are located in the third intron of CACNA1C, near the seven variants

related to psychiatric traits. None of these sleep related variants met the genome-wide signifi-

cance level. Cacna1c has been found to modulate the electrophysiological architecture of sleep

in mice. In a study by Kumar and colleagues [18], haploinsufficiency of Cacna1c reduced EEG

spectral gamma power during wake and REM sleep, which might indicate lowered alertness

during wakefulness and reduced cortical activation during REM sleep [18]. In addition hetero-

zygous Cacna1c mice demonstrated lower REM sleep rebound after sleep deprivation [18].

Positive symptoms of schizophrenia are related to phenomenological and neurobiological fea-

tures of REM sleep [19]. The malfunctioning REM-sleep processes of heterozygous CACNA1C
knockout mice resemble the impaired sleep regulation observed in schizophrenia [18].

Sleep disturbances are common in bipolar disorder [20] and schizophrenia [21]. In children

and adolescents, sleep problems are highly-prevalent in tandem with psychiatric disorders,

such as ADHD, anxiety, mood disorders, and ASD [22]. Insufficient sleep has negative impact

on infant´s neurobehavioral and cognitive functions and health [23]. Short sleep duration,

prolonged sleep onset and frequent night awakenings are associated with social-emotional

problems in toddlers [24]. There are strong genetic influences for consolidation of sleep in

infancy [25], but little is known regarding how genetic variation affects sleep in early
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childhood. Touchette et al. 2013 reported that nighttime sleep duration is strongly influenced

by genetic factors [25]. Their study comprised 995 twins and sleep duration was measured at 6,

18, 30 and 48 months of age. They observed strong genetic influences at consolidated night

time sleep duration at 6, 30 and 48 months. In contrast shared environmental influences

explained a larger proportion of variance in day time sleep duration [25]. First GWAS for

sleep duration in children detected genome-wide significant association at chromosome 11

but this was not replicated in independent samples [26]. Children were 2–14 years old. No

GWAS for sleep traits in infants has been published yet.

In this study we attempted to determine whether variants in CACNA1C are associated with

altered sleep parameters in Finnish infants. We were interested in this question because 1) vari-

ants in this gene have been associated with psychiatric disease, especially bipolar disorder and

schizophrenia, 2) bipolar disorder and schizophrenia are associated with various sleep distur-

bances, 3) the Cacna1c channel has been implicated in sleep-wake regulation, and 4) there are

strong genetic influences for sleep consolidation in infancy. We explored the data from 1089

Finnish infants that underwent genome wide genotyping and from which infant sleep question-

naire data was available. A small subset of these babies had also undergone polysomnography.

To assess insufficient and disturbed sleep we examined sleep duration, nightly awakenings,

sleep latency, WASO, SEI and REM/NREM ratio in these infants. We chose to evaluate for

seven gene variants that have been shown to be associated genome-wide significantly with bipo-

lar disorder and schizophrenia. The primary finding was that three of the SNPs were associated

with prolonged sleep latency in a statistically significant manner. None were associated with

changes in total sleep time, or nighttime awakenings.

Materials and methods

The study sample, CHILD-SLEEP [27], is a Finnish birth cohort collected from Pirkanmaa

Hospital District, comprising 1643 infants born April 2011−February 2013, and their parents.

The focus of CHILD-SLEEP is on the role of early sleep and circadian rhythm in general popu-

lation. In this study, the parental questionnaire data related to the sleep of children and suc-

cessfully genotyped DNA samples were available from 1086 babies (520 girls and 566 boys)

who were 8 months old. The ethical approval for CHILD-SLEEP was obtained from the Ethical

Committee of Pirkanmaa Hospital District (R11032/9.3.2011). The written informed consents

were obtained from the parents. Families were informed of their rights to terminate their par-

ticipation in the study at any time during data collection.

The evaluation of sleep of the infants in this study is based on parental questionnaires ISQ

(the infant sleep questionnaire) and BISQ (a brief screening questionnaire for infant sleep

problems) [28,29]. ISQ and BISQ are both reliable and valid measures of infant sleep [30].The

selected phenotypes for this study were total sleep time (TST), the number of night awakenings

and sleep latency at the age of eight months. To assess these sleep patterns of the infants their

parents were asked the following questions: “How many hours does your child sleep at night

(19 pm - 07am)?” (Sleep duration at night, BISQ10) and “How many hours does your child

sleep at daytime (07am– 19pm)?” (Sleep duration at daytime, BISQ11). BISQ10 and BISQ11

were aggregated for total sleep time. The information for night awakenings (ISQ5) was col-

lected with a question “How many times a night (between 24.00 and 06.00), your baby will

usually wake up and need reassurance?” (0 = Does not wake up at all, 1 = Once a night,

2 = Two times at night, 3 = Three times at night, 4 = Four times at night, 5 = Five or more

times at night). The question for Sleep latency (ISQ1) was “How long does it usually take to

settle your baby to sleep?” (1 = Less than 10 minutes, 2 = 10–20 minutes, 3 = 20–30 minutes,

4 = 30–40 minutes, 5 = 40–50 minutes, 6 = 50–60 minutes, 7 = one hour or more). Total sleep
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time and night awakenings were normally distributed. Because sleep latency for babies was

skewed, we dichotomized the variable based on the mean of the sleep latency in this study

(Table 1) and earlier sleep studies in children [24,31] as less than 20 minutes and more than 20

minutes.

A subcohort of the children Child Sleep babies underwent an ambulatory over-night PSG

in three different ages (1, 8, and 24 months of age) as described in detail earlier [32]. At the age

of eight months, 72 infants were recorded. The recordings were started at the families’ homes

close to the babies’ usual bed time. However, the objective sleep latency could not be measured

in the PSGs, as the evening routines varied substantially. Often babies fell asleep while eating

and the real “lights off” time could not be defined. The length of the recordings varied depend-

ing on the habitual length of over-night sleep of the babies.

For the purpose of this study, nine hours of recording were analyzed, beginning at the sleep

onset. The sleep stages were scored according to the established rules [33]. The sleep parame-

ters chosen for this study were WASO (wake after sleep onset), SEI (sleep efficiency) and R/

NREM (ratio between REM and NREM sleep) (Table 1). WASO was the time of wakefulness

(in minutes) during the nine hours of recording. SEI was the total sleep time divided by the

nine hours of recording. R/NREM ratio was the amount of stage R sleep divided by the amount

of NREM sleep during the nine hours [32].

Umbilical cord blood sample was drawn from each newborn. DNA was extracted according

to standard procedures. DNA samples were genotyped with Illumina Infinium PsychArray

BeadChip at Estonian Genome Centre and quality control (QC) was performed with PLINK

(http://pngu.mgh.harvard.edu/~purcell/plink/). Markers were removed for missingness

(>5%), Hardy-Weinberg equilibrium (p-value < 1 x 10−6), and low minor allele frequency

(< 0.01). Individuals were checked for missing genotypes (>5%), relatedness (identical by

descent calculation, PI_HAT>0.2) and population stratification (multidimensional scaling).

After QC, phenotype and high quality genotype data at 8 months was available for 1086

(parental questionnaires) and 63 (PSG) babies. Genotyped data was imputed with IMPUTEv2

[34] against Finnish WGS (whole-genome sequencing) [35] and 1000 genomes [36] (Phase 3,

released at February, 2013) reference panels.

Seven SNPs (single nucleotide polymorphism) earlier associated to psychiatric traits at

CACNA1C with genome wide significance were selected for analyses (Table 2). The association

between seven SNPs and quantitative sleep measures were tested with linear (TST and nightly

awakenings) and logistic (sleep latency) regression analyses implemented with PLINK.

Table 1. Description on study variables.

Variable N Range Mean Pa

TST 1086 9–17 h 13.3 h 0.67

Night awakenings 1086 0 - � 5 times 2 times at night 0.64

Sleep latency 1086 <10 min - � 1 h 10–20 min 0.17

WASO 63 24–120 min 67.2 min 0.09

SEI 63 76–96% 86.7% 0.62

R_NREM 63 0.30–0.73 0.49 0.16

Family atmosphereb 1086 7–43 13.5 0.81

Breastfeeding 1086 - 44.8% (breastfed) 0.96

Illness 1086 - 12.4% (had illness) 0.82

ap-value of t-test for the difference between boys and girls
bSmall score reflects better atmosphere

https://doi.org/10.1371/journal.pone.0180652.t001
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Covariates used in the analyses were gender, first three principals components of GWAS, fam-

ily atmosphere [27], breastfeeding (dichotomized variable: breastfeeding/breastfeeding + for-

mula or formula), and babies’ illnesses (milk allergy, other allergy, colic, infections, reflux,

congenital heart disease, innate developmental disorder, neurological disorder, growth retar-

dation, other illness). Babies´ illnesses were used as a dichtomized variable: no illness / 1 or

more illness. Descriptions of the study variables are presented in Table 1. Associations were

corrected for multiple testing by the max (T) permutation in PLINK with 10 000 permutations

per SNP. The criterion for significance was set a permutation p< 0.05. Because of multiple

correlated phenotypes Bonferroni correction was not used in this study. It is likely to be overly

conservative as the analyses are not independent of each other.

Power calculations were performed with the Genetic Power Calculator (http://pngu.mgh.

harvard.edu/~purcell/gpc/) [37] assuming an additive model (TST and night awakenings) or

case-control for threshold-selected quantitative trait (sleep latency), 1% quantitative trait locus

(QTL) variance or additive genetic variance and perfect linkage disequilibrium between QTL

and the markers. There was 85% statistical power to detect variants with significance level of

0.05 when polymorphisms with allele frequencies from 0.2 to 0.3 were analyzed.

Results

All seven variants included in the analyses of this study lie within 167 kb region of the CACNA1C
intron three (Fig 1). LD-structure of the studied variants is presented in Fig 2. There are two LD-

blocks in the region. The first region comprises the variants rs2007044, rs1006737, rs4765905,

and rs1024582 (D‘� 0.95). Another LD-block consists of SNPs rs4765913, rs4765914, and

rs2239063 (D‘� 0.81).

The results of the association analyses are shown in Table 3. Beta values indicate the direc-

tion of the effect for the minor allele. Empirical p-value 1 (EMP1) is a point-wise p-value from

10 000 permutations and empirical p-value 2 (EMP2) means corrected empirical p-value over

all studied SNPs. In the primary analyses we used only sex as a covariate. Variants rs4765913

(minor allele A), rs4765914 (minor allele T), and rs2239063 (major allele A) were associated

Table 2. SNPs associated with psychiatric traits in genome-wide significant level in CACNA1C.

SNP Phenotype Reference

rs2007044 Schizophrenia [7]

rs1006737 bipolar disorder, schizophrenia [8,9]

rs4765905 bipolar disorder, Schizophrenia [3–5]

rs1024582 bipolar disorder, schizophrenia [6]

rs4765913 bipolar disorder, schizophrenia [2]

rs4765914 bipolar disorder, MDD, schizophrenia [6]

rs2239063 Schizophrenia [7]

https://doi.org/10.1371/journal.pone.0180652.t002

Fig 1. Location of studied SNPs at CACNA1C. Seven SNPs associated with psychiatric disorders are located in intron three of

CACNA1C gene.

https://doi.org/10.1371/journal.pone.0180652.g001
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with longer sleep latency (permuted P < .05, EMP1) in additive model. When permuted 10

000 times over all 7 variants (EMP2) the variants rs4765914 and rs2239063 remained signifi-

cant. In dominant model the strongest association was detected between variant rs2239063

and sleep latency (beta = −0.4023, P = 0.0037, EMP1 = 0.0036, EMP2 = 0.017). In recessive

model variant rs4765913 showed the strongest association for sleep latency (beta = 0.8076,

P = 0.003487, EMP1 = 0.0025, EMP2 = 0.0167). There was no significant association between

studied variants and night awakenings or sleep duration. When the covariates family atmo-

sphere, breastfeeding, babies’ illnesses and genetic principal components were added to the

analyses, the results for sleep latency remained significant.

When girls and boys were analyzed separately, association of variant rs4765914 with sleep

latency was statistically significant in boys (beta = 0.4331, P = 0.008, EMP1 = 0.008, EMP2 = 0.037)

but not in girls in additive model. In dominant model rs4765914 (minor allele T) shortened TST

in boys (beta = -0.248, P = 0.0275, EMP1 = 0.0309, EMP2 = 0.1162). There was no significant asso-

ciation between sex and CACNA1C variants in night awakenings.

We also performed haplotype analyses for sleep latency, TST and night awakenings. They

were in line with primary analyses and several haplotypes were associated with sleep latency

(P< 0.05). In logistic regression analyses two haplotypes were significant after 10 000 permu-

tation over all seven SNPs (EMP2 < 0.05). Of them frequencies of haplotype (CC) comprising

Fig 2. LD structure of the SNPs analyzed at CACNA1C. Markers with linkage disequilibrium (0<r2�1) are

shown in red through pale light pink (color intensity decreases with decreasing r2 value).

https://doi.org/10.1371/journal.pone.0180652.g002
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variants rs4765914 and rs2239063 and TCC of variants rs4765913, rs4765914 and rs2239063

differed significantly between infants with short versus long latency (P = 0.001581, P = 00169,

respectively). Haplotypes comprising protective alleles for psychiatric disorders were more

common in short latency (haplotype CC: freq short/long latency = 0.3156/0.243, haplotype

TCC: freq short/long latency = 0.3172/0.245). There was no significant association between

any of the haplotypes and TST or night awakenings.

We analyzed the association of polysomnography (PSG) variables in a sample of 63 babies

at 8 months of age. There was no significant correlation between subjective measure of nightly

awakenings (ISQ5) and objective measures WASO or SEI. The results of PSG analyses are

shown in Table 4. There was no significant association between 7 variants and the PSG

variables.

Discussion

In this study, some of the variants related to psychiatric traits showed nominally significant

association with sleep. In the analyses of the whole sample variants rs4765913, rs4765914, and

Table 3. The results of association analyses between CACNA1C variants and TST, night awakenings and sleep latency, N = 1086.

SNP TST Night awakenings Sleep latency

beta P EMP1a EMP2b beta P EMP1a EMP2b beta P EMP1a EMP2b

rs2007044* -0.02258 0.6871 0.6825 0.9935 -0.04966 0.4547 0.4558 0.8971 0.06581 0.5299 0.5212 0.9486

rs1006737 -0.02226 0.6996 0.7002 0.9945 -0.07104 0.3011 0.2945 0.733 0.05984 0.5821 0.5683 0.9696

rs4765905 -0.02166 0.7092 0.7135 0.9952 -0.05912 0.3922 0.3802 0.8402 0.04947 0.6511 0.6379 0.9863

rs1024582 -0.01756 0.7545 0.7571 0.9983 -0.03266 0.6229 0.6201 0.98 0.02755 0.7936 0.787 0.9993

rs4765913 -0.04492 0.4643 0.4686 0.9069 0.04481 0.5405 0.5384 0.951 0.2561 0.02332 0.0237 0.08759

rs4765914 -0.05098 0.4365 0.4339 0.8845 0.1299 0.09763 0.09774 0.324 0.3026 0.01115 0.0106 0.0423

rs2239063* -0.01161 0.8368 0.8384 0.9998 0.02467 0.7116 0.7183 0.9943 -0.2767 0.01138 0.011 0.0426

Additive model, adjusted with sex

*imputed
aEmpirical p-value 1 (EMP1) = point-wise p-value from 10,000 permutations
bEmpirical p-value 2 (EMP2) = corrected empirical p-value by max (T) permutations, TST = total sleep time.

https://doi.org/10.1371/journal.pone.0180652.t003

Table 4. Polysomnography results, N = 63.

SNP WASO SEI REM/NREM

beta P EMP1a EMP2b beta P EMP1a EMP2b beta P EMP1a EMP2b

rs2007044* 2.304 0.6337 0.6343 0.9726 -0.4188 0.6665 0.6698 0.9829 -0.0001271 0.995 0.9956 1

rs1006737 -3.049 0.5525 0.5487 0.9365 0.5307 0.6072 0.6158 0.9638 -0.004783 0.8249 0.8305 0.9988

rs4765905 -2.874 0.5799 0.5765 0.9505 0.5024 0.6307 0.6395 0.9724 -0.00398 0.8549 0.8549 0.9995

rs1024582 -3.054 0.5241 0.5321 0.9193 0.3914 0.6849 0.6919 0.9867 -0.009561 0.6486 0.6526 0.9754

rs4765913 -1.09 0.8247 0.8245 0.999 0.1462 0.8825 0.8845 0.9997 0.005384 0.8056 0.8096 0.9984

rs4765914 -0.2365 0.9631 0.9644 1 -0.08532 0.9337 0.9304 1 0.008536 0.7147 0.7171 0.9905

rs2239063* -8.536 0.1379 0.1395 0.3816 1.785 0.1223 0.1252 0.3471 -0.03394 0.1514 0.15 0.4028

WASO = wake after sleep onset, SEI = sleep efficiency, REM = rapid eye movement sleep, NREM = non-rapid eye movement sleep, additive model,

adjusted with sex, three first principal components of GWAS, home atmosphere, breastfeeding and babies’ illnesses

*imputed
aEmpirical p-value 1 (EMP1) = point-wise p-value from 10,000 permutations
bEmpirical p-value 2 (EMP2) = corrected empirical p-value by max (T) permutations.

https://doi.org/10.1371/journal.pone.0180652.t004
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rs2239063 were associated with sleep latency. The minor allele A of rs4765913 was associated

with longer sleep latency. Psychiatric GWAS Consortium Bipolar Disorder Working Group

[2] reported that allele A is associated with bipolar disorder (P = 1.52x10-8) and with combined

samples of bipolar disorder and schizophrenia (P = 7.7x10-8). In our study, the minor allele T

of rs4765914 was associated with longer time of sleep latency in infants. Cross-Disorder of the

Psychiatric Genomics Consortium [6] reported that this same allele is associated with bipolar

disorder, major depressive disorder, and schizophrenia. T allele is also associated with amyg-

dala structure and function in adolescents; in the study of Sumner and colleagues [38] homo-

zygous carriers of T allele exhibited smaller amygdala volume compared to individuals with

homozygous major C allele [38]. Reduced amygdala volume has been observed in bipolar dis-

order in adults and youth in earlier studies [39,40]. There is a complex interplay between sleep

and emotions; sleep deprivation impairs the connectivity between amygdala and prefrontal

cortex, which have a direct impact on individual´s ability to regulate emotions [41].

Finally, in our study the major allele A of rs2239063 was associated with longer sleep latency

in 8-month-old babies. This same allele is associated with schizophrenia at the genome-wide sig-

nificance level (P = 1.93e-8) [7]. Long sleep latency is common in schizophrenia [21] and bipolar

disorder [20]. Considering haplotype analyses we observed that frequencies of haplotypes which

comprised the protective alleles for psychiatric traits, CC (rs4765914 and rs2239063) and TCC

(rs4765913, rs4765914 and rs2239063) were significantly more frequent within babies with short

sleep latency time compared to infants with long latency.

When we analyzed boys and girls separately, the psychiatric risk allele T of rs4765914 was

significantly associated with prolonged sleep latency and shortened TST in boys but not in

girls. In case this finding is not considered as lack of power due to small sample size of studied

groups but true biological gender difference, it suggests that male gender may be genetically

vulnerable for sleep disturbances. In earlier studies there were sex-specific differences in influ-

ences of CACNA1C variants on mood disorders [42] and functional recovery from episodes of

schizophrenia [43]. This could be explained by hormonal differences. Estrogen directly poten-

tiates neuronal L-type Ca2+ channels [44] and inhibits Ca2+ influx through L-type voltage-

gated CA2+ channels [45].

Variants in CACNA1C are associated with sleep latency and quality of sleep in adults

[16,17]. In our study we observed that some of the CACNA1C variants for psychiatric disorders

were found to be associated with sleep latency in babies at 8 months-of-age. These variants

were not significantly associated with sleep duration or nightly awakenings. Our results for

sleep duration in infants are in line with earlier studies where no genome-wide significant

association for sleep duration at CACNA1C has been reported [16,26,46–50]. GWAS for

nightly awakenings has not been published in adults. More studies are needed to see if CAC-
NA1C regulates nightly awakenings.

The limitations of this study were the cross-sectional approach of the research and the fact

that we lacked replication data. Further, the power to detect risk variants for sleep disturbances

with polysomnography was limited because the amount of objective data was quite small. The

objective sleep latency of the infants could not be measured because the recording was not

started at bedtime. This is why we chose parental questionnaires as a measure for the sleep

latency.

There are also several other candidate genes for sleep disturbances like recently detected

RBFOX3 in meta-analyses of sleep latency with large dataset [51]. In our study we focused

CACNA1C because of its central role in sleep and psychiatric problems. Power for GWAS was

limited because the sample size was relatively small but meta-analyses with other childhood

cohorts will be performed later. The results of other candidate genes for sleep disturbances in

CHILD-SLEEP project will be reported elsewhere.
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Nonetheless, overall CACNA1C remains a potential candidate gene for sleep disturbances

and the variants may affect sleep already in early childhood. Collection of CHILD-SLEEP data

is continuing and we will follow the sleep and mental health of these children. Understanding

how the genetic variants influence in sleep/wake regulation already in infancy may have an

impact on helping the families to interfere in infants´ sleep problems at early stage. In a long

term the growing knowledge of genetics could also be used as basis of development of thera-

pies and early diagnostics for sleep and neuropsychological disorders.
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Rautiainen and Antti-Jussi Ämmälä are acknowledged for help in genotype data quality con-

trol. The authors wish to acknowledge CSC–IT Center for Science, Finland, for computational

resources.

Author Contributions

Conceptualization: KK TP.

Funding acquisition: TP.

Investigation: KK JL OSH ALS AK PP JJ AT SLH TPH JP TP.

Methodology: KK AK SLH TP.

Project administration: TP.

Resources: AT LM.

Supervision: TP.

Visualization: KK.

Writing – original draft: KK.

Writing – review & editing: KK OSH ASL AK PP ASH TPH JP TP.

References
1. Berger SM, Bartsch D. The role of L-type voltage-gated calcium channels Cav1. 2 and Cav1. 3 in nor-

mal and pathological brain function. Cell Tissue Res. 2014; 357: 463–476. https://doi.org/10.1007/

s00441-014-1936-3 PMID: 24996399

2. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association

analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011; 43: 977–

983. https://doi.org/10.1038/ng.943 PMID: 21926972

3. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide asso-

ciation study identifies five new schizophrenia loci. Nat Genet. 2011; 43: 969–976. https://doi.org/10.

1038/ng.940 PMID: 21926974

4. Hamshere ML, Walters JTR, Smith R, Richards A, Green E, Grozeva D, et al. Genome-wide significant

associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of asso-

ciations reported by the Schizophrenia PGC. Mol Psychiatry. 2013; 18: 708–712. https://doi.org/10.

1038/mp.2012.67 PMID: 22614287

5. Takahashi S, Glatt SJ, Uchiyama M, Faraone SV, Tsuang MT. Meta-analysis of data from the Psychiat-

ric Genomics Consortium and additional samples supports association of CACNA1C with risk for

CACNA1C variants affect sleep latency in infants

PLOS ONE | https://doi.org/10.1371/journal.pone.0180652 August 9, 2017 9 / 12

http://www.aka.fi/skidi-kids
http://www.aka.fi/skidi-kids
https://doi.org/10.1007/s00441-014-1936-3
https://doi.org/10.1007/s00441-014-1936-3
http://www.ncbi.nlm.nih.gov/pubmed/24996399
https://doi.org/10.1038/ng.943
http://www.ncbi.nlm.nih.gov/pubmed/21926972
https://doi.org/10.1038/ng.940
https://doi.org/10.1038/ng.940
http://www.ncbi.nlm.nih.gov/pubmed/21926974
https://doi.org/10.1038/mp.2012.67
https://doi.org/10.1038/mp.2012.67
http://www.ncbi.nlm.nih.gov/pubmed/22614287
https://doi.org/10.1371/journal.pone.0180652


schizophrenia. Schizophr Res. 2015; 168: 429–433. https://doi.org/10.1016/j.schres.2015.07.033

PMID: 26276307

6. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared

effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013; 381: 1371–1379.

https://doi.org/10.1016/S0140-6736(12)62129-1 PMID: 23453885

7. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108

schizophrenia-associated genetic loci. Nature. 2014; 511: 421–427. doi: https://doi.org/10.1038/

nature13595 PMID: 25056061

8. Nie F, Wang X, Zhao P, Yang H, Zhu W, Zhao Y, et al. Genetic analysis of SNPs in CACNA1C and

ANK3 gene with schizophrenia: A comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr

Genet. 2015; 168: 637–648. https://doi.org/10.1002/ajmg.b.32348 PMID: 26227746

9. Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amdur RL, Gejman PV, et al. Polygenic dissection of

diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry. 2014; 19:

1017–1024. https://doi.org/10.1038/mp.2013.138 PMID: 24280982

10. Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B, et al. Genetic variation in

CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry. 2010; 67: 939–945.

https://doi.org/10.1001/archgenpsychiatry.2010.96 PMID: 20819988

11. Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J, et al. The effects of CACNA1C gene polymorphism

on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder.

Neuropsychopharmacology. 2012; 37: 677–684. https://doi.org/10.1038/npp.2011.242 PMID:

22012475

12. San Woon P, Sum MY, Kuswanto CN, Yang GL, Sitoh YY, Soong TW, et al. CACNA1C genomewide

supported psychosis genetic variation affects cortical brain white matter integrity in Chinese patients

with schizophrenia. J Clin Psychiatry. 2014; 75: 1,478–1290.

13. Huang L, Mo Y, Sun X, Yu H, Li H, Wu L, et al. The impact of CACNA1C allelic variation on regional

gray matter volume in Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2016; 171B:396–

401 https://doi.org/10.1002/ajmg.b.32418 PMID: 26756527

14. Yoshimizu T, Pan JQ, Mungenast AE, Madison JM, Su S, Ketterman J, et al. Functional implications of

a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry. 2015; 20: 162–

169. https://doi.org/10.1038/mp.2014.143 PMID: 25403839

15. Shimada M, Miyagawa T, Kawashima M, Tanaka S, Honda Y, Honda M, et al. An approach based on a

genome-wide association study reveals candidate loci for narcolepsy. Hum Genet. 2010; 128: 433–

441. https://doi.org/10.1007/s00439-010-0862-z PMID: 20677014

16. Byrne EM, Gehrman PR, Medland SE, Nyholt DR, Heath AC, Madden PA, et al. A genome-wide associ-

ation study of sleep habits and insomnia. Am J Med Genet B Neuropsychiatr Genet. 2013; 162: 439–

451.

17. Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM. Replication of Genome-Wide

association studies (GWAS) loci for sleep in the British G1219 cohort. Am J Med Genet B Neuropsy-

chiatr Genet. 2013; 162: 431–438.
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